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ABSTRACT

Monte-Carlo planning and Reinforcement Learning (RL) are essential to sequen-
tial decision making. The recent AlphaGo and AlphaZero algorithms have shown
how to successfully combine these two paradigms in order to solve large scale
sequential decision problems. These methodologies exploit a variant of the well-
known UCT algorithm to trade off exploitation of good actions and exploration of
unvisited states, but their empirical success comes at the cost of poor sample-
efficiency and high computation time. In this paper, we overcome these lim-
itations by studying the benefit of convex regularization in Monte-Carlo Tree
Search (MCTS) to efficiently drive exploration and to improve policy updates,
as already observed in RL. First, we introduce a unifying theory on the use of
generic convex regularizers in MCTS, deriving the first regret analysis of regular-
ized MCTS and showing that it guarantees exponential convergence rate. Second,
we exploit our theoretical framework to introduce novel regularized backup op-
erators for MCTS, based on the relative entropy of the policy update, and on the
Tsallis entropy of the policy. Finally, we show how our framework can easily
be incorporated in AlphaGo and AlphaZero, and we empirically show the superi-
ority of convex regularization w.r.t. representative baselines, on well-known RL
problems and across several Atari games.

1 INTRODUCTION

Monte-Carlo Tree Search (MCTS) is a well-known algorithm to solve decision making problems
through the combination of Monte-Carlo planning with an incremental tree structure (Coulom,
2000). Although standard MCTS is only suitable for problems with discrete state and action spaces,
recent advances have shown how to enable the use of MCTS in continuous problems (Silver et al.,
20165 Yee et al.,|2016). Most remarkably, AlphaGo (Silver et al.,2016) and AlphaZero (Silver et al.,
2017bja) couple MCTS with neural networks trained using Reinforcement Learning (RL) (Sutton
& Barto), [1998) methods, e.g. Deep Q-Learning (Mnih et al 2015), to speed up learning of large
scale problems with continuous state space. In particular, a neural network is used to compute value
function estimates of states as a replacement of time-consuming Monte-Carlo rollouts, and another
neural network is used to estimate policies as a probability prior for the therein introduced PUCT
action selection method, a variant of well-known UCT sampling strategy commonly used in MCTS
for exploration (Kocsis et al.,[2006). Despite AlphaGo and AlphaZero achieving state-of-the-art per-
formance in games with high branching factor like Go (Silver et al.,[2016) and Chess (Silver et al.,
2017a), both methods suffer from poor sample-efficiency, mostly due to the polynomial conver-
gence rate of PUCT (Xiao et al.,|2019). This problem, combined with the high computational time
to evaluate the deep neural networks, significantly hinder the applicability of both methodologies.

In this paper, we provide a unified theory of the use of convex regularization in MCTS, that proved
to be an efficient solution for driving exploration and stabilizing learning in RL (Schulman et al.,
2015;[2017a; |[Haarnoja et al., [2018)). In particular, we show how a regularized objective function in
MCTS can be seen as an instance of the Legendre-Fenchel transform, similarly to previous findings
in regularized Markov Decision Processes (Mensch & Blondell |2018; |Geist et al.,2019)). Establish-
ing our theoretical framework, we are able to derive the first regret analysis of regularized MCTS,
and to prove that a generic convex regularizer guarantees an exponential convergence rate to the so-
lution of the regularized objective function, which improves on the polynomial rate of PUCT. These
results provide a theoretical ground for the use of arbitrary entropy-based regularizers in MCTS,
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until now limited to maximum entropy (Xiao et al., 2019), among which we specifically study the
relative entropy of policy updates, drawing on similarities with trust-region and proximal methods in
RL (Schulman et al.,[2015;2017b), and the Tsallis entropy, used for enforcing the learning of sparse
policies (Lee et al.,[2018). Finally, we empirically evaluate the proposed operators in AlphaGo and
AlphaZero on problems of increasing complexity, from classic RL problems to an extensive analysis
of Atari games, confirming the benefit of our novel operators compared to maximum entropy and,
in general, the superiority of convex regularization in MCTS w.r.t. classic methods.

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESSES

We consider the classical definition of a finite-horizon Markov Decision Process (MDP) as a 5-tuple
M = (S, A, R,P,v), where S is the state space, A is the action space, R : SXx A x S = R
is the reward function, P : § x A — S is the transition kernel, and v € [0,1) is the dis-
count factor. A policy 7 € II : § x A — R is a probability distribution of the event of
executing an action a in a state s. A policy 7 induces a value function corresponding to the
expected cumulative discounted reward collected by the agent when executing action a in state
s, and following the policy 7 thereafter: Q™(s,a) £ E [> 77 v*ritrt1lsi = s,a; = a, 7],
where r;4; is the reward obtained after the i-th transition. An MDP is solved finding the op-
timal policy n*, which is the policy that maximizes the expected cumulative discounted re-
ward. The optimal policy corresponds to the one satisfying the optimal Bellman equation (Bell-
man), [1954) Q*( £ [sP(s|s,a R(s a, s’) +vmaxa Q*(s’,a’)] ds’, and is the fixed point
of the optimal Bellman operator 7*Q £ [P(s]s,a) [R(s,a,s') + ymaxy Q(s',a’)] ds'.
Addmonally, we define the Bellman operator under the policy 7 as 7,Q(s,a) =
JsP(s'|s,a) [R(s,a,s") +~ [, 7(a'|s")Q(s',a’)da'] ds', the optimal value function V*(s) =
maxqe 4 Q* (s, a), and the value function under the policy 7 as V™ (s) £ max,c4 Q™ (s, a).

