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ABSTRACT

Graph neural networks (GNNs) have achieved remarkable successes in various
graph tasks, and recent years have witnessed a flourishing growth in research
regarding GNNs’ expressive power. The number of linear regions generated
from GNNs is a recently considered metric that quantifies GNNs’ capacity. The
estimate of the number of linear regions has been previously developed for deep
and convolution neural networks (DNN and CNN). In this paper, we compare the
expressive power of the classic graph convolution network (GCN) and attention
based models in terms of their capability to generate linear regions. We show that
the prediction advantage of attention models can be matched or even surpassed by
enhancing GCN with refined graph Ricci curvature resulting the so-called high rank
graph convolution network (HRGCN). Thus, the two models are equivalent to each
other in terms of expressive power. Experimental results show that the proposed
HRGCN model outperforms the state-of-the-art results in various classification and
prediction tasks.

1 INTRODUCTION

Over the past decades, deep learning (DL) models have been developed as one of the most powerful
tools in machine learning. It is well known that a feed-forward deep neural network is capable of
approximating any Borel measurable function with a sufficient number of neurons (Hornik et al.,
1989). Among enormous successful DL models, deep neural networks (DNN), convolutional neural
networks (CNN), and recently the graph neural networks (GNN) were recognized as three milestones
that have inspired countless developments based on them. Ever since these three classes of models
were published, the discussions on how powerful they are in terms of their architecture, geometric
feature, and bounds of learning capacity have never stopped. Among various metrics used to quantify
the model learning capability, the number of linear regions (Montufar et al., 2014; Lei et al., 2020)
reflects the model’s expressive power of distinguishing the input data, separating and representing
them into different affine spaces of the output domain. While in the last two decades, the estimate of
the expressive power of DNN (Montufar et al., 2014; Pascanu et al., 2013) and CNN (Xiong et al.,
2020) has been vigorously discussed, such results for GNNs are still on going. Thanks to the recent
development on the expressive power of GNNs (Chen et al., 2022; Xu et al., 2018), the relationship
between the number of linear regions of GNNs in terms of their model architectures is emerging.
However, the comparison between various GNNs expressive power in terms of linear regions is still
unclear. In this paper, we compare the expressive power between graph convolution networks (GCN)
(Kipf & Welling, 2016) and attention based graph learning models. Our comparison result shows
that the reason for causing different expressive power between GCN and attention-based models
is determined by whether the nodes features are considered or not. Specifically, the consideration
of nodes features gives attention models higher capacity than GCN by enhancing the rank of the
re-weighted matrix produced from the element-wise product between attention matrix and graph
adjacency matrix.

Therefore, to potentially further enhance GCN such that it can produce identical or superior expressive
power to attention based models, one scheme is to consider a re-weighting matrix that aggregates
both graph topology and node feature information. In terms of graph topological information, we
consider graph Ollivier Ricci curvature (Ollivier, 2007) which has shown to enhance the performance
of graph neural networks (Ye et al., 2019; Li et al., 2022). To enable Ollivier Ricci curvature to
incorporate nodes features, we refine the curvature with node feature distance while maintaining the
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initial properties of Ollivier Ricci curvature. We show the details on how this curvature is defined
and its properties in Section 5. Moreover, we prove that the enhanced model is capable of producing
the same number of linear regions and thus has identical expressive power compared to attention
models. We also verify that the refined Ricci curvature enhanced GCN model can be understood as
one-step graph Ricci flow and has the potential to alleviate over-squashing phenomenon and improve
the prediction tasks on heterophilic graphs.

Contribution and Outline This paper, to our knowledge, is the first study to compare graph
learning models in terms of their expressive power, measured by the capability of generating linear
regions. In Section 2 we show a detailed literature review on the research development on the areas
that are considered in this paper. In Section 3 we provide basic notions and quantify the number
of linear regions based on graph learning model architectures. After that, in Section 4 we derive
the expressive upper bound of attention based models and theoretically show that this upper bound
is higher than its GCN counterpart. In Section 5 we define the refined graph Ricci curvature and
prove that it can be considered as one of the enhancement schemes to let GCN potentially produce
identical or even higher expressive power than attention based models. Moreover, we also prove that
the computation within the new curvature model is equivalent to the classic graph Ricci flow and
has the potential to handle the over-squashing problem (Topping et al., 2021) in the original GCN
model. Furthermore, we verified the random perturbation that we further introduced to the proposed
model can not only help the model to generate higher expressive power than attention model but
also prevent our model from the over-smoothing issue (Cai & Wang, 2020) within both GCN and
attention models. Finally, we test the proposed model on several real-world datasets and show its
state-of-the-art experimental outcomes in Section 6.

2 RELATED WORKS

Expressive Power of Deep Learning Models The expressive power measured by the number of lin-
ear regions generated by deep learning models was firstly studied by Pascanu et al. (2013). The paper
proves the number of linear regions is upper bounded by

∑n0
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)
for a one-layer fully connected

ReLU neural network with n0 inputs and n1 neurons. Furthermore, a lower bound was also derived
in (Pascanu et al., 2013)as (
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for the maximum number of linear regions of

a fully-connected ReLU network with n0 inputs and L hidden layers of widths n1, ..., nL. The
lower bound estimate was further improved by Montufar et al. (2014) as (
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Followed by their works, various results on the lower and upper bounds for the maximal number of
linear regions of fully-connected ReLU neural networks have been obtained Bianchini & Scarselli
(2014); Telgarsky (2015); Serra et al. (2018); Hanin & Rolnick (2019). Furthermore, the number of
linear regions of convolutional neural networks (CNN) has been explored recently in (Xiong et al.,
2020) and the results have been extended to Maxout activation, a generalization of ReLU activation
in (Montúfar et al., 2021).

Expressive Power of Graph Neural Networks Discussions on the expressive power of graph
neural networks (GNNs) have been established in various aspects. For example, Balcilar et al. (2021)
analyzed the power of GNNs from the graph spectral perspective, and Xu et al. (2018) further
explored the geometrical preservation (graph isomorphism) property of GNNs under the scope of
Weisfeiler-Lehman test. Moreover, Bodnar et al. (2021) is the first who analyzes GNNs via the
number of linear regions in which the aggregation function is linear and invertible, Most recently,
the lower and upper bound of the maximum linear regions of GCN is also developed in (Chen et al.,
2022).

Attention Based Graph Learning Models The initial idea of attention based learning models was
firstly established to help the models attend to the structural importance of the data (Mnih et al., 2014).
After that, the mechanism was successfully adopted by models for various tasks including image
classification (Mnih et al., 2014) and captioning (Xu et al., 2015), machine translation (Bahdanau
et al., 2014) and image question answering (Yang et al., 2016), natural language question answering
(Kumar et al., 2016). More recently, there has been a growing interest in attention models for graphs.
The graph attention mechanism was firstly developed in (Veličković et al., 2017) and extensively
applied into many tasks both homogeneous (Lee et al., 2018b; Abu-El-Haija et al., 2017; Lee et al.,

2



Under review as a conference paper at ICLR 2023

2018a; Ryu et al., 2018) and heterogeneous graphs (Lee et al., 2018a; Shang et al., 2018). Although
the attention coefficients are generated based on slightly different mechanisms in these papers, the
approaches share the common ground in that the attention is imported to allow models to adapt and
focus on the importance which is the task relevance of the data.

