
Supplementary of “Row-clustering of a Point
Process-valued Matrix"

Lihao Yin1,2 Ganggang Xu3 Huiyan Sang2 Yongtao Guan3

1Institute of Statistics and Big Data, Renmin University, Beijing, China,
2Department of Statistics, Texas A&M University, College Station, Texas,

3University of Miami, Coral Gables, Florida,
{lihao, huiyan}@stat.tamu.edu, {gangxu, yguan}@bus.miami.edu

Abbreviations
• ES: Expectation-Solution;
• LGCP: log-Gaussian Cox process;
• FPCA: Functional principal component analysis;
• MM-MPP: Mixture Multi-level Marked Point Processes;
• MS-MPP: Mixture Single-level Marked Point Processes;
• MC: Monte Carlo
• DMHP: Dirichlet mixture of Hawkes processes;
• DF: discrete Fréchet;

S.1 Step I of the Two-step Learning of the Multi-Level Model

We consider a multi-level model with the following latent intensity function:
λri,j(t) = exp{Xr

i (t) + Y r
j (t) + Zr

i,j(t)}, t ∈ [0, T] (S1)
for i = 1, · · · , n, j = 1, · · · ,m and r = 1, · · · , R.

As discussed in Section 4.2, the learning algorithm is decomposed into two steps as in Algorithm S.1.
In Step I, we seek to estimate the parameters in Θy and Θz . Other cluster-specific model parameters
such as cluster assignment probabilities π are estimated in Step II following the procedure described
in Section 4.2. [10] developed a semi-parametric algorithm to estimate the covariance functions
of a multi-level log-Gaussian Cox process. We extend their estimation method to also take into
account unknown clustering when estimating Θy and Θz in Step I. Interestingly, we will show that
the resulting estimators of Θy and Θz do not depend on any other cluster-specific parameters and
hence avoid iterations between the two steps.

Specifically, following the formula of the moment generating function of a Gaussian random variable,
the marginal intensity functions can be calculated as

ρr(t) = E[λri,j(t)] =

C∑
c=1

πc exp{µr
x,c(t) + Γr,r

x,c(t, t)/2 + Γr,r
y (t, t)/2 + Γr,r

z (t, t)/2},

and derived in a similar way, the marginal second-order intensity functions are:

ρr,r
′

i,j,i′,j′(s, t) = E[λri,j(s)λ
r′

i′,j′(t)]

=
∑
c

∑
c′

E[exp{Y r
j (s) + Y r′

j′ (t) + Zr
i,j(s) + Zr′

i′,j′(t)}]

· E[ωc,iωc′,i′] · E[exp{Xr
i (s) +Xr′

i′ (t)}|ωc,i = 1, ωc′,i′ = 1]

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

for i, i′ = 1, · · · , n, j, j′ = 1, · · · ,m and r, r′ = 1, · · · , R.

We analyze the form of ρr,r
′

i,j,i′,j′ under four different situations and use Ar,r′ , Br,r′ , Cr,r′ or Dr,r′ to
represent its form under each situation respectively,

ρr,r
′

i,j,i′,j′(s, t) =

Ar,r′(s, t) ≡ exp{Γr,r′

y (s, t) + Γr,r′

z (s, t)}
∑
c

πcρ
r
c(s)ρr

′

c (t) exp{Γr,r′

x,c (s, t)}, if i = i′, j = j′

Br,r′(s, t) ≡
∑
c

πcρ
r
c(s)ρr

′

c (t) exp{Γr,r′

x,c (s, t)}, if i = i′, j 6= j′

Cr,r′(s, t) ≡ exp{Γr,r′

y (s, t)}
∑
c,c′

πcπc′ρ
r
c(s)ρr

′

c′ (t), if i 6= i′, j = j′

Dr,r′(s, t) ≡
∑
c,c′

πcπc′ρ
r
c(s)ρr

′

c′ (t), if i 6= i′, j 6= j′

(S2)

It can be seen that Ar,r′(s, t), Br,r′(s, t), Cr,r′(s, t) and Dr,r′(s, t) captures different correlation
information, namely, the correlation within same-account same-day, within same-account across
different-day, within same-day across different-account, and across different-account different-day,
while integrating out the unknown cluster memberships of i and i′.