2.2 MONTE-CARLO TREE SEARCH AND UPPER CONFIDENCE BOUNDS FOR TREES

Monte-Carlo Tree Search (MCTS) is a planning strategy based on a combination of Monte-Carlo
sampling and tree search to solve MDPs. MCTS builds a tree where the nodes are the visited states
of the MDP, and the edges are the actions executed in each state. MCTS converges to the optimal
policy (Kocsis et al., 2006} |X1ao et al., |2019), iterating over a loop composed of four steps:

1. Selection: starting from the root node, a tree-policy is executed to navigate the tree until a
node with unvisited children, i.e. expandable node, is reached;

2. Expansion: the reached node is expanded according to the tree policy;

3. Simulation: run a rollout, e.g. Monte-Carlo simulation, from the visited child of the cur-
rent node to the end of the episode;

4. Backup: use the collected reward to update the action-values Q(-) of the nodes visited in
the trajectory from the root node to the expanded node.

The tree-policy used to select the action to execute in each node needs to balance the use of al-
ready known good actions, and the visitation of unknown states. The Upper Confidence bounds
for Trees (UCT) sampling strategy (Kocsis et al., 2006) extends the use of the well-known UCB1
sampling strategy for multi-armed bandits (Auer et al., [2002), to MCTS. Considering each node
corresponding to a state s € S as a different bandit problem, UCT selects an action a € A applying
an upper bound to the action-value function

log N(s)
N(s,a)’

where N (s, a) is the number of executions of action a in state s, N(s) = >__ N(s,a), and C'is a
constant parameter to tune exploration. UCT asymptotically converges to the optimal action-value
function Q*, for all states and actions, with the probability of executing a suboptimal action at the
root node approaching 0 with a polynomial rate O(%), for a simulation budget ¢ (Kocsis et al., [2006;
Xiao et al.,[2019).

UCT(s,a) = Q(s,a) + C (1)
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3 REGULARIZED MONTE-CARLO TREE SEARCH

The success of RL methods based on entropy regularization comes from their ability to achieve
state-of-the-art performance in decision making and control problems, while enjoying theoretical
guarantees and ease of implementation (Haarnoja et al., [2018}; |Schulman et al., 2015; [Lee et al.,
2018). However, the use of entropy regularization is MCTS is still mostly unexplored, although its
advantageous exploration and value function estimation would be desirable to reduce the detrimen-
tal effect of high-branching factor in AlphaGo and AlphaZero. To the best of our knowledge, the
MENTS algorithm (Xiao et al., |2019) is the first and only method to combine MCTS and entropy
regularization. In particular, MENTS uses a maximum entropy regularizer in AlphaGo, proving
an exponential convergence rate to the solution of the respective softmax objective function and
achieving state-of-the-art performance in some Atari games (Bellemare et al.| 2013). In the fol-
lowing, motivated by the success in RL and the promising results of MENTS, we derive a unified
theory of regularization in MCTS based on the Legendre-Fenchel transform (Geist et al.,2019), that
generalizes the use of maximum entropy of MENTS to an arbitrary convex regularizer. Notably, our
theoretical framework enables to rigorously motivate the advantages of using maximum entropy and
other entropy-based regularizers, such as relative entropy or Tsallis entropy, drawing connections
with their RL counterparts TRPO (Schulman et al., 2015) and Sparse DQN (Lee et al., [2018)), as
MENTS does with Soft Actor-Critic (SAC) (Haarnoja et al.,[2018).

3.1 LEGENDRE-FENCHEL TRANSFORM

Consider an MDP M = (S, A, R, P,~), as previously defined. Let Q : I — R be a strongly
convex function. For a policy 5 = WA |s) and Qs = Q(s,-) € R4, the Legendre-Fenchel transform
(or convex conjugate) of €2 is 2* : — R, defined as:

Q*(Qs) £ Tgleaﬁ(s 7;75Qs - TQ(’”S)? )

where the temperature 7 specifies the strength of regularization. Among the several properties of the
Legendre-Fenchel transform, we use the following (Mensch & Blondel, [2018};|Geist et al., 2019).

Proposition 1 Ler 2 be strongly convex.

o Unique maximizing argument: VSV* is Lipschitz and satisfies
VQ*(Qs) = arg Hl'lIaX Tr. Qs — TQU7y). 3)
mo€ll,

e Boundedness: if there are constants Lq and Ugq such that for all w4 € 11, we have Lq <
Q(ms) < Uq, then

max Qs(a) —1Uq < Q" (Qs) < max Qs(a) — TLq. 4
e Contraction: for any Q1, Qs € RS*A
[ °(Q1) — 27(Q2) o< 7 | @1 — Q2 [|oo - (5)

Although the Legendre-Fenchel transform (2* applies to every strongly convex function, for the
purpose of this work we only consider a representative set of entropic regularizers.

3.2 REGULARIZED BACKUP AND TREE POLICY

In MCTS, each node of the tree represents a state s € S and contains a visitation count N (s, a).
Given a trajectory, we define n(sr) as the leaf node corresponding to the reached state sp. Let
80, o, 81, G1.-., ST be the state action trajectory in a simulation, where n(st) is a leaf node of T.
Whenever a node n(sr) is expanded, the respective action values (Equation @ are initialized as
Qa(sr,a) =0,and N(sr,a) = 0 for all a € A. For all nodes in the trajectory, the visitation count
is updated by N(s¢,at) = N(s¢, a¢) + 1, and the action-values by