Graph Ricci Curvature and Graph neural networks Graph Ricci curvature is a discrete analogue
of Ricci curvature on Riemannian manifolds, which is useful in identifying tumor-related genes in
bioinformatics (Sandhu et al., 2015), predicting and managing the financial market risks (Sandhu et al.,
2016) and detecting network backbone and congestion (Ni et al., 2015). However, there exist various
different notions of graph Ricci curvature. One definition is through Forman’s discretization defined
on the polyhedral or CW complexes (Forman, 2003), which has been applied in (Das Gupta et al.,
2018; DasGupta et al., 2020; Fournier et al., 2015). Another path to define graph curvature is through
Ollivier’s discretization in metric space (Ollivier, 2007). Both Ollivier and Forman Ricci curvatures
are edge-based curvature but with different ways of capturing the property of the underlying graph.
Recently, graph Ricci curvature has been considered to enhance the capacity of GNNs. For example
Ye et al. (2019); Li et al. (2022) applied Ollivier Ricci curvature to construct attention coefficients.
Topping et al. (2021) defined a refined Forman curvature to adjust the over-squashing and bottleneck
issues within the GNN learning process.

3 PRELIMINARIES

Graphs and graph convolutional network In this section, we introduce some preliminaries on
graphs, GCN, graph Ricci curvature and linear regions of neural networks. We denote a graph
G = (V,E) where V , E represent the sets of vertices and edges, respectively. We also consider X =
[x⊤

1 ; . . . ;x
⊤
n ] ∈ Rn×d0 as the feature matrix of the n nodes with each node feature vector xi ∈ Rd0 .

We also let A ∈ Rn×n be the adjacency matrix of the graph G and Â = D−1/2(I+A)D−1/2 ∈ Rn×n

be the symmetrically normalized adjacency matrix with D as the degree matrix of I +A. We recall
the propagation of a GCN layer Kipf & Welling (2016) is given by

H(ℓ+1) = σ(ÂH(ℓ)W (ℓ)), H(0) = X, (1)

where σ(·) is an activation function and W (ℓ) ∈ Rdℓ×dℓ+1 is the weight matrix at layer ℓ.

Attention based graph networks Attention based graph networks contain one (or a set of) matrices
(denoted as T ) whose entries are learnable attention coefficients that element-wisely multiply to the
graph adjacency matrix, i.e., T ⊙ Â. Without loss of generality, we consider the general attention
models in which the attention coefficients are generated from various attention mechanisms defined
as functionals in feature space domain. Initially published in Veličković et al. (2017) and further
developed in Wang et al. (2019b); Schlemper et al. (2019); Wang et al. (2019a) on various fields, the
graph attention model at layer l is defined as:

H(ℓ+1) = σ(θ ⊙ ÂH(ℓ)W (ℓ)), H(0) = X, (2)

where θ ∈ Rn×n is the matrix that contains the attention coefficients. Each entry of θ represents the
attention from a central node to one of its peripheral nodes which is computed in its neighbourhoods.
For example, in Veličković et al. (2017), the attention coefficients are computed from softmax function
that is:

θij =
exp(eij)∑

k∈Ni
exp(eik)

where Ni stands for all first order neighbourhoods of point xi, and eij = a(wTxi, w
Txj)) is obtained

from a function a(·) with w ∈ Rd0×d′
as the trainable coefficient parameter for all nodes and their

neighbourhoods. Furthermore, the row normalization in θ ensures
∑

j θi,j = 1, ∀i.

Graph Ricci curvature. Ricci curvature is a scalar-valued curvature measuring the spread of
geodesics on a Riemannian manifold. We particularly focus on the Ollivier Ricci curvature (Ollivier,
2007; Lin et al., 2011; Ni et al., 2019) on graph, which is an edge-based curvature. Specifically,
given two connected nodes, their Ricci curvature illustrates how difficult the mass (information) from
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one distribution generated from one node with its neighbours transact to another distribution defined
from another node with its neighbours, compare to the flat case. Therefore, before we introduce the
definition, we define a probability measure at node i ∈ V as for a given α ∈ [0, 1]

mi(j) =


α, j = i
1−α
|Ni| , j ∈ Ni

0, otherwise

where |Ni| is the size of Ni, i.e. the degree of xi. We highlight that this is the original definition
in Ollivier (2007) and there exist many alternatives to define mi as long as each mi generates a
discrete distribution over every node in V . Then the graph Ollivier Ricci curvature between node i, j
is defined as

κ(i, j) = 1− W1(i, j)

ds(i, j)
,

where ds(i, j) is the shortest path distance on G between nodes i, j and W1(i, j) is the L1-Wasserstein
distance computed as W1(i, j) = infΓ

∑
i′
∑

j′ Γi′j′ds(i
′, j′) where Γ is the joint distribution

satisfies the coupling conditions, i.e.,
∑

i′ Γi′j′ = mj(j
′),

∑
j′ Γi′j′ = mi(i

′) for all i′, j′.

Linear regions of GCNs. Here we consider a general form of GCN given by H(ℓ+1) =
σ(AH(ℓ)W (ℓ)) for some symmetric matrix A ∈ Rn×n with the same structure as the adjacency
matrix where the only nonzero entries are on the edges. When A = Â, this becomes the original
GCN (Kipf & Welling, 2016). From this point on, we restrict the activation function σ in GCN to be
the Rectifier Linear Unit (ReLU). In this case, GCN can be written as a piecewise linear function.
Definition 1 (Activation patterns and linear regions (Montufar et al., 2014; Xiong et al., 2020; Chen
et al., 2022)). Let F be an L-layer GCN with k neurons in total. An activation pattern is a function
of the k (pre-activation) neurons (denoted as zi, i = 1, ..., k). An activation pattern of F is a function
P from {zi} to {−1, 1}. Let θ be a fixed set of parameters of F . The region corresponding to P and
θ is R(P, θ) = {X : zi · P(zi) > 0,∀ i}. A linear region of F at θ is a non-empty set R(P, θ). Then
the number of linear regions of F is RF,θ = #{R(P, θ) : R(P, θ) ̸= ∅}, where for a set Q, #Q
denotes the number of elements in Q.

The following Lemma derives the number of linear regions of a single layer of GCN.
Lemma 1 (Number of linear regions of one-layer GCNs (Chen et al., 2022)). Let X ∈ Rn×d0 and
H(1) = σ(AXW ) ∈ Rn×d1 be the input and output of a GCN F . Let Ã be the adjacency matrix
that excludes the repeated rows, and D∗ = rank(A). Furthermore, assume that total number of p
parameters are drawn from some distribution µ which has densities with respect to Lebesgue measure

in Rp. Then the number of linear regions of F is RF,θ =
(∑d0

i=0

(
d1

i

))D∗

almost surely. Moreover,

the expectation is Eθ∼µ(RF,θ) =
(∑d0

i=0

(
d1

i

))D∗

.