Following a similar derivation as [10], the corresponding empirical kernel estimate of ρr,r
′

i,j,i′,j′ under
each situation is given by

Âr,r′(s, t;h) =

n∑
i=1

m∑
j=1

u6=v∑∑
u∈Sr

i,j ,v∈Sr′
i,j

Kh(s− u)Kh(t− v)

nmg(s;h)g(t;h)

B̂r,r′(s, t;h) =

n∑
i=1

m∑
j=1

∑
j′ 6=j

∑
u∈Sr

i,j

∑
v∈Sr′

i,j′

Kh(s− u)Kh(t− v)

nm(m− 1)g(s;h)g(t;h)

Ĉr,r′(s, t;h) =

n∑
i=1

∑
i′ 6=i

m∑
j=1

∑
u∈Sr

i,j

∑
v∈Sr′

i′,j

Kh(s− u)Kh(t− v)

n(n− 1)mg(s;h)g(t;h)

D̂r,r′(s, t;h) =

n∑
i=1

∑
i′ 6=i

m∑
j=1

∑
j′ 6=j

∑
u∈Sr

i,j

∑
v∈Sr′

i′,j′

Kh(s− u)Kh(t− v)

n(n− 1)m(m− 1)g(s;h)g(t;h)

(S3)

for r, r′ = 1, · · · , R, where Kh(t) = h−1K(t/h) is a kernel function with bandwidth h and
g(x;h) =

∫
Kh(x− t)dt is an edge correction term.

Matching (S2) with (S3), we propose to estimate the covariance functions using,

Γ̂r,r′

y (s, t;h) = log
Ĉr,r′(s, t;h)

D̂r,r′(s, t;h)
, Γ̂r,r′

z (s, t;h) = log
Âr,r′(s, t;h)D̂r,r′(s, t;h)

B̂r,r′(s, t;h)Ĉr,r′(s, t;h)
(S4)

2

Algorithm S.1 Learning of the Multi-level model (1)
Input: S = {Sr

i,j}, the number of clusters C, the bandwidth h;
Output: Estimates of model parameters, π̂, Θ̂y , Θ̂z , Θ̂x,c, for c = 1, · · · , C;
Step I: Given S, obtain Θ̂y and Θ̂z using the estimation framework in Section S.1;
Step II:

a) Aggregate the event sequences by S̄r
i· = ∪mj=1S

r
i,j ;

b) Based on {S̄r
i·}ni=1 from a), fit the single-level model with parameters {π, Θ̃x,c} using

Algorithm 1;
c) Calculate,

µ̂r
x,c(t) = µ̃r

x,c(t)− Γ̂r,r
y (t, t)/2− Γ̂r,r

z (t, t)/2− logm, Γ̂r,r′

x,c (s, t) = Γ̃r,r′

x,c (s, t)

S.2 Computational Details

S.2.1 ES Algorithm

The Expectation-Solution (ES) algorithm [2, 5] is a general extension of the Expectation-
Maximization (EM) algorithm. It is an iterative approach built upon estimating equations that
involve missing data or unobserved variables. In the E-step of each iteration, ES calculates the
conditional expectations of estimating equations given observed data and current parameter estimates.
In S-step, it updates parameter values by finding the solutions to the expected estimating equations.
Since the estimating equations can be constructed from a likelihood, a quasi-likelihood, or other
forms, the ES algorithm is more flexible and general than the EM algorithm. In particular, when
estimating equations are well designed such that analytical solutions are available in S-step, ES
algorithm may achieve an improved computational efficiency over EM algorithms, which often
involve expensive numerical optimizations of the expected log-likelihood in each M-step.