(st ar) +p ift="T
Qalena) = {T(St,at) + 90 (Qalsi1)/7)) ift<T ©
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where Qq(s¢41) € RA with components Qq(s;11,a),Va € A, and p is an estimate returned from
an evaluation function computed in s7, e.g. a discounted cumulative reward averaged over multiple
rollouts, or the value-function of node n(sr1) returned by a value-function approximator, e.g. a
neural network pretrained with deep (Q-learning (Mnih et al.| 2015)), as done in (Silver et al., 2016}
Xiao et al., |2019). We revisit the E2W sampling strategy limited to maximum entropy regulariza-
tion (X1ao et al., [2019) and, through the use of the convex conjugate in Equation (6), we derive a
novel sampling strategy that generalizes to any convex regularizer
As,

me(aelse) = (1= A5, ) VR (Qa(st)/T)(ar) + Al (7

where A\;, = €lAl/log(X, N(ss,a)+1) with € > 0 as an exploration parameter, and V2* depends on
the measure in use (see Table [1|for maximum, relative, and Tsallis entropy). We call this sampling
strategy Extended Empirical Exponential Weight (E3W) to highlight the extension of E2ZW from
maximum entropy to a generic convex regularizer.

3.3 CONVERGENCE RATE TO REGULARIZED OBJECTIVE

We show that the regularized value Vi, can be effectively estimated at the root state s € S, with
the assumption that each node in the tree has a o2-subgaussian distribution. This result extends the
analysis provided in (X1ao et al.,|2019), which is limited to the use of maximum entropy.

Theorem 1 At the root node s where N (s) is the number of visitations, with € > 0, V(s) is the
estimated value, with constant C and C, we have

P([Va(s) = Va(s)l > €) < Cexp{~ cgaog](\;(i);ws))ﬁ

where Vo (s) = Q*(Qs) and V3 (s) = Q*(Q%). From this theorem, we obtain that the convergence
rate of choosing the best action at the root node, when using the E3W strategy, is exponential.

2 ®)

Theorem 2 Let a; be the action returned by E3W at step t. For large enough t and constants C, C

P(a; # a*) < C’texp{f%}. )

Co(log(t))?
4 ENTROPY-REGULARIZATION BACKUP OPERATORS

From the introduction of a unified view of generic strongly convex regularizers as backup operators
in MCTS, we narrow the analysis to entropy-based regularizers. For each entropy function, Table
shows the Legendre-Fenchel transform and the maximizing argument, which can be respectively
replaced in our backup operation (Equation [6) and sampling strategy E3W (Equation [7). Using
maximum entropy retrieves the maximum entropy MCTS problem introduced in the MENTS algo-
rithm (Xiao et al., 2019). This approach closely resembles the maximum entropy RL framework
used to encourage exploration (Haarnoja et al., [2018}; Schulman et al.l [2017a). We introduce two
novel MCTS algorithms based on the minimization of relative entropy of the policy update, inspired
by trust-region (Schulman et al., 2015) and proximal optimization methods (Schulman et al.,|2017b)
in RL, and on the maximization of Tsallis entropy, which has been more recently introduced in RL
as an effective solution to enforce the learning of sparse policies (Lee et al.l [2018). We call these
algorithms RENTS and TENTS. Contrary to maximum and relative entropy, the definition of the
Legendre-Fenchel and maximizing argument of Tsallis entropy is non-trivial, being

O*(Q¢) = 7 - spmax(Qy(s, ) /7), )
VQ*(Q;) = max <Qt(j’a) _ Y oack Qi(s,a) /T — 170>7

K]
where spmax is defined for any function f : S x A — R as

s.a)? s,a) —1)?
staX(f(S, )) = Z (f( 72 ) o (ZaEK;ch'Q) 1) > + %7 12)

(1)

a

and K is the set of actions that satisfy 1 + i f(s, a;) > Zgzl f(s,a;), with a; indicating the action
with the i-th largest value of f(s,a).
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Table 1: List of entropy regularizers with Legendre-Fenchel transforms and maximizing arguments.

Entropy Regularizer Q(7s) Legendre-Fenchel Q*(Qs;) Max argument VQ*(Qs)
) Qs.a) eQ(s:a)
Maximum >, m(a|s)logm(als) log >, e~ W
Qt(s,a)
Retuive Do (ry(als)limes(as)  Jog X, meos ()o@ TLURET
Tsallis (Il m(als) I3 —1) Equation (10, Equation (11

4.1 REGRET ANALYSIS

Let each node i in the tree be assigned with a random variable X;, with mean value p;. At the root
node, the quantities related to the optimal branch are denoted by *, e.g. mean value p*. At each
timestep n, the mean value of variable X is p;, . The pseudo-regret (Coquelin & Munos} 2007) at
timestep n is defined as RY°T = nu* — >"1" | y1;,. The regret of E3W at the root node n(s) of the
tree considering the value-function V'(-) as the mean value p is

Ry =nV* = Vi, =nV* = iy =i)V;, =nV* = > _V; ¥ #(ails), (13)
t=1 t=1 i t=1
where 7, (+) is the policy at time step ¢, and I(-) is the indicator function.

Theorem 3 Consider an E3W policy applied to the tree. Let r; = VQ*(a;|s) + y/Co%log § /2n,

where N (.|s) is the policy with respect to the mean value vector V (-) at the root node s. For any
& > 0, with probability at least 1 — 6, 3 constant L, p,C, C so that the pseudo regret R,, satisfies

L, 7(Ug— L L 7(Ua—L

This theorem provides bounds for the regret of E3W using a generic convex regularizer {2; thus, we
can easily retrieve from it the regret bound for each entropy regularizer. Let m = min, VQ*(a|s).

Corollary 1 Maximum entropy:
Ve =Y, Vi LR ) < Ry < Ve — 032, Vi (s - D(PREAL),

-

Corollary 2 Relative entropy:
1 1
nv* — nzi{@(m + L(M)) <R, <nV*— nzi‘@(,ﬂ _ L(M)).