Based on Lemma 1, the number of linear regions (expressive power) of the GCNs depends on d0, d1
and D∗, for any two models that with fixed input and output feature dimension, the only variable that
determines their expressive power is D∗. This observation provides a way to study the expressive
power between GCN and graph attention based models, and a chance of enhancing GCN to achieve
identical or even higher expressive power compared to graph attention models by preserving the rank
of A.

4 EXPRESSIVE POWER COMPARISON BETWEEN GCN AND ATTENTION
MODELS

In this section, we show the difference in the number of linear regions between the original GCN
model and attention based models. Compared to original GCN model defined in (1), in which only
the graph connectivity information is considered, the attention based models defined in (2) aggregates
both connectivity and feature information of the graph and offers a re-weighting process onto graph
adjacency matrix. In terms of the graph adjacency information (Â) processed in GCN, however, there
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are many possibilities for rank degeneracy on Â (Please refer to Appendix A.1 for more details). For
example, if G contains a fully connected subset whose nodes may or may not connect to common
nodes outside the subset, as a consequence, the row values of these nodes in Â will be identical
causing GCN failed to distinguish them. The next lemma shows that in real-world data sets, where
nodes features can be assumed to be generated from some distributions, with the help of the attention
coefficients, the chance of having a rank degeneracy re-weighted matrix is 0.
Lemma 2. Let S1 := {M ∈ Rn×n|mi,j ≥ 0,mi,j = mj,i,

∑
j mi,j = 1∀i} be the space that

contains all normalized matrices of size n × n, with symmetric and positive entries. And S2 ⊂
S1, s.t.∀M ∈ S2, det(M) = 0 be the subset of all matrices with rank degeneracy from S1. Let µ be a
measure defined on S1, then we have µ(S2) = 0.

The proof of this lemma relies on the fact that the manifold M1 defined by S1 is with one higher
dimension than the manifold M2, which is a submanifold of S1, defined by S2. Hence for any
measure µ on S1, we have µ(S2) = 0. We include the whole proof of this lemma in Appendix A as
well. By direct comparison, it is clear to see that although it is possible to have a rank degenerated Â

based on proposition 1, it is almost impossible to have a rank degenerated T ⊙ Â from real-world
data sets. Hence, let RF,θ(ATT ) and RF,θ(GCN) be the number of linear regions generated from
attention based and GCN model respectively, based on lemma 1 and the lemma 2 we showed above,
if we fix the input and output feature dimensions as d0 and d1, we have:

RF,θ(ATT ) ≥ RF,θ(GCN) (3)

We note that the equal sign appears only when the graph nodes are all with the same feature and
connectivity (i.e., the complete graph, with all node features identical). Based on the observation
in the inequality 3 it is natural to ask the following question: Is it possible to develop a meaningful
re-weighting scheme to Â other than attention mechanism such that the new model has the identical
or even higher expressive power to attention models? In the next section, we will propose a new
model and show this task can be done by a refined version of graph Ollivier Ricci curvature.

5 HIGH RANK GRAPH CONVOLUTION NETWORK (HRGCN)

To properly define the refined graph Ricci curvature, we recall the definition of Ricci curvature
mentioned in section 3, that is: κ(i, j) = 1− W1(i,j)

ds(i,j)
. Clearly, κ(i, j) shows the potential of being a

re-weighting coefficient since it illustrates the topological importance of neighboring nodes which
plays an important role in the information aggregation. However, κ(i, j) cannot distinguish the nodes
with the same connectivity and cannot escape rank degeneracy in Â, resulting a limited expressive
power of the learning model. Therefore, to equip Ricci curvature with identical expressive power as
the attention models, node feature information shall be considered. We define the refined graph Ricci
curvature as follows:
Definition 2 (Refined Graph Ollivier Ricci Curvature). The refined, feature information based graph
Ollivier Ricci curvature is defined as:

κ̃(xi, xj) = κ(xi, xj)× d(xi, xj) (4)

where d(xi, xj) is the Euclidean distance between two nodes’ features.

The refined Ricci curvature maintains the sign of the original Ollivier Ricci curvature, and thus
the topological information of the graph is preserved. This is because in the perspective of graph
community detection (Ni et al., 2019), when two nodes are from the same community, the Ricci
curvature on their edge is positive. In contrast, the Ricci curvature is negative when two nodes
are from different communities. Thanks to the following theorem, we can show that the adjacency
re-weighting scheme induced from the refined Ricci curvature on GCN can balance or even surpass
the prediction advantage in attention based models.

Theorem 1 (Expressive Equivalence). Let D∗
ATT and D∗

HRGCN be the rank of θ ⊙ Â and η ⊙ Â,
respectively, where θ is the matrix contains all learnable attention coefficients and η is the matrix
with entries of the refined graph Ollivier Ricci curvature similarities that is:

ηij = Exp(−κ̃ij)

Then we have RHRGCN = RATT .
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(a) (b) (c)

(d) (e) (f)

Figure 1: Changes of the graph Ricci curvature distribution before (first row) and after (second row)
the computation conducted in HRGCN. The datasets on each row from left to right are Cora, Citeseer
and Pubmed, we fixed α = 0.7 as the initial mass for curvature computation. We observe HRGCN
is able to smooth the curvature of graphs by contracting both the negative and positive curvatures.

The proof of Theorem 1 is based on the fact that each row of the matrices of both θ ⊙ Â and η ⊙ Â
lost one degree of freedom and resulted an identical dimension of the space that contains them. The
lost of the degree of freedom is due to the feature of normalization in the attention model and the
definition of graph Ricci curvature in HRGCN since the diagonal of the matrix η ⊙ Â is equal to
Exp(0) = 1. We leave the detailed proof of Theorem 1 in Appendix A. Based on Theorem 1 the
inclusion of the refined graph Ollivier Ricci curvature produce the same preservation power to the
rank of Â compared to the attention coefficients included in attention based models. Similar to the
original GCN model, let HRGCN contain two curvature assisted convolution layers. The computation
within one single layer of HRGCN is:

H(ℓ+1) = σ(η ⊙ ÂH(ℓ)W (ℓ)), H(0) = X,

Similar to the graph attention model in (Veličković et al., 2017), we set σ as Leaky_relu activation
function.

Relationship with Graph Ricci Flow Graph Ricci flow (Weber et al., 2016; Ni et al., 2018; 2019) is
a discrete version of Ricci flow on Riemannian manifold (Hamilton, 1982), which iteratively shrinks
the positive edges and pushes away the negative edges. Graph Ricci flow has found applications for
community detection (Ni et al., 2019), network alignment (Ni et al., 2018) and change detection on
dynamic graphs (Weber et al., 2016). Here we demonstrate the connection of the proposed HRGCN
with graph Ricci flow as follows.

