
Under review as a conference paper at ICLR 2021

A ADDITIONAL IMPLEMENTATION DETAILS

We use the Adam optimizer Kingma & Ba (2014) with learning rate �G = 1e10�4 and �D = 5e10�4

for the generator and the discriminator, respectively. The discriminator is updated twice for each
generator update.

We use orthogonal initialization for all the weights in our model and use spectral normalization both
in the generator and the discriminator. We only use the first singular value to normalize the weights.
Different from DVD-GAN, we do not use weight moving averages nor orthogonal penalities.

Conditional batch normalization layers use the input noise as the condition, concatenated with the
class label when applicable. Features are normalized with a per-frame mean and standard deviation.

To unroll a generator beyond its training temporal horizon, we apply it convolutionally over longer
input sequences. We perform 200 “dummy” forward passes to recompute the per-timestep batch
normalization statistics at test time.

All convolutions in our models use 3x3 or 3x3x3 filters with padding=1 and stride=1, for 2D or 3D
convolutions respectively. All models were implemented in PyTorch.

B MODEL ARCHITECTURE DETAILS

For the rest of the section, we use B to denote the batch size, T for the number of frames or timesteps,
C for the number of channels, H for the height of the frame and W is the width of the frame.

B.1 STAGE 1 ARCHITECTURE

Our first stage model is based on a re-implementation of DVD-GAN Clark et al. (2019). In all our
experiments, the first stage produces 32x32/25 outputs.

Generator The generator is composed by a stack of units where each unit is comprised of a
ConvGRU layer and two 2D-ResNet upsampling blocks. We follow the nomenclature of Brock
et al. (2018); Clark et al. (2019) and describe our network using a base number of channels ch and
the channel multipliers associated with each unit. Our stage-1 generators is formed by 4 units with
channel multipliers [8, 8, 4, 2]. The base number of channel is 128.

The first input of this network is of size BxTx(8xch)x4x4. This input is obtained by first embedding
the class label onto a 128 dimensional space, then concatenating the embedding to a 128 dimensional
noise vector. This concatenation is mapped to a Bx(8xch)x4x4 tensor with a linear layer and a
reshape, and then the final tensor is obtained by replicating the output of the linear layer T times.

The ConvGRU layer Ballas et al. (2015) follows the ConvGRU implementation of Clark et al. (2019)
and uses a ReLU non-linearity to compute the ConvGRU update.

The 2D ResNet blocks are of the norm-act-conv-norm-act-conv style. We use conditional batch
normalization layers, ReLU activations and standard 2D convolutions. Before the first convolution
operation and after the first normalization and activation, there is an optional upsampling operation
when increasing the resolution of the tensor. We use standard nearest neighbor upsampling. Except
for the last unit, all units perform this upsampling operation. The conditional batch normalization
layers receive the embedded class label (if applicable) and the input noise as a condition and map it to
the corresponding gain and bias term of the normalization layer using a learned linear transformation.
The 2D ResNet blocks process all frames independently by reshaping their input to be (B*T)xCxHxW.

The output of the last stack goes through a final norm-relu-conv-tanh block that maps the output
tensor to RGB space with values in the [-1, 1] range.

Discriminator There are two discriminators, a 2D discriminator and a 3D discriminator. The 2D
discriminator is composed of 2D ResNet blocks. Each ResNet block is formed by a sequence of
relu-conv-relu-conv layers. There are no normalization layers in the discriminator. After the last
conv in each block there is an optional downsampling operation, which is implemented with average

12



Under review as a conference paper at ICLR 2021

pooling layers. The 2D discriminator receives as input 8 randomly sampled frames from real or
generated samples.

The 3D discriminator is equal to the 2D discriminator except that its first two layers are 3D ResNet
blocks, implemented by replacing 2D convolutions with regular 3D convolutions. The 3D discrimina-
tor receives as input a spatially downsampled (by a factor of two) real or generated sample. The 2D
blocks process different timesteps independently.

We concatenate the output of both discriminators and use a geometric hinge loss. The loss is averaged
over samples and outputs.

We use 128 as base number of channel for both discriminators, with the following channel multipliers
for each ResNet block: [16, 16, 8, 4, 2]

B.2 UPSAMPLING STAGE ARCHITECTURE

The upsampling stage models follow the same architecture as the first stage with the following
modifications.

Generator The generator units replace the ConvGRU layers with a Separable 3D convolution. We
first convolve over the temporal dimension with a 1D temporal kernel of size 3 and then convolve
over the spatial dimension with 2D 3x3 kernel. We empirically compare generators with ConvGRU
and separable convolutions in section C.

We add residual connections at the end of each 3D and 2D ResNet block to an appropriately resized
version of xl

wi
. We use nearest neighbor spatial downsampling for this operation, and we use nearest

neighbor temporal interpolation to increase the number of frames of xl

wi
. We then map the residual

to the appropriate number of channels using a linear 1x1 convolution. We do not add xl

wi
residual

connections to feature maps with spatial resolutions (HxW) greater than the resolution of xl

wi
.