1—v 1—v

Corollary 3 Tsallis entropy:

. . £|A|—1 T
A Y ST

) < R v =S (- 5

Remarks. The regret bound of UCT and its variance have already been analyzed for non-
regularized MCTS with binary tree (Coquelin & Munos| [2007). On the contrary, our regret bound
analysis in Theorem 3 applies to generic regularized MCTS. From the specialized bounds in the
corollaries, we observe that the maximum and relative entropy share similar results, although the
bounds for relative entropy are slightly smaller due to % Remarkably, the bounds for Tsallis en-
tropy become tighter for increasing number of actions, which translates in limited regret in problems
with high branching factor. This result establishes the advantage of Tsallis entropy in complex prob-
lems w.r.t. to other entropy regularizers, as empirically confirmed by the positive results in several
Atari games described in Section 3]
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4.2 ERROR ANALYSIS

We analyse the error of the regularized value estimate at the root node n(s) w.r.t. the optimal value:
EQ = VQ(S) - V*(S)

Theorem 4 For any § > 0 and generic convex regularizer ), with some constant C, C, with prob-
ability at least 1 — 0, eq satisfies

Co? log% 7(Uq — Lq) < Co? log%
2N (s) 1—y ==\ "N

: (14)

To give a better understanding of the effect of each entropy regularizer in Table |1, we specialize
the bound in Equation to each of them. From (Lee et al.l 2018), we know that for maximum
entropy Q(m) = >, m logm, we have —log|A| < Q(m;) < 0; for relative entropy Q(m) =
KL(7¢||mt—1), if we define m = min, 7;—1(als), then we can derive 0 < Q(m;) < —log|A| +

log -L; and for Tsallis entropy Q(m;) = (|| 7 [|3 —1), we have — \J24||;‘1 < Q(m) < 0. Then,

Co? log% B 7log |A] < Co? 1og%
2N(s) 11—y =77 2N(s)

Corollary 4 maximum entropy error: —

Co?log g 3 7(log|A| —log L) Co?log g

Corollary 5 relative entropy error: — 3N (s) 1= <eq < IN(s)
Co? log & Al -1 7 Co? log &
Corollary 6 Tsallis ent ;- o _ <eq <y ——t
orollary sallis entropy error. SN (s) S[A 17 = eq < 2N (s)

These results show that when the number of actions |.4| is large, TENTS enjoys smallest error;
moreover, we also see that the error at the root node of RENTS is always smaller than for MENTS.

5 EMPIRICAL EVALUATION

In this section, we empirically evaluate the benefits of the proposed entropic MCTS regularizers.
We compare to AlphaGo and AlphaZero (Silver et al., 2016; 2017a), recently introduced to enable
MCTS to solve large scale problems with high branching factor. Our implementation is a simplified
version of the original algorithms, where we remove various tricks in favour of better interpretability.
For the same reason, we do not compare with the most recent and state-of-the-art variant of Alp-
haZero known as MuZero (Schrittwieser et al.| [2019), as this is a slightly different solution highly
tuned to maximize performance, and a detailed description of its implementation is not available.

5.1 ENTROPY-REGULARIZED ALPHAZERO

In its standard form, AlphaZero (Silver et al.,[2017a)) uses the PUCT sampling strategy, a variant of
UCT (Kocsis et al.,[2006) that samples actions according to the policy

N(s)

PUCT(s,0) = Q(s,0) +cP(s,0) ;s

15)
where P is a prior probability on action selection, and c is an exploration constant. A value network
and a policy network are used to compute, respectively, the action-value function () and the prior
policy P. We use a single neural network, with 2 hidden layers composed of 128 ELU units, and
two output layer respectively for the action-value function and the policy. We run 500 AlphaZero
episodes, where each episode is composed of 300 steps. A step consists of running 32 MCTS
simulations from the root node, as defined in Section [2] using the action-value function computed
by the value network instead of using Monte-Carlo rollouts. At the end of each cycle, the average
action-value of the root node is computed and stored, the tree is expanded using the given sampling
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Figure 1: Cumulative rewards of AlphaZero with UCT and entropy-based operators, in CartPole (a)
and Acrobot (b). Results are averaged over 5 and 10 seeds and show 95% confidence intervals.

strategy, and the root node is updated with the reached node. At the end of the episode, a minibatch
of 32 samples is built from the 300 stored action-values, and the network is trained with one step
of gradient descent using RMSProp with learning rate 0.001. The entropy-regularized variants of
AlphaZero can be simply derived replacing the average backup operator, with the desired entropy
function, and replacing PUCT with E3W using the respective maximizing argument and € = 0.1.

Cartpole and Acrobot. Figure [I| shows the cumulative reward of standard AlphaZero based on
PUCT, and the three entropy-regularized variants, on the Cartpole and Acrobot discrete control
problems (Brockman et al., 2016)). While standard AlphaZero is clearly the worst approach for con-
vergence and stability, the entropy-based variants behave differently according to the problem. First,
although not significantly superior, RENTS exhibits the most stable learning and faster convergence,
confirming the benefit of relative entropy in control problems as already known for trust-region
methods in RL (Schulman et al., [2015). Second, considering the small number of discrete actions in
the problems, TENTS cannot benefit from the learning of sparse policies and shows slightly unsta-
ble learning in Cartpole, even though the overall performance is satisfying in both problems. Last,
MENTS solves the problems slightly slower than RENTS, but reaches the same final performance.
Although the results on these simple problems are not conclusive to assert the superiority of one
method over the other, they definitely confirm the advantage of regularization in MCTS, and hint
at the benefit of the use of relative entropy in control problems. Further analysis on more complex
control problems will be desirable (e.g. MuJoCo (Todorov et al.,2012)), but the need to account for
continuous actions, a non-trivial setting for MCTS, makes it out of the scope of this paper.