Let ai,j represents the weight between nodes i and j. The Ricci flow on graph (Ni et al., 2019)
for community detection updates the weights iteratively by a+i,j = ds(i, j)(1− κi,j) where ds(i, j)
is the shortest path distance between node i and j and κi,j is the Olivier Ricci curvature for the
edge i and j, both calculated using the weight ai,j at current iteration. For unweighted graph, if
there exists an edge between i, j, then at first iteration ds(i, j) = ai,j = 1 and thus the process can
be interpreted as increasing the edge weight for negatively curved edges and decreasing the edge
weight for positively curved ones. It is easy to verify that the curvature re-weighting process, i.e.,
η ⊙ Â, η = Exp(−κi,jd(xi, xj)) of HRGCN aligns with the property of graph Ricci flow as ηi,j > 1
for κi,j < 0 and ηi,j < 1 for κi,j > 0. Thus the proposed re-weighting scheme smooths the curvature
via the re-weighted matrix η ⊙ Â. Fig. 1 shows this phenomenon for citation networks. It is clear
that the computation in HRGCN shrinks both positive Ricci curvatures and the negative curvatures to
a narrower range compared to the curvature based on the initial weights from the adjacency matrix.
This has the potential of alleviating the problem of bottleneck which will be discussed.

Over-Squashing and Bottleneck Based on the relationship with Ricci flow, HRGCN allocates
larger edge weight to the edge that initially with negative curvatures. From the perspective of
graph neural networks, a larger edge weight corresponds to strong connection between the nodes.
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From (Topping et al., 2021), we see that negative edges are responsible for the over-squashing and
bottleneck in GNNs where the long-range dependencies of the nodes cannot be captured. In (Topping
et al., 2021), a remedy is proposed by adding edges in the neighbourhood leading to negatively
curved edges. Here we show the proposed ηij = Exp(−k̃ij) can also alleviate the issue by increasing
the edge weight for negatively curved edges. The following Lemma quantifies the sensitivity of
propagation in the form H(ℓ+1) = σℓ(AH(ℓ)Wℓ). This Lemma adapts Lemma 1 in (Topping et al.,
2021).
Lemma 3. Consider the propagation H(ℓ+1) = σℓ(AH(ℓ)Wℓ) at layer ℓ with H(0) = X and
A = Λ ⊙ Â for some Λ ∈ Rn×n

+ . Let h(ℓ)
v represents the feature of node v at layer ℓ. Suppose

|σ′
ℓ| ≤ α and ∥Wℓ∥2 ≤ β for all ℓ. Then we have for any node u, v with dG(u, v) = ℓ+ 1, we have∥∥∥∂h(ℓ+1)

v

∂xu

∥∥∥
2
≤ (αβ)ℓ+1(Aℓ+1)uv .

Lemma 3 shows when the derivative of activation functions and the weights are bounded, the
sensitivity of the features on the input depends critically on the matrix A. We show the details of the
proof in Appendix A. Since negative curvatures are responsible for the bottleneck problem (Topping
et al., 2021) and in HRGCN and a negative curvature will give a larger weight (strong connectivity)
due to ηi,j = Exp(−κ̃i,j), thus HRGCN naturally has the potential of preventing the sensitivity of
the node feature respect to the input from diluting away which happens in GCN.

Another measurement on the bottleneck problem is through the notion of Betweenness Centrality
Freeman (1977) which illustrates the frequency of a node that appears in the minimal path of distinct
pairs of nodes, that is:

cB(u) =
∑
s,t∈V

σ(s, t|u)
σ(s, t)

,

where σ(s, t) is the number of shortest (s, t)-path and σ(s, t|u) is the number of shortest paths
between s and t that route through node u. According to (Topping et al., 2021), the bottleneck value
of the graph is defined as:

bG =
1

n

∑
i

cB(i). (5)

When graph G is complete, bG = 1. Thus bG shows how far away a given graph G’s topology is
from the complete graph in which any pair of nodes are connected, and thus no bottleneck occurs.
In (Topping et al., 2021), this was the motivation of conducting the graph-rewiring scheme to fix
the bottleneck problem. In Table 1, we measure the bottleneck problem via both sensitivity and
bottleneck value to demonstrate the effectiveness of HRGCN in handling the bottleneck problem. For
the sensitivity comparison, we select the node u as one of the nodes with its edge that contains the
most negative curvature and select the node v which is one of the 2-hop neighbours (as models are set
as two layers by default) of u with the middle node v′ such that the edge ev,v′ has the second smallest
curvature within all edges of v. Therefore, a larger sensitivity value illustrates a stronger preservation
of the model in terms of long range dependencies. We fixed α = 0.7 for all curvature computations.

Further Improvement from Random Perturbation It is possible to observe that two nodes have
the same connectivity and features in the real-world data sets. In this case, both the feature-based
attention model and HRGCN fail to distinguish these nodes as the Euclidean distance between nodes
goes to 0, causing rank degeneracy for the re-weighting matrix. In this paper, we address this problem
by inserting a random perturbation ϵ ∼ U(0, 0.01)/1000 s.t.ϵ < min(ηi,j ⊙ âi,j) to the non-zero
entries of η⊙ Â to ensure the model’s distinguishability. Moreover, we show this operation is capable
of lifting and stabilizing system’s Dirichlet energy and thus has the advantage of preventing the model
from over-smoothing. We present our conclusion as the theorem 2 below, and leave the proof in
Appendix A.2.1.

Theorem 2 (Dirichlet Energy Preservation). Let Ã = η⊙ Â and Ãϵ = η⊙ Â− ϵ be the re-weighted
matrices of the curvature matrix η and the perturbed curvature matrix ηϵ, respectively. Let ∆̃
and ∆̃ϵ be the Laplacian matrices induced from Ã and Ãϵ, respectively. Then for any ϵ > 0 and
ϵ < min(ηi,j ⊙ âi,j), at any specific layer (i.e., l-th layer), we have:

Eη(X
(l)) < Eη(X

(l))ϵ
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Where Eη(X
(l)) and Eη(X

(l))ϵ are the Dirichlet energy at layer k induced from η with and without
perturbation ϵ.

Table 1: Sensitivity and Bottleneck value comparison between GCN and HRGCN in both homophily
and heterophily networks. It is clear that HRGCN produces stronger connectivity to the negative
curvature edges and has lower bottleneck values to prevent the model from over-squashing.

Datasets Cora Citeseer Pubmed Cornell Wisconsin Actor
Minimum Curvature -0.539 -0.516 -0.575 -0.155 -0.159 -1.60
Sensitivity (GCN) 0.0006 0.051 0.0003 0.011 0.026 0.0008
Sensitivity (HRGCN) 0.024 0.094 0.0012 0.031 0.029 0.0054
Bottleneck Value (GCN) 6901.4 6099.8 63352.7 130.6 161.86 11813.5
Bottleneck Value (HRGCN) 5985.4 4924.2 50610.8 121.2 130.32 9123.4

6 EXPERIMENT

In this section, we show a variety of numerical tests to solidify our theoretical analysis. Section 6.1
tests the performance of HRGCN on seven citation benchmarks. Section 6.2 shows that with greater
expressive power compare to GCN, our proposed model can even handle the node classification task
in heterophily graph data sets. Moreover, we show the performance of HRGCN in terms of graph
level classification (pooling) in Appendix A.3.All experiments were conducted using PyTorch on
NVIDIA® Tesla V100 GPU with 5,120 CUDA cores and 16GB HBM2 mounted on an HPC cluster.