Discriminator We reuse the same 2D and 3D discriminators as for the first stage. Additionally,
we add a matching discriminator that discriminates (xl

wi
,xwi) pairs. The matching discriminator

utilizes the same architecture as the 3D discriminator. It receives as input a concatenation of xl

wi
and

a downsampled version of xwi to match the resolution of xl

wi
. We concatenate the outputs of all

three networks and use a geometric hinge loss as for the first stage discriminator. The overall loss is
averaged over samples and output locations.

For 128x128 generations on Kinetics, the generator uses 128 as base number of filters with the fol-
lowing channel multipliers [8, 8, 4, 2, 1]. All discriminators have 96 base channels and the following
channel multipliers [1, 2, 4, 8, 16, 16]. All our models at 128x128 are two-stage models. We train
models to upsample xl

wi
of sizes 32x32/3 or 32x32/6 to 128x128/6 or 128x128/12, respectively.

Since we train our first stage for 32x32/25 outputs, our two-stage models can generate 128x128/50
outputs when unrolled.

For 128x128 generations on BDD100K, the generator uses 96 as the base number of channels with
channel multipliers [8, 4, 4, 2, 2]. All discriminators have 64 base channels and channel multipliers
[1, 2, 4, 8, 8, 16]. Our 128x128 models upsample 64x64/6 xl

wi
inputs to 128x128/12, and can generate

outputs of up to 128x128/100.

13



Under review as a conference paper at ICLR 2021

Figure 6: Comparison of recurrent layers We compare two variants of the same generator, one with
a single ConvGRU layer per generator block and one with a separable 3D convolution per generator
block. On the left we show the evolution of the FVD score during training, and on the right we show
the Inception Score. Both scores are normalized to the [0, 1] range where 1 is the highest score
obtained by these models and 0 the lowest. Both models have similar behaviour and computational
costs, but the 3D convolution processes inputs in parallel.

C COMPARISON OF RECURRENT LAYERS

In this section we justify the change of the ConvGRU for Separable 3D convolutions in upsampling
stages. In Figure 6 we compare the evolution of two metrics (IS and FVD) during training for two
variants of the same two-stage model, one using ConvGRUs and one using separable 3D convolutions.
Both models show similar behavior during training and achieve similar final metrics. However,
ConvGRUs perform sequential operations over time whereas 3D convolutions can be parallelized.

D ADDITIONAL SAMPLES

Additional samples can be found in .mp4 format along with this appendix in the supplementary
materials file. These videos show multiple samples from our two-stage model for Kinetics and our
three-stage model for BDD. For each sample, we show the output of each stage in a row.

We have included 3 videos. One video shows samples from our 128x128/12 model unrolled to
generate 128x128/100 samples on BDD. Another video shows samples from our 128x128/12 model
unrolled to generate 128x128/50 samples on Kinetics. Finally, we include a video with samples from
the same model but without the matching discriminator (baseline no matching disc suffix filename).

We include some additional samples for our Kinetics 128x128/12 model and BDD 128x128/12 model
below.

For all evaluations, we sample from an isotropic Gaussian with unit variance for ease of comparison
and reproducibility. Samples for figures and the provided video files were produced by sampling with
standard deviation � = 0.5. We observed that noise samples with reduced variance produce higher
quality samples but are slightly less diverse.

14



Under review as a conference paper at ICLR 2021

t = 0 t = 5 t = 10 t = 15 t = 20 t = 25 t = 30 t = 35 t = 40 t = 45

Figure 7: Additional samples for Kinetics 128x128/12 We show additional samples from our two-
stage Kinetics 128x128/12 model unrolled to generate 128x128/50 videos. More samples can be
found in the supplementary videos.

15



Under review as a conference paper at ICLR 2021

t = 5 t = 15 t = 25 t = 35 t = 45 t = 55 t = 65 t = 75 t = 85 t = 95

Figure 8: Additional samples for BDD 128x128/100 We show additional samples from our three-
stage BDD 128x128/12 model unrolled to generate 128x128/100 videos.

16



Under review as a conference paper at ICLR 2021

E BROADER IMPACT

Here we discuss the broader ethical impacts of this work. SSW-GAN is a generative model for video.
As with other generative models, there is a chance that similar methods as the one we propose might
be used to create "deepfakes". Note however that it would require extensive follow-up work and
that it would not be a direct application of our methods. Furthermore, it is not possible to know in
advance what a generation is going to look like, and therefore our model could produce results that
could be nonsensical or in bad taste.

At the same time, generative models for video have multiple positive applications. First, their
generations can be used to train better classifiers. They can also be used to facilitate content creation
for visual artists. Furthermore, variants of our model could be used to better compress videos, which
has advantages such as reduced bandwidth requirements to transmit video data.

Overall our model would require follow-up work to enable some of the positive and negative
applications described, as in its current form it is a class-conditional generative model with its main
ability being that of generating samples similar to those used for its training.

17


	Introduction
	Related Work
	Method
	Stage-wise Generative Process
	Training on Local Views of the Data

	Model Architecture
	Experiments
	Two-Stage SSW-GAN
	Three-Stage SSW-GAN

	Conclusions
	Additional Implementation Details
	Model Architecture Details
	Stage 1 architecture
	Upsampling stage architecture

	Comparison of Recurrent Layers
	Additional Samples
	Broader Impact