5.2 ENTROPY-REGULARIZED ALPHAGO

The learning time of AlphaZero can be slow in problems with high branching factor, due to the need
of a large number of MCTS simulations for obtaining good estimates of the randomly initialized
action-values. To overcome this problem, AlphaGo (Silver et al.,|2016)) initializes the action-values
using the values retrieved from a pretrained network, which is kept fixed during the training.

Atari. Atari 2600 (Bellemare et al., 2013)) is a popular benchmark for testing deep RL method-
ologies (Mnih et al.l [2015} Van Hasselt et al.l 2016} Bellemare et al., 2017) but still relatively dis-
regarded in MCTS. We use the Atari games in an extensive empirical comparison of standard Al-
phaGo based on PUCT, with AlphaGo using the described regularized backup operators. We use a
Deep Q-Network, pretrained using the same experimental setting of Mnih et al|(2015), to initial-
ize the action-value function of each node after expansion as Q;nit(s,a) = (Q(s,a) —V(s)) /7,
for MENTS and TENTS, as done in Xiao et al| (2019). For RENTS we init Q;pnit(s,a) =
log Prior(als)) +(Q(s,a) — V (s)) /7, where Ppyior 1 the Boltzmann distribution induced by action-
values Q(s,.) computed from the network. Each experimental run consists of 512 MCTS simula-
tions. The temperature 7 is optimized for each algorithm and game via grid-search between 0.01
and 1. The discount factor is v = 0.99, and for PUCT the exploration constant is ¢ = 0.1.
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Table 2: Cumulative reward in Atari over 100 seeds. Bold denotes no statistically significant differ-
ence to the highest mean (t-test, p < 0.05). Bottom row shows # no difference to highest mean.

UcCT MaxMCTS MENTS RENTS TENTS

Alien 1,486.80 1,461.10 1,508.60 1,547.80 1,568.60
Amidar 115.62 124.92 123.30 125.58 121.84
Asterix 4,855.00 5,484.50 5,576.00 5,743.50 5,647.00
Asteroids 873.40 899.60 1,414.70 1,486.40  1,642.10
Atlantis 35,182.00 35,720.00 36,277.00 35,314.00 35,756.00
BankHeist 475.50 458.60 622.30 636.70 631.40
BeamRider 2,616.72 2,661.30 2,822.18 2,558.94 2,804.88
Breakout 303.04 296.14 309.03 300.35 316.68
Centipede 1,782.18  1,728.69  2,012.86 2,253.42 2,258.89
DemonAttack 579.90 640.80 1,044.50 1,124.70 1,113.30
Enduro 129.28 124.20 128.79 134.88 132.05
Frostbite 1,244.00 1,332.10 2,388.20 2,369.80 2,260.60
Gopher 3,348.40 3,303.00 3,536.40 3,372.80 3,447.80
Hero 3,009.95 3,010.55 3,044.55 3,077.20 3,074.00
MsPacman 1,940.20 1,907.10 2,018.30 2,190.30 2,094.40
Phoenix 2,747.30 2,626.60 3,098.30 2,582.30  3,975.30
Qbert 7,987.25 8,033.50 8,051.25 8,254.00  8,437.75
Robotank 11.43 11.00 11.59 11.51 11.47
Seaquest 3,276.40 3,217.20 3,312.40 3,345.20 3,324.40
Solaris 895.00 923.20 1,11820 1,115.00 1,127.60
Spacelnvaders 778.45 835.90 832.55 867.35 822.95
WizardOfWor 685.00 666.00 1,211.00 1,241.00 1,231.00
# Highest mean 6/22 7/22 17/22 16/22 22/22

Table Q] shows the performance, in terms of cumulative reward, of standard AlphaGo with PUCT
and our three regularized versions, on 22 Atari games. Moreover, we test also AlphaGo using the
MaxMCTS backup (Khandelwal et al., [2016) for further comparison with classic baselines. We
observe that regularized MCTS dominates the other baselines, in particular TENTS achieves the
highest results in all the 22 games, showing that sparse policies are more effective in Atari. This can
also be explained by Corollary [] which shows that Tsallis entropy can lead to a lower error at the
MCTS root node even with a high number of actions compared to relative or maximum entropy.

6 CONCLUSION

We introduced a theory of convex regularization in Monte-Carlo Tree Search (MCTS) based on
the Legendre-Fenchel transform. Exploiting this theoretical framework, we studied the regret of
MCTS when using a generic strongly convex regularizer, and we proved that it has an exponential
convergence rate. We use these results to motivate the use of entropy regularization in MCTS, in
particular considering maximum, relative, and Tsallis entropy. Finally, we test regularized MCTS
algorithms in discrete control problems and Atari games, showing its advantages over other methods.
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A RELATED WORK

Entropy regularization is a common tool for controlling exploration in Reinforcement Learning
(RL) and has lead to several successful methods (Schulman et all [2015; |Haarnoja et al. 2018;
Schulman et al.l 2017a; Mnih et al.| [2016). Typically specific forms of entropy are utilized such
as maximum entropy (Haarnoja et al., [2018) or relative entropy (Schulman et al., 2015). Recently
(Geist et al., |2019) showed that the use of a generalized form of regularization can be connected
into the same framework. In this paper, we apply generalized regularization to MCTS and derive
relative entropy (KL-divergence) and Tsallis entropy regularized MCTS algorithms, i.e. RENTS
and TENTS respectively. Note that the recent maximum entropy MCTS algorithm MENTS (Xiao
et al.l [2019) is a special case of our generalized regularized MCTS. Unlike MENTS, RENTS can
take advantage of any action distribution prior, in the experiments the prior is derived using Deep
Q-learning (Mnih et al] 2015). On the other hand, TENTS allows for sparse action exploration
and thus higher dimensional action spaces compared to MENTS. In experiments, both RENTS and
TENTS outperform MENTS.