6.1 NODE CLASSIFICATION FOR HRGCN

Data sets We tested HRGCN model against the state-of-the-arts on seven node classification data
sets. The task for node classification is conducted on several benchmark citation networks. The graph
data sets Cora, Citeseer are relatively small and sparse with average node degree below 2. Other
data sets, Coauthor CS and Physics are the co-authorship graphs based on the Microsoft Academic
Graph from the KDD Cup 2016 challenge and Amazon Photos and Computers are the segments of
the Amazon co-purchase graph in (McAuley et al., 2015). These data sets together with PubMed are
denser and larger than Cora and Citeseer since they contains more than 10 thousands nodes and 20
thousands edges and with average nodes degrees more than 20.

Set-up HRGCN is designed with two curvature assisted convolutional layers to compute graph
embedding. The hidden layer output is followed by softmax activation function for the final prediction.
Most of hyperparameters were set the default values except from learning rate, weight decay, hidden
units, dropout ratio, negative slop of leaky_relu function and curvature initial weight index α in
training. We used grid search to tune the hyperparameters. The hyperparameter values and tuning
results are listed in Appendix A.3. In addition, similar to (Ye et al., 2019), in Appendix A.3, we show
that the computational cost of Ricci curvature can be relaxed by using approximation and parallel
computation even in large data sets. We set the maximum number of epochs of 200 for all citation
networks. All the data sets included in this series of experiment are split followed by the standard
public processing rules. All the average test accuracy and standard deviations are summarized from
10 random trials.

Baseline The learning accuracy of HRGCN is compared against other methods. We consider
multiple baselines that are applicable to the tasks. The test accuracy of the baseline models are
retrieved from the published results: MLP, MoNet (Monti et al., 2017), WSCN (Morris et al., 2019),
GraphSAGE with mean aggregation(GS-mean) (Hamilton et al., 2017), GCN (Kipf & Welling, 2016),
GAT (Veličković et al., 2017) and Curvature graph networks (CurvGN) (Ye et al., 2019). The data
sets for all baseline models are also split based on the standard public rules.
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Table 2: Test Accuracy (in percentage) for citation networks with standard deviation after ±. The top
results are highlighted in First, Second and Third.

Method Cora Citeseer PubMed CS Physics Computers Photo
MLP 55.1 59.1 71.4 88.3±0.7 88.9 ± 1.1 44.9 ±0.8 69.6±3.8
MoNet 81.7 71.2 78.6 90.8±0.6 92.5 ±0.9 83.4 ±2.2 91.2±1.3
GS-mean 79.2 71.2 77.4 91.3±2.8 93.0±0.8 82.4 ±0.8 91.4±1.3
GCN 81.5±0.5 70.9±0.5 79.0±0.3 91.1±0.5 92.8±1.0 82.6±2.5 91.2±1.2
GAT 83.0 ±0.7 72.5±0.7 79.0±0.3 90.5±0.6 92.5±0.9 78.0±1.9 85.1±2.3
CurvGN 82.6±0.6 71.5±0.8 78.8±0.6 92.9±0.4 94.3±0.2 86.5±0.7 92.5±0.5
HRGCN 83.2±0.4 71.8±0.3 79.6±0.2 93.4±0.6 95.6±0.5 87.4±0.3 92.9±0.1

Results The top-3 test accuracy scores (in percentage) are highlighted in Table 2. HRGCN achieved
highest predictive accuracy among all citation networks compared to baseline models. Both GAT
and HRGCN models show superior prediction power within those relatively small datasets (i.e.,
Cora,Citeseer and Pubmed); whereas HRGCN remains producing the top accuracy in larger graph
inputs.

6.2 NODE CLASSIFICATION ON HETEROPHILY GRAPH DATA SETS

In this section, we show that with the enhancement power from refined graph Ricci curvature,
HRGCN can even handle the (heterophily) graph data sets in which the labels of nodes’ neighbours
are largely different compared to the (homophily) citation networks.

Data sets and Baselines We compare the learning outcomes of HRGCN to various baseline
models,MLP with 2 layers (MLP-2), GCN,GAT,APPNP (Chien et al., 2020), H2GCN (Zhu et al.,
2020), MixHop (Abu-El-Haija et al., 2019) and GraphSAGE (Hamilton et al., 2017). We test these
models 10 times on Cornell, Wisconsin, Texas, Film, Chameleon and Squirrel following the same
early stopping strategy, and the same random data splitting method applied to the citation networks.

Table 3: Test Accuracy scores(%) for HRGCN in six heterophily graph benchmarks. Accuracies are
highlighted in bold when HRGCN outperforms GAT and GCN.

Methods Cornell Wisconsin Texas Actor Chameleon Squirrel
MLP-2 91.30±0.70 93.87±3.33 92.26±0.71 38.58±0.25 46.72±0.46 31.28±0.27
GAT 76.00±1.01 71.01±4.66 78.87±0.86 35.98±0.23 63.90±0.46 42.72±0.33
APPNP 91.80±0.63 92.00±3.59 91.18±0.70 38.86±0.24 51.91±0.56 34.77±0.34
H2GCN 86.23±4.71 87.50±1.77 85.90±3.53 38.85±1.77 52.30±0.48 30.39±1.22
GCN 66.56±13.82 66.72±1.37 75.66±0.96 30.59±0.23 60.96±0.78 45.66±0.39
Mixhp 60.33±28.53 77.25±7.80 76.39±7.66 33.13±2.40 36.28±10.22 24.55±2.60
GraphSAGE 71.41±1.24 64.85±5.14 79.03±1.20 36.37±0.21 62.15±0.42 41.26±0.26
HRGCN 78.25±0.25 91.01±1.55 82.25±0.91 37.21±0.29 56.81±0.12 44.28±0.91

Results The testing accuracy and standard deviations of HRGCN for heterophily graph datasets are
listed in Table 3. It is clear to see that HRGCN outperforms attention model (i.e. GAT) and GCN in
most of datasets.

7 FINAL REMARK AND CONCLUSION

This paper compared the expressive power between the original GCN and attention based models in
terms of their number of linear regions. We theoretically proved that the advantage in attention based
models can be matched and even surpassed by introducing a curvature re-weighting scheme to GCN
which gave rise to our HRGCN model. This claim was verified by extensive numeric experiments
where our proposed model outperformed baselines in various node-level and graph-level learning
tasks. The positive results show the great potential and encourage us to explore it further. Our
future research will focus on exploring the curvature guided graph surgery techniques such as graph
re-wiring.
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A APPENDIX

In the Appendix, we firstly provide the empirical summaries on the rank degeneracy phenomenon via
GCN, GAT and HRGCN. Then we show the formal proofs of the previous statements and then show
the details of the three experiments mentioned in the paper.