We follow the notations and expressions in [2]. Let y denote the observed data vector, z denote the
unobserved data, and x = {y, z} be the complete-data. Let Ω denote a d-dimensional vector of
parameters. Given d-dimensional estimating equations with the complete data as:

Uc(x; Ω) = 0

the ES algorithm entails a linear decomposition like:

Uc(x; Ω) = U1(y,S(x); Ω)

=

q∑
j=1

aj(Ω)Sj(x) + bΩ(y),
(S5)

where aj’s are vectors of size d only depending on parameters Ω, and S is a q-dimensional function
with components Sj only depending on the complete data. S(x) is referred to as a "complete-data
summary statistic". Given the parameters Ω∗, we calculate the expectation over z condition on y and
parameters Ω in E-step as following

h(y; Ω∗) = Ez[S(x)|y; Ω∗]

In view of the linearity in (S5), we consider the conditionally expected estimation equations,

Ez[Uc(x; Ω)|y; Ω∗] = U1(y, h(y; Ω∗); Ω) = 0 (S6)

In the S-step, we update the parameters Ω by finding the solution to (S6). We outline the ES procedure
in Algorithm S.2.1.

S.2.2 Sampling Strategy

The E-step in Section 4.1 involves the sampling of random functions X(q)
c for calculating the

Monte Carlo integration in (9). Given cluster-specific parameters Ωx,c, our goal is to draw multiple

3

Algorithm S.2 ES Algorithm
Presupposition: Given estimating equations Uc(x; Ω) with a linear decomposition (S5);
Input: Observed data y;
Output: Estimates of model parameters Ω;
Initialize Ω∗ randomly;
Repeat:

E-Step: Calculate h(y; Ω∗) = Ez[S(x)|y; Ω∗];
S-Step: Find Ω that solve U1(y, h(y; Ω∗); Ω) = 0 in (S6);
End;

Until: Reach the convergence criteria.

independent realizations of Xi(t)|ωc,i = 1, denoted as X(q)
c (t) = {X1(q)

c (t), · · · , XR(q)
c (t)}′.

Recall that the cross covariance functions of Xi(t) is Γr,r′

x,c (s, t) = Cov[Xr
i (s), Xr′

i (t)|ωc,i = 1],
s, t ∈ [0, T], for i = 1, · · · , n. When r = r′, the covariance function Γr,r

x,c(s, t) is a symmetric,
continuous and nonnegative definite kernel function on [0, T]× [0, T]. Then Mercer’s theorem asserts
that there exists the following spectral decomposition:

Γr,r
x,c(s, t) =

∞∑
k=1

ηrx,c,kφ
r
x,c,k(s)φrx,c,k(t),

where ηrx,c,1 ≥ ηrx,c,2 ≥ · · · > 0 are eigenvalues of Γr,r
x,c(s, t) and φrx,c,k(t)’s are the corresponding

eigenfunctions which are pairwise orthogonal in L2([0, T]). The eigenvalues and eigenfunctions
satisfy the integral eigenvalue equation,

ηrx,c,kφ
r
x,c,k(s) =

∫ T

0

Γr,r
x,c(s, t)φ

r
x,c,k(t)dt

Accordingly, using the Karhunen-Loève expansion [9], Xr(q)
c (t) admits a decomposition,

Xr
c (t) = µr

x,c(t) +

∞∑
k=1

ξrx,c,kφ
r
x,c,k(t), (S7)

where {ξrx,c,k}∞k=1 are independent normal random variables with mean 0 and variance {ηrx,c,k}∞k=1.
The expression in (S7) has an infinite dimensional parameter space, which is infeasible for estimation.
One solution is to approximate (S7) by only keeping leading principal components,

Xr
c (t) ≈ µr

x,c(t) +

pr
c∑

k=1

ξrx,c,kφ
r
x,c,k(t) (S8)

where prc is a rank chosen to characterize the dominant characteristics of Xr
c while reducing compu-

tational complexity. It leads to a reduced-rank representation of Γr,r
x,c(s, t) as:

Γr,r
x,c(s, t) ≈

pr
c∑

k=1

ηrx,c,kφ
r
x,c,k(s)φrx,c,k(t).