Several works focus on modifying classical MCTS to improve exploration. UCB1-tuned (Auer
et al., 2002) modifies the upper confidence bound of UCB1 to account for variance in order to im-
prove exploration. (Tesauro et al.,|2012) proposes a Bayesian version of UCT, which obtains better
estimates of node values and uncertainties given limited experience. Many heuristic approaches
based on specific domain knowledge have been proposed, such as adding a bonus term to value esti-
mates (Gelly & Wang, |2006; [Teytaud & Teytaud, |2010; |Childs et al., 2008} |Kozelek, [2009; |Chaslot;
et al.l 2008)) or prior knowledge collected during policy search (Gelly & Silver, 2007} [Helmbold
& Parker-Wood,, 2009; [Lorentz, [2010; Tom, [2010; [Hoock et al.l 2010). (Khandelwal et al., 2016)
formalizes and analyzes different on-policy and off-policy complex backup approaches for MCTS
planning based on RL techniques. (Vodopivec et al.,|2017)) proposes an approach called SARSA-
UCT, which performs the dynamic programming backups using SARSA (Rummery, [1995). Both
(Khandelwal et al.| 2016) and (Vodopivec et al., 2017) directly borrow value backup ideas from RL
to estimate the value at each tree node, but they do not provide any proof of convergence.

B PROOFS

Let 7 and r be respectively the average and the the expected reward at the leaf node, and the reward
distribution at the leaf node be o--subgaussian.

Lemma 1 For the stochastic bandit problem E3W guarantees that, for t > 4,

20
P — 7 oo
( H r—=rt || = log(

Tt)) < 4|A|exp ( — ;)

(log(2 +1))3

Proof 1 Let us define N¢(a) as the number of times action a have been chosen until time t, and
Ni(a) = 32\, ws(a), where 74(a) is the E3W policy at time step s. By choosing \s = %, it
follows that for all a and t > 4,

t

. SIS S ()
Nife) = 2 ml) > ; og(1+s) ~ Z log(1+5)  (log(1 +5))?

s=1

/1“ 1 s/s+1) 1+t 1 t
1 log(

S =

— > .
14+s) (log(l+s))? log(2+t) log2 ~ 2log(2+1t)
From Theorem 2.19 in\Wainwright| (2019), we have the following concentration inequality:

. 2 2
P(N(a) = Ni(@)] > ) < 2expl -} < 2exp{_27},

s=1"s

where a2 < 1/4 is the variance of a Bernoulli distribution with p = 74(k) at time step s. We define
the event

E. = {¥a € A,|Ny(a) — Ni(a)| < €},
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and consequently

P(N,(a) ~ Nifa)] > €) < 2|l exp(~ ). (16)

Conditioned on the event E., for ¢ =
the definition of sub-gaussian,

P(“'(a) = fi(a)] > \/802 log () log(2 +t)> < P(lr(a) — 7i(a)] > W) <9

, we have Ni(a) > - For any action a by

[ I
4log(2+t) 4log(2+t

t

by choosing a ¢ satisfying log(%) = m, we have

. 202 log(3) 1
P<|r(a) —7(a)| > Nt(a)6> < 2exp (— W)

Therefore, fort > 2

20 20
P P o> ——— | <P — 7 |oo> ————|E. | + P(EC
<||’I" Tt H > 10g(2+t)> = ( r—=rt || > 10g(2+t) >+ ( e)

R 20 1
< ; <P<|r(a) — 7(a)] > log(2+t)> +P(ES) < 2|4 exp ( - (10g(2+t))3>>

" t
+ 2|A|exp ( (log(2—|—t))3> = 4[Alexp ( (log(2+t))3>'

Lemma 2 Given two policies 7") = VQ* (r()) and 72 = vQ* (r?), 3L, such that
7 =7 [ L) =@ .

Proof 2 This comes directly from the fact that 1 = VQ*(r) is Lipschitz continuous with ¢P-norm.
Note that p has different values according to the choice of regularizer. Refer to |Niculae & Blondel
(2017) for a discussion of each norm using Shannon entropy and Tsallis entropy regularizer. Relative
entropy shares the same Properties with Shannon Entropy.

Lemma 3 Consider the E3W policy applied to a tree. At any node s of the tree with depth d, Let
us define Nj (s,a) = 7*(als).t, and Ni(s,a) = 3.\ _, ws(als), where my(al|s) is the policy at time
step k. There exists some C and C such that

R t .
P(INi(s,0) = N (s.0)] > (o1) < Clittexp(-

t
(log 1)
Proof 3 We denote the following event,

20

Bre = Al (") =7l ) o< oy

1.