A.1 RANK DEGENERACY PHENOMENON

In this section, we first provide evidence for the rank degeneracy phenomenon for citation networks.
Table 4 summarizes the rank of (re-weighted) adjacency matrices from GCN, GAT and HRGCN

Table 4: The rank of (re-weight) adjacency matrices of GCN, GAT and HRGCN

Datasets Cora Citeseer Pubmed Computers CS Physics Photo
Number of Nodes 2708 3327 19717 13752 18333 34493 7650
Number of Repeated Rows 83 252 2902 35 115 81 15
Rank of Â 2401 2780 7596 13241 17146 33799 7501
Rank of θ ⊙ Â 2638 3090 19604 13440 17817 33994 7473
Rank of η ⊙ Â 2708 3326 19699 13752 18330 34388 7641

From table 4 one can check that rank degeneracy phenomenon widely exists in all commonly analyzed
benchmarks. In particular, even the repeated rows are removed, the adjacency matrix (Â) utilized in
GCN is still with large number of rank degeneracy whereas the re-weighted adjacency matrices in
GAT (θ ⊙ Â) and HRGCN (η ⊙ Â) are with much larger number of ranks. Furthermore, the rank
of adjacency matrix (η ⊙ Â) in HRGCN has little difference to the number of nodes (which is the
maximum possible rank of adjacency matrix) of the dataset, this indicates that our HRGCN not only
can utilize the adjacency information from the matrix with repeat rows deleted, but also capable
of distinguishing the nodes with the same connectivities. This shows the effectiveness of applying
refined Ricci curvature in our model.

A.2 FORMAL PROOFS

Here we show the proof of Lemma 2, That is, in the real practice, the probability of randomly simulate
a rank degenerated attention matrix within the space that contains all possible attention matrix is 0.
Lemma 2. Let S1 := {M ∈ Rn×n|mi,j ≥ 0,mi,j = mj,i,

∑
j mi,j = 1∀i} be the space that

contains all normalized matrices of size n × n, with symmetric and positive entries. And S2 ⊂
S1, s.t.∀M ∈ S2, det(M) = 0 be the subset of all matrices with rank degeneracy from S1. Let µ be a
measure defined on S1, then we have µ(S2) = 0.

Proof. It is easy to verify that S1 defines a manifold M1 (multinomial symmetric and stochastic
manifold), since all matrices contained in S1 are symmetric and the summation of each row equals to
1, thus there are maximally n(n−1)

2 free elements in the matrices in S1. Hence we have the intrinsic
dimension of M1 equal to n(n−1)

2 .Similarly, S2 defines a submanifold M2 ⊆ M1 with its dimension
less than M1 , this is because with one extra requirement (det(M) = 0) introduced to all matrices in
S2, the degree of freedom of the matrices in S1 will be at least decreased by 1. Let µ be a measure
defined on S1, due to the dimensionality difference, we have all matrices that belong to S2 as measure
0 and that completes the proof.

Based on the claim on Lemma 2, we now verify our statement in Theorem 1. To show the HRGCN
can balance the advantage within graph attention models in terms of expressive power.

Theorem 1. Let D∗
ATT and D∗

HRGCN be the rank of θ ⊙ Â and η ⊙ Â, respectively, where θ is the
matrix contains all learnable attention coefficients and η is the matrix with entries of the refined
graph Ollivier Ricci curvature similarities that is:

ηij = Exp(−κ̃ij)

Then we have RHRGCN = RATT .
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Proof. Based on Lemma 2, let S2 be the set that contains all possible matrices of θ⊙ Â, and we have
S2 is of full rank. Now, define S3 := {M ∈ Rn×n|mi,j ≥ 0,mi,j = mj,i,Diag(M) = 1∀i} be the
set that contain all possible matrices of η ⊙ Â. The diagonal entries of the matrices contained in S3

are fixed as 1 since based on the definition of the refined Ricci curvature defined in equation (2) when
xi = xj , we have their distance d(xi, xj) = 0 and this yields mi,i = Exp(0) = 1. Furthermore,
compared to the matrices in S1 defined in lemma 2, matrices in S3 do not have the row summation
property (

∑
j mi,j = 1∀i). Therefore, each row of the matrices in S3 still only lost one degree of

freedom due to the fixed diagonal values. Based on Lemma 2, one can define another measure µ2 on
S1, then we have µ(S3) = 0. Hence matrices contained in S3 are of full rank. Then based on Lemma
1 we have RHRGCN = RATT , and that completes the proof.

We now prove the lemma 3 included in the paper. Since lemma 3 aims to show the propose HRGCN
is potentially capable of handling the bottleneck problem mentioned in (Topping et al., 2021) by
preventing the long range dependency (negative curvatures) from being diluted in the original GCN.
To prove lemma 3, we need the following proposition from (Topping et al., 2021):

Proposition 1 (Theorem 2 in (Topping et al., 2021)). Given an unweighted graph G, for any edge
i ∼ j we have κ(i, j) ≥ Ric(i, j).

Here κ(i, j) is the Ollivier Ricci curvature and Ric(i, j) is the balanced Forman curvature defined
in (Topping et al., 2021). Please refer to (Topping et al., 2021) for the details of the proof of this
proposition. We note that since we have κ(i, j) ≥ Ric(i, j) and the negative balanced Forman
curvature has been proved to be responsible for the over-squashing problem, hence when we have
κi,j < 0 we must have Ric < 0 and this illustrates that the negative κi,j is also responsible to the
over-squashing problem. With this conclusion in the mind, we now provide the proof for Lemma 3.

Lemma 3. Consider the propagation H(ℓ+1) = σℓ(AH(ℓ)Wℓ) at layer ℓ with H(0) = X and
A = Λ ⊙ Â for some Λ ∈ Rn×n

+ . Let h(ℓ)
v represents the feature of node v at layer ℓ. Suppose

|σ′
ℓ| ≤ α and ∥Wℓ∥2 ≤ β for all ℓ. Then we have for any node u, v with dG(u, v) = ℓ+ 1, we have∥∥∥∂h(ℓ+1)

v

∂xu

∥∥∥
2
≤ (αβ)ℓ+1(Aℓ+1)uv .

Proof. First we see h
(ℓ+1)
v = σℓ(W

T
ℓ (H(ℓ))Tav) = σℓ(

∑n
i=1 aviW

T
ℓ h

(ℓ)
i ), where we let a⊤i be the

i-th row of matrix A and aij be the i, j-th entry of A. Then by chain rule, we obtain∥∥∥∥∥∂h(ℓ+1)
v

∂xu

∥∥∥∥∥
2

=

∥∥∥∥∥diag(σ′
ℓ(W

T
ℓ (H(ℓ))Tav)

)
⊙

( n∑
iℓ=1

aviℓW
T
ℓ

∂h
(ℓ)
iℓ

∂xu

)∥∥∥∥∥
2

≤ α

∥∥∥∥∥
n∑

iℓ=1

aviℓW
T
ℓ

∂h
(ℓ)
iℓ

∂xu

∥∥∥∥∥
2

≤ α(ℓ+1)

∥∥∥∥∥∥
∑

iℓ,iℓ−1,...,i0

aviℓaiℓiℓ−1
· · · ai1i0WT

ℓ WT
ℓ−1 · · ·WT

0

∂h
(0)
i0

∂xu

∥∥∥∥∥∥
2

= α(ℓ+1)
( ∑

iℓ,iℓ−1,...,i1

aviℓaiℓiℓ−1
· · · ai1u

)∥∥WT
ℓ WT

ℓ−1 · · ·WT
0

∥∥
2

≤ (αβ)(ℓ+1)(Aℓ+1)uv

where we apply the second inequality recursively to obtain the third inequality.