Similarly, when r 6= r′, we can also approximate Γr,r′

x,c (s, t) using the truncated decomposition,

Γr,r′

x,c (s, t) ≈
pr
c∑

k=1

pr′
c∑

k′=1

ηr,r
′

x,c,k,k′φ
r
x,c,k(s)φr

′

x,c,k(t). (S9)

We denote ξrx,c = {ξrx,c,1, · · · , ξrx,c,pr
c
}′ and investigate the cross-covariance matrix of ξx,c =

{ξ1
x,c, · · · , ξRx,c}, denoted as

Σx,c =

Σ1,1
x,c · · · Σ1,R

x,c
...

. . .
...

ΣR,1
x,c · · · ΣR,R

x,c

 ,

4

where Σr,r′

x,c = Cov[ξrx,c, ξ
r′

x,c].

From Karhunen-Loève expansion in (S7), we know Σr,r
x,c = diag(ηrx,c,1, · · · , ηrx,c,pr

c
) for each event

type r. When c 6= c′, we assume that ξrx,c and ξr
′

x,c′ are independent. However, when considering two
different event types (i.e., r 6= r′) within the same cluster, it is reasonable to account for the correlation
between ξrx,c and ξr

′

x,c to characterize interactions among events of different types. Therefore, from

(S7) and (S9), the (k, k′)-th entry of the covariance matrix Σr,r′

x,c is ηr,r
′

x,c,k,k′ when r 6= r′.

Now we can draw the samples ξ(q)
x,c = {ξ1(q)

x,c , · · · , ξR(q)
x,c } from the multivariate normal distribution

with a mean zero and a covariance matrix is Σx,c, based on which we obtain the samplesX(q)
c using

expansion (S8).

S.2.3 GPU Acceleration

One computational bottleneck in our approach is the Monte Carlo (MC) approximation of the high-
dimensional integration in (9). Although we have employed the low-rank representations by FPCA in
Section S.2.2 to facilitate MC sampling, this step remains as the most computationally expensive part
if using a naive direct calculation, due to the massive number of sampling points for a precise MC
integration.

Many researchers have embarked their efforts on improving the performance of MC integration.
One of the most popular frameworks is VEGAS [4, 6] due to its user-friendly interface. However,
VEGAS, which is CPU-based, may be over-stretched with dimensionality going up since the required
MC samples consequently increase dramatically. As notable progress, GPU-based programs, like
VegasFlow[1], extremely boosts the computation speed compared to the CPU-version program. It
accelerates the computation with the Numpy-like API syntax, such as Tensorflow, which is easy to
communicate to GPU. Similar treatments are implemented in our work, and the key is to transfer the
summation loop in (10) into the form of array programming [3]. For example, when we calculate
Xq

c (t) in (S8), the computation involves total prc ×Q sampled ξrx,c,k and prc × I × n of φrx,c,k(u), if
given c and r. It will greatly reduce the running time if we utilize array programming. For example,
in the case when we have n = 500 sequences and 10, 000 MC points, our MS-MPP algorithm costs
on average 30.09 seconds to run 20 ES iterations on RTX-8000 48G GPU. In contrast, it costs 275.87
seconds on i7-7700HQ CPU if not using array programming.