10
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Thus, conditioned on the event (\._, E,, and fort > 4, we bound |Ny(s,a) — Nj (s, a)| as

[Ne(s,a) = Ni (s,0)| < D |7w(als) — " (als)| + D A
k=1

k=1

<3 nCls) =7 (ls) lloo + Y A
k=1 k=1
<3l wrls) = 7 Cs) [l + D A
k=1 k=1

t

t
< LZ [ QAk(S/a ) =Q(,) Iy + Z A (Lemma 2)
k=1 k=1
t

t
< LA Y Qu(s',) = Q(S',.) lloe + Y Akl Property of p-norm)

k=1 k=1

t t
< L|A|%7dz | Pr(s”,.) = 7(s",.) |loo +ZAk(C0ntracti0n|ﬂl)
k=1 k=1
¢

t
1 20
< L|A|»~¢ —_ A
< LiAfry Z1og(2+k) N
k=1 k=1
1 ¢ 20 ¢ |A|
< L|AJ» d/ 7dk+/ ———dk
S HART o+ ™ sy a1 )
Ct
~ logt’
Sor some constant C' depending on |A|, p,d, o, L, and ~y . Finally,

t

BN (0.0) = Ni o] 2 ) < 3B Z4|A|GXP PEeREd
< 4|A|teXP(*m)
t
=0(t eXP(—W))-

Lemma 4 Consider the E3W policy applied to a tree. At any node s of the tree, Let us define
N/ (s,a) = 7*(als).t, and N¢(s,a) as the number of times action a have been chosen until time

step t. There exists some C and C' such that

A t
P(| N, — N/ —— 1
(| t(s7a) t (S,CL)‘ lo gt) Cte p{ (10gt)3}
Proof 4 Based on the result from Lemmal[3) we have
i} t t
P(|Ny(s,a) — Ny (s,a)| > (1+ C)@) < Ctexp{—w}

P(\Nt(s,a) — N/ (s,a)| > %) + P(|Ne(s,a) — Ni(s,a)| > 1 fgt)
t t
< 4|A\texp{—w} + 2|4 exp{—w}(LemmaHand )
t
< O(texp(—m))~

11
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Theorem 1 At the root node s of the tree, defining N (s) as the number of visitations and Vo« (s) as
the estimated value at node s, for € > 0, we have

P(|Vey(s) — Vi (s)| > €) < Cexp{—= N(s)e

Clog(2 + N(s)))2}'

Proof 5 We prove this concentration inequality by induction. When the depth of the tree is D = 1,
from Proposition |ZI we get

Va(s) = Vo (s)] =Il 2%(Qals,.)) — 2 (Qa(s,.)) lee< v || # = 1" [l (Contraction)
where 7 is the average rewards and r* is the mean reward. So that
P([Va(s) = V3 ()] > €) <P(y | 7 =77 [[o> €).
. 20
From Lemma 1, with ¢ = m, we have

N(s)e
207v(log(2 + N(s)))?

P([Va(s) = Va(s)[ > €) POy [| 7 =17 [lo> €) < 4[A] exp{— }

— Coxol— N(s)e
= Cexpf Cllog(2 + N(s)))?

Let assume we have the concentration bound at the depth D — 1, Let us define Vo (sq) = Qa(s, a),
where s, is the state reached taking action a from state s. then at depth D — 1

N(sq)e
P(|Va(se) — V5 (sq)] > €) < Cexp{——=
(IVa(sa) = Va(sa)l > €) p{ Cllog(2 + N(s)))?
Now at the depth D, because of the Contraction Property, we have
[Va(s) = Vi (s)l <7 [l Qals,.) — Qa(s, ) [l
= ,VlQQ(S’ a) - Q;‘z(sva)l

).

1. (17)

So that
P([Va(s) = Va(s)| > €) < P(v || Qals,a) — Qq(s,a) [[>€)

Z\/v(Sa)6

< C,exp{— C’a(log@ + N(s4)))?
Z\/v(S(;L)6

= Cao g2+ N

From , we can have lim;_, o, N(s,) = oo because if 3L, N(s,) < L, we can find ¢ > 0
Sor which is not satisfied. From Lemma 4, when N (s) is large enough, we have N(s,) —

7 (a|s)N(s) (for example N(sq,) > i7*(a|s)N(s)), that means we can find C' and C that satisfy

P([Va(s) = Vi3(s)| > €) < CeXp{_CA’(log(];[f);[(S)))Q ;

Lemma 5 At any node s of the tree, N (s) is the number of visitations. We define the event

E;={Vain A |N(s,a) — N*(s,a)| < W} where N*(s,a) = n*(als)N(s),

where € > 0 and V- (s) is the estimated value at node s. We have

B(IVa(s) — Vi (s)] > e|s) < Coxp{— 5

C(log(2 + N(s)))2}'

Proof 6 The proofis the same as in Theorem 2. We prove the concentration inequality by induction.
When the depth of the tree is D = 1, from Proposition[I| we get

[Va(s) = V3(s)| =] Q" (Qa(s,.)) — 2 (Q5(s,) IS~ || # =7 |lo (Contraction Property)

12
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where T is the average rewards and r* is the mean rewards. So that
P([Va(s) = Va(s)[ > €) POy [| 7 =77 [lo>€).

From Lemma 1, with ¢ = bg(i% and given Eg, we have
N(s)e
P -V <P F—r* <4|A —
(Vas) = Vi) > ) Sy [17 =1 o> ) < dlAlexpl 5 W)
= Cexp{—= N(s)e }.
C(log(2+ N(s)))?

Let assume we have the concentration bound at the depth D — 1, Let us define Vo (sq) = Qa(s, a),
where s, is the state reached taking action a from state s, then at depth D — 1

N(sq)e
P(|Va(sa) — V5 (sa)| > €) < Cexp{—= .
(IVa(sa) = Va(sa)l > €) { Cllog@ + N(s.)))?
Now at depth D, because of the Contraction Property and given Eg, we have
Va(s) = Va(s)| <7 [ Qals;.) = Qals, ) ll
=v|Qa(s,a) — Q4 (s,a)|(Ja, satisfied).