Lemma 3 shows when the derivative of activation functions and the weights are bounded, the
sensitivity of the features on the input depend critically on the matrix A, and this lead us to present
the numerical verification (i.e., Table 1) in the main page.
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A.2.1 RANDOM PERTURBATION AND OVER-SMOOTHING

In this section, we show the reduction from tiny values of ϵ ∼ U(0, 0.01)/1000 s.t.ϵ < min(ηi,j⊙âi,j)

to the non-zero entries of η ⊙ Â can help HRGCN to enjoy a higher distinguishability (expressive
power) than GCN and attention based models, in the meanwhile, let HRGCN have a lower risk of
over-smoothing than GCN. We show the advantages from ϵ in the next proposition.
Proposition 2. Let Rϵ

F,θ(HRGCN) and RF,θ(ATT ) be the number of linear regions induced from
HRGCN and attention based model, respectively. For any fixed input and output feature dimension as
d0 and d1, we have:

Rϵ
F,θ(HRGCN) > RF,θ(ATT )

Proof. Based on the proof of theorem 1 we have RF,θ(HRGCN) = RF,θ(ATT ), and the only
situation that causes both HRGCN and attention based model lost their distinguishability is a graph
or a subset of a graph that is complete and all nodes are with the same features. The tiny perturbation
from ϵ to the non-zero entries of η ⊙ Â addresses this issue by introducing the differences into the
re-weighted matrix while preserving the connectivity of such complete graph (subset),thus we have
Rϵ

F,θ(HRGCN) > RF,θ(ATT ).

Now we show that the introduction of ϵ can potentially prevent HRGCN from the over-smoothing
problem in the original GCN and GAT model (Cai & Wang, 2020). To show this, we firstly quantify
the over-smoothing issue by defining graph Dirichlet energy as follows:

Definition 3 (Graph Dirichlet Energy). Given node embedding matrix X(l) =: {x(l)
1 , x

(l)
2 ...x

(l)
N }T ∈

Rn×dl learned from GCN at l-th layer, the Dirichlet energy E(X(l)) is defined as:

E(X(l)) = Tr(X(l)T ∆̃X(l)) =
1

2

∑
i,j

wi,j∥
x
(l)
i√

1 + di
−

x
(l)
j√

1 + dj
∥22

Where ∆̃ = I − Â is the normalized graph Laplacian and Â is the normalized adjacency matrix.The
graph Dirichlet energy shows how smooth the information propagate in terms of GNN computation,
and it has been reckoned as one of the metric that measures the over-smoothing issue in both GCN
and GAT (Cai & Wang, 2020). Specifically, recall the computation within GCN can be described as:

H(ℓ+1) = σ(ÂH(ℓ)W (ℓ)), H(0) = X,

If one were to remove the activation function σ, we have liml→∞ ÂlH(0) = H(∞), where each
row of H(∞) only depends on the degree of the corresponding node, meaning that the graph node
features produced from the prior layer is irreducible and aperiodic. Thus the learning model loses
discriminative information provided by the node features as the number of layers increases.Thanks to
the next theorem we can show that by reducing ϵ to the product of η ⊙ Â, HRGCN produces a higher
Dirichlet energy than GCN within any finite layers.

Theorem 2. Let Ã = η⊙ Â and Ãϵ = η⊙ Â− ϵ be the re-weighted matrices of the curvature matrix
η and the perturbed curvature matrix ηϵ, respectively. Let ∆̃ and ∆̃ϵ be the Laplacian matrices
induced from Ã and Ãϵ, respectively. Then for any ϵ > 0 and ϵ < min(ηi,j ⊙ âi,j), at any specific
layer (i.e., l-th layer), we have:

Eη(X
(l)) < Eη(X

(l))ϵ

Where Eη(X
(l)) and Eη(X

(l))ϵ are the Dirichlet energy at layer k induced from η with and without
perturbation ϵ.

Proof. The result can be easily proved by verification since we have:

Ã = η ⊙ Â and Ãϵ = η ⊙ Â− ϵ

Then we have:

∆̃ = I − η ⊙ Â and ∆̃ϵ = I − η ⊙ Â+ ϵ
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For the perturbed graph Laplacian ∆̃ϵ we have:

E(X(l))ϵ = Tr(X(l)T ∆̃ϵX
(k)) = Tr(X(l)T (I − η ⊙ Â+ ϵ)X(l)

= Tr(X(l)T (∆̃ + ϵ)X(l)) = Tr(X(l)T ∆̃X(l)) + Tr(X(l)T ϵX(l))

= Tr(X(l)T ϵX(k)) + E(X(l))

Since ϵ > 0 thus we have Tr(X(l)T ϵX(l)) > 0 and therefore we have an positive increase of Dirichlet
energy from ϵ

Hence we have proved that with the help of the random perturbation that initially assigned to HRGCN
to increase its expressive power, we also lift system’s Dirichlet energy to make HRGCN robust to
over-smoothing.

A.3 EXPERIMENT EXTEND

The code for this paper can be found at https://github.com/dshi3553usyd/
HRGCN-high-rank-GCN-.git.

A.3.1 CURVATURE ASSISTED GRAPH POOLING

In this section, we show numerical results on (refined) curvature assisted graph pooling. Specifically,
recall the self-attention graph pooling model (Lee et al., 2019) in which the attention score is generated
as: Z = σ(ÂXθatt), Where Â is the normalized adjacency matrix and θatt ∈ Rd0×1 is the attention
coefficient matrix learned by the model. Since we have shown that HRGCN can produce the identical
expressive power compared to attention based models, thus the refined Ricci curvature can naturally
enhance the graph pooling schemes by illustrating the graph topological importance in terms of
information (pooling) aggregation. Therefore, the curvature-based graph pooling model can be
formulated as: Z = σ(η ⊙ ÂX), where ηi,j = Exp(−κ̃i,j), similar to attention pooling model, the
pooling ratio k ∈ (0, 1] is a hyperparameter that determines the number of nodes to keep. The top
[kn] nodes are selected based on the value of Z. Finally we equip the curvature pooling strategy
into the HRGCN model and therefore the final attention score for HR_PooL can be expressed as:
Z = σ(HRGCN(X, Â)).

Dataset Six benchmarks were selected to test the prediction power of HR_PooL , including four
classification tasks with moderate sample size, one large scale classification task and one regression
task. The classification tasks use the TUDataset benchmarks (Morris et al., 2020) including D&D
(Dobson & Doig, 2003), PROTEINS (Borgwardt et al., 2005) to categorize proteins into enzyme
and non-enzyme structures; NCI1 (Wale et al., 2008) to identify chemical compounds that block
lung cancer cells; Mutagenicity (Kazius et al., 2005) to recognize mutagenic molecular compounds
for potentially marketable drug; and QM7 (Blum & Reymond, 2009) to predict atomization energy
value of molecules. The rest, namely ogbn-molhiv (Hu et al., 2020) is used for large scale molecule
classification.