S.3 Simulation Studies

Setting of Xr
i (·)’s. In our synthetic data, we sample event sequences from C heterogeneous clusters

(C = 2, 3, 4 or 5). Each cluster contains 500 event sequences, and each event sequence contains
R = 5 event types. We experiment with each setting for J = 100 times and investigate the average
performance. In each trial, we set,

µr
x,c(t) = 1 +

50∑
k=0

ζkZ
r
c,k cos(kπt) +

50∑
k=0

ζkZ
′r
c,k sin(kπt), t ∈ [0, 2]

for r = 1, · · · , R and c = 1, · · · , C, where Zr
c,k’s and Z ′rc,k’s are all independently sampled from

the uniform distribution U(−1, 1) and ζk = (−1)k+1(k + 1)−2. We set the covariance function of
Xr

i (t) as,

Γr,r
x,c(s, t) =

50∑
k=1

Z̃r
c,k|ζk| sin(kπs+ πZ̃r

c,k) sin(kπt+ πZ̃r
c,k)

for r = 1, · · · , R and c = 1 · · · , C, where Z̃r
c,k’s are independently sampled from uniform distribu-

tion U(0, 0.3). Meanwhile, we set the interventions among different event types as,

Γr,r′

x,c (s, t) =

50∑
k=1

50∑
k′=1

Žr,r′

c,k,k′

√
Z̃

[j]
c,kZ̃

[j′]
c,k′ |ζkζk′ | sin(kπs+ πZ̃r

c,k) sin(kπt+ πZ̃r
c,k),

5

for r 6= r′, where Žr
c,k’s are independently sampled from uniform distribution U(−1, 1). The latent

variable Xr
i (t)’s are generated from Gaussian processes on [0, 2] with the parameters above.

Setting of Y r
j (·)’s and Zr

ij(·)’s. Furthermore, we generate event sequences for m (m = 1, 20 or
100) days. When m = 1, the event sequences are generated from the single-level model in (2), which
didn’t involve the variation Yj(t) and Zi,j(t). Whenm = 20 or 100, we incorporate Yj(t) and Zi,j(t)
in the intensity function and generate data with the multi-level model in (1).

We further describe the setup of the distributions of Y r
j (t)’s and Zr

i,j(t)’s. We let,

Ỹ r
j (t) =

2∑
k=1

ξYr,j,kφ
Y
k (t), Zr

i,j(t) =

4∑
k=1

ξZr,i,j,kφ
Z
k (t)

where ξYr,j,k’s and ξZr,i,j,k’s are all independent mean-zero normal variables. We set
V ar[ξYr,j,k] = 0.2 and V ar[ξZr,i,j,k] = 0.05. We set {φY1 (t), φY2 (t)} = {1, sin(2πt)} and
{φZ1 (t), φZ2 (t), φZ3 (t), φZ4 (t)} = {1[0,0.5], 1(0.5,1], 1(1,1.5], 1(1.5,2]} × 2 sin(4πt). Moreover, in or-
der to model the dependence among different days, we let Y r

j (t) = 0.8Ỹ
(
j t) + 0.6Ỹ r

j−1(t) for
j > 1.

Evaluation Metric. For synthetic data, we introduce the criterion clustering purity [18] to evaluate
the clustering accuracy.

Purity =
1

n

C∑
c=1

max
j∈{1,··· ,C}

|Wc ∩ Cj |,

whereWc is the estimated index set of sequences belonging to the cth group, Cj is the true index set
of sequence belonging to the jth cluster, and | · | is the cardinality counting the number of elements
in a set. The value of clustering purity resides in [0, 1] with a higher value indicating a more accurate
clustering (=1 if the estimated clusters completely overlap with the truth).

S.4 Additional Real Data Examples and Details

Evaluation Metric In the real data example, we evaluate and compare clustering stability based
on a measure called clustering consistency via K-trial cross validations [7, 8], as there is no ground
truth clustering labels.