So that
P(Vals) - Va ()l > &) < P(y || Qa(s, ) — Qals,a) > 9
= Coexpis éaaogg(fz)\:(sanv
= exp{‘daaogjé(ia)z;(s»)?}
< Cexp{— é(mgg f);r(s)))z Y(because of Es)

Theorem 2 Let a; be the action returned by algorithm E3W at iteration t. Then for t large enough,
with some constants C, C,

Pla; # a”) < OteXP{—M}-

Proof 7 Let us define event E4 as in Lemma 5. Let a* be the action with largest value estimate at
the root node state s. The probability that E3W selects a sub-optimal arm at s is

Pla; # a*) < Y P(Va(sa)) > Valsar)| ) + P(EY)
=D P((Valsa) = Vi (sa)) = (Va(sa) = Vi (5a)) = Vi (sar) = Vi (sa) | Es) + P(EY).

Let us define A = Vi (sq+) — V3 (s4), therefore for A > 0, we have
Plas # a*) <) P(Valse) = Vi (sa)) = (Va(sar) = Vi (5a-)) = A|E,) + +P(EY)

<D P([Valsa) = Vi (sa)l 2 @A) + P([Va(sa) = Vi (sa-)| = BA|E,) + P(EY)

N(s)(8A) .
o+ Cor b= P R

 N(s)(aa)
Ca(log(2 + N(s)))

< Z C, exp{—

where a+ 3 =1, a > 0, 8 > 0, and N (s) is the number of visitations the root node s. Let us define
% = min{(%—m, %}, and C = |7}‘ max{Cy, Cy+} we have

* t c
Pla #a") < CeXP{*m} + P(EY).

13
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From Lemma 4, 3C", C' for which

P(ES) < C'texp{—————1,
) { c’ (log(t))g}
so that

P(a # a*) < O(t exp{— o ( IE —1}).

Theorem 3 Consider an E3W policy applied to the tree. Let k; = VQ*(a;|s) + \/Co% 108 § J2n,
where NV (.|s) is the policy with respect to the mean value vector V (-) at the root node s. For any

§ > 0, with probability at least 1 — 8, 3 constant L, p, C, C' so that the pseudo regret R,, satisfies

—”Zv(m_g TU%))) <R, <nV*— HZV@ +L(%))

Proof 8 From Lemma 2 given two policies 7" = VQ* (rM) and 7(2) = vQ* (+?)), 3L, such that
1
70 =@ < L =5 [ L 7D =@

From (I3), we have the regret

annv*—ZwZﬂ:ﬁt(ms), (18)
% =1

where 7. (+) is the policy at time step t, and 1(-) is the indicator function. V* is the optimal branch
at the root node, V; is the mean value function of the branch with respect to action i, V (-) is the | A|

vector of value function at the root node. V (-) is the | A| estimation vector of value function at the
root node. w(.|s) = VQ*(V () is the policy with respect to the V (-) vector at the root node.

Then for any § > 0, with probability at least 1 — §, we have
. . L .
m(ails) = Feesls) < 7C1) = 71s) < 1 V) = V) [ (Lemma2) — (19)

L (T(UQ — Lq) Co?log %

P 1—-6 2N (s)

Theorem 4
p Jmarms

So that

L(7(Uq—Lg) |Co?logS\ . L(7(Uq—Lg)  [|Co?log€
. — < ) < . =
(ails) < =5 T\ g ) S lads) smlads) T T o

so that

02 log C
=V — szmm ) <V — ZVZ( (ails) i(T(Uf:aLQ)Jr CUQ;Sg‘S))

* T(UQ*LQ) CUQIOg%
fn = 0V Z VZ( (als) p( -5 o ))

N L 7(Uq — Lq) Co?log &
R, <nV"—n El V;(?T(GAS)—E(W_F T5))

(20)
And
* § § 7(Uq — Lq) Co?log €
fin =V iV (v(ails) ( -5 o 7))

) L 7(Uo— L éazlogg
R, >nV fnZVq:(Tr(az'\S)**(T( ?_5 Q)Jr 2n 6))

14



Under review as a conference paper at ICLR 2021

In case of Maximum Entropy and Relative Entropy p = 1 because
| 7 — 7@ || o< L || rV —+®) || ([ Niculae& Blondel| (2017)).
So that we have for MENTS

For RENTS, we have

_nE:V(m Aﬁﬁkﬂggln5angnv*_RE:%(m_JXIQEBﬂ:jQD

1—7

Where m = min, 7(als)
In case of Tsallis Entropy p = 2 (|Niculae & Blondel (2017)), so that

L |A|71 T . L |A-1 7
‘”ZV(’“ S )) < B < v ‘”zi:‘/i(””‘z( 24| )

1—7 1—7

Before derive the next theorem, we state here the Theorem 2 in |Geist et al.|(2019)

e Boundedness: for two constants Lq and Ug, such that for all 7 € II, we have Lo < Q(7) <
Uq, then

TWa=La) _ o) < vgs). @1

Vi) - T <

Where 7 is the temperature and + is the discount constant.

Theorem 4 For any § > 0, with probability at least 1 — ), the £q satisfies

Co? log% 7(Uq — Lq) < Co? log%
2N (s) 1—y == \"aN()
Proof 9 From Theorem 2, let us define § = C exp{— M} so that e = Cotlog § then for any

2N (s)
6 > 0, we have

P(([Var(s) /CJ2 log

Then, for any 6 > 0, with probability at least 1 — 0, we have

CJQIng
Vals) = Vi) < \| S

<721og5 0’210g*
=/ IN(s < Va(s <A oo

= Val(s
021og Co?log 5 / 0210g Co®log 5
<

From Proposition 1, we have

Co? log Co?log 5 V(s UQ —Lg) 002 1og Co?log 5
2N (s -
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