Setup All the baseline models are with two fixed convolutional layers followed by one pooling
layer as the network architecture. The graph convolution for the five TUDatasets uses the GCN
model, and for ogbg-molhiv uses GIN with virtual nodes (Ishiguro et al., 2019). Given graph
representations, the prediction is made by a two-layer MLP, in which the hidden unit is identical to
that of the convolutional layer. The parameters, including learning rate, weight decay, number of
hidden unit in the convolutional layer and drop out ratio, are fine-tunded using grid search mentioned
earlier. The dataset was also split using standard data splitting method as the benchmark models
did. Similar to the method mentioned in (Zheng et al., 2021), the training stops when the validation
loss stops improving for 20 consecutive epochs or reaching maximum 200 epochs. The accuracy
results are averaged over 10 repetitions. For TUDataset, the mean test accuracy is reported, and for
ogbg-molhiv, ROC-AUC score is used. The regression task on QM7 is reported as mean square error
(MSE).
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Baseline The learning outcome of RC-Pooling models are compared to seven baseline methods.
These baselines are TOPKPooL (Gao & Ji, 2019), ATTTENTIONPooL (Li et al., 2020), SAGPooL
(Lee et al., 2019), (Zheng et al., 2021), and the classic SUM, MAX and MEAN pooling.

Table 5: Performance comparison between graph property prediction models. QM7 is a regression
task evaluated by MSE; ogbn-molhiv task by AUC-ROC percentage; others datasets are for classifi-
cation and evaluated by test percentage accuracy. The values after ± are standard deviations. The top
results are highlighted in bold.

Datasets PROTEINS Mutagenicity D&D NCI1 ogb-molhiv QM7
TOLPooL 73.48±3.57 79.84±2.46 74.87±4.12 75.11±3.45 78.14±0.62 175.41±3.16
ATTENTION 73.93±5.37 80.25±2.22 77.48±2.65 74.04±1.27 74.44±2.12 177.99±2.22
SAGPooL 75.89±2.91 79.86±2.36 74.96±3.60 76.30±1.53 75.26±2.29 41.93±1.14
SUM 74.91±4.08 80.69±3.26 78.91 ±3.37 76.96±1.70 77.41±1.16 42.09±0.91
MAX 73.57±3.94 78.83±1.70 75.80±4.11 75.96±1.82 78.16±1.33 177.48±4.70
MEAN 73.13±3.18 80.37±2.44 76.89±2.23 73.70±2.55 78.21±0.90 177.49±4.69

HR_PooL 76.77±2.15 81.49±3.15 77.50±2.21 77.1±3.25 79.40±2.51 150.24±3.25

Results From Table 3 we can see the the propose pooling model in this paper outperforms the
attention based pooling model in terms of both graph-level regression and classification tasks.

A.3.2 SUMMARY STATISTICS OF THE DATASETS

In this section, we show some statistics of the graph datasets mentioned in the paper, and provide the
sensitivity analysis on the hyperparameter α which is the initial mass assigned onto each node of
the graph. As the graph Ricci curvature illustrates the connectivity importance between nodes, when
α ≈ 1, indicating most of the initial mass are assigned to the nodes itself, causing the Wasserstein
distance approaching to the shortest distance if the graph is unweighted and thus κi,j = 1− Wi,j

di,j
≈ 0.

On the other hand, when α ≈ 0, the connectivity importance based on the Wi,j value gradually
appears. In the next few tables we show the benchmark statistics on (homophily) citation networks,
(heterophily) benchmarks and datasets for graph Pooling. Moreover, similar to (Ye et al., 2019),
the computational complexity and time of the refined Ricci curvature for citation networks are also
included.In addition, we also provide the hyperparameter searching spaces for both node classification
and graph pooling.

Hyperparameter Tuning Space We tuned the hyperparameters with the following selection
of values. For learning rate:{0.1, 0.05, 0.01, 0.005}, number of hidden units in {16, 32, 64, 96},
weight decay in {0.001, 0.005, 0.01, 0.05} and scale in {0.1, 0.5, 0.7, 0.9} for Cora, Citeseer and
Pubmed,{7, 8, 9, 10} for CS, Physics, Computers and Photo. For the homophily graph and the
graph dataset used in pooling we fixed Ollivier α = 0.9 whereas for heterophily graphs we fixed
α = 0.4. The following tables shows the summary statistics of the datasets experimented in the paper.

Table 6: Summary statistics for homophily citation networks. Moreover, the computational time for
curvatures in these networks are: 1.99s, 2.38s, 20.8s,3̇9.5s, 312.8s, 620s and 820s.

Datasets #Classes #nodes #Edges #Features #Training #Edges/#Nodes
Cora 7 2708 5429 1433 140 2.0
Citeseer 6 3327 4372 3703 120 1.42
Pubmed 3 19717 44338 500 60 2.25
Coauthor CS 15 18333 100227 6805 300 5.47
Coauthor Physics 5 34493 495924 8415 100 14.37
Amazon Computer 10 13381 259159 767 200 19.37
Amazon Photo 8 7487 126530 745 150 16.90
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Table 7: Summary Statistics of the datasets, H(G) represent the level of homophily of overall
benchmark datasets

Datasets #Class #Feature #Node #Edge Training Validation Testing H(G)
Chameleon 5 2325 2277 31371 60% 20% 20% 0.247

Squirrel 5 2089 5201 198353 60% 20% 20% 0.216
Film 5 932 7600 26659 60% 20% 20% 0.221

Wisconsin 5 251 499 1703 60% 20% 20% 0.150
Texas 5 1703 183 279 60% 20% 20% 0.097

Cornell 5 1703 183 277 60% 20% 20% 0.386

Datasets PROTEINS Mutagenicity D&D NCI1 ogbg-molhiv QM7
#Graphs 1113 4337 1178 4110 41127 7165
Min #Nodes 4 4 30 3 2 4
Max # Nodes 620 417 5748 111 222 23
Avg#Nodes 39 30 284 30 26 15
Avg#Edges 73 31 716 32 28 123
#Features 3 14 89 37 9 0
#Classes 2 2 2 2 2 1(R)

Table 8: Summary statistics for the Graph Pooling Benchmarks, the letter R in the class number of
QM7 represents a regression task

A.3.3 COMPUTATIONAL COMPLEXITY FOR GRAPH RICCI CURVATURE

The exact computation of graph Ricci curvature for large graph is somehow time costly since a
learning programming problem need to be solved on each edge of the graph. Based on (Ye et al.,
2019), on each edge, to obtain the Wasserstein distance between the distributions generated from the
probability measure function, the learn programming is conducted with dx×dy variables and dx+dy
constraints. Using the interior point solver (ECOS), the complexity is O((dx × dy)

w in which w is
the exponent of the complexity of matrix multiplication (the best known is 2.373). However, there
are many approximation methods that can relax the computation of optimal transportation such as
Sinkhorn Algorithm (Cuturi, 2013) and some methods can increase the precision of the Wasserstein
distance for example (Shi et al., 2021) and has proved to have almost identical computational
complexity to the classic OT algorithms. We included the computation time for citation networks in
Table 4.
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