It works with the following rationale: because random sampling does not change the clustering
structure of data, a clustering method with high consistency should preserve the pairwise relationships
of samples in different trials. Specifically, we perform the clustering with K trials. In the k-th trial,
we randomly separate the accounts into two folds. One fold contains 80% of accounts and serves
as the training set, and we predict the cluster memberships of remaining accounts with the trained
model. LetMk = {(i, i′)|i, i′ belong to the same cluster} enumerate all pairs of accounts with the
same cluster index in the k-th trial. Then we define the clustering consistency as:

Clustering Consistency = min
k∈{1,··· ,K}

∑
k′ 6=k

∑
(i,i′)∈Mk

1{cki = ck
′

i′ }
|K − 1||Mk|

where 1{·} is an indicator function and cji denote the learned cluster index of the account i in the
k-th trial.

Additional Results on Chase Credit Card Dataset. In the credit card transaction dataset, there
is a large variation in the frequencies in credit card use across users. We removed the users with
fewer than 100 total transactions. The BIC suggests clustering the users into 3 groups. In each
cluster, we obtained the estimated surface of covariance function Γx,c(s, t), which is displayed in
Figure S1. Compared with clust 2 and 3, the latent process Xi(t) in clust 1 has relatively larger
variation. To offer a more straightforward view of the correlation among events, we computed the
average correlations as,

Corr(r) =

∑
|t−s|=r Ĉorr(t, s)∑

|t−s|=r 1

6

Figure S1: Credit Card Dataset: Estimated Γx,c(s, t) for each cluster;

Figure S2: Credit Card Dataset: Averaged correlations versus time lags;

Where Ĉorr(t, s) = Γ̂x,c(t, s)/
√

Γ̂x,c(t, t)Γ̂x,c(s, s). Figure S2 displays the averaged correlations
versus time lags. There appears to be a periodic pattern in credit card use for clust 1 and 3. The
users in clust 1 seemed to use their credit cards most frequently since the plot of clust 1 has the most
number of crests. It is consistent with our facts that users in clust 1 averagely used credit cards 3.7
times a day, versus 1.3 times and 2.2 times a day for clust 2 and 3 respectively.

References
[1] Stefano Carrazza and Juan M Cruz-Martinez. Vegasflow: accelerating monte carlo simulation

across multiple hardware platforms. Computer Physics Communications, 254:107376, 2020.

[2] Michael Elashoff and Louise Ryan. An em algorithm for estimating equations. Journal of
Computational and Graphical Statistics, 13(1):48–65, 2004.

[3] Charles R Harris, K Jarrod Millman, Stéfan J van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array
programming with numpy. Nature, 585(7825):357–362, 2020.

[4] G Peter Lepage. A new algorithm for adaptive multidimensional integration. Journal of
Computational Physics, 27(2):192–203, 1978.

[5] Geoffrey J McLachlan and Thriyambakam Krishnan. The EM algorithm and extensions, volume
382. John Wiley & Sons, 2007.

[6] Thorsten Ohl. Vegas revisited: Adaptive monte carlo integration beyond factorization. Computer
physics communications, 120(1):13–19, 1999.

7

[7] Robert Tibshirani and Guenther Walther. Cluster validation by prediction strength. Journal of
Computational and Graphical Statistics, 14(3):511–528, 2005.

[8] Ulrike Von Luxburg. Clustering stability: an overview. 2010.

[9] Satosi Watanabe. Karhunen-loeve expansion and factor analysis: theoretical remarks and
application. In Trans. on 4th Prague Conf. Information Theory, Statistic Decision Functions,
and Random Processes Prague, pages 635–660, 1965.

[10] Ganggang Xu, Ming Wang, Jiangze Bian, Hui Huang, Timothy Burch, Sandro Andrade, Jingfei
Zhang, and Yongtao Guan. Semi-parametric learning of structured temporal point processes.
Journal of machine learning research, 2020.

8

	Step I of the Two-step Learning of the Multi-Level Model
	Computational Details
	ES Algorithm
	Sampling Strategy
	GPU Acceleration

	Simulation Studies
	Additional Real Data Examples and Details

