
Appendix

A Proofs

Theorem 1 (Policy gradient-based unbiased derivative estimate). We follow the notation of Defini-
tion 1 and define Φθ(τ, π) =

∑h
i=1

∑h
j=i γ

jRθ(sj , aj) log π(ai|si). We have:

∇πJθ(π) = Eτ∼π,θ [∇πΦθ(τ, π)] =⇒
∇2
πJθ(π) = Eτ∼π,θ

[
∇πΦθ · ∇π log p>θ +∇2

πΦθ
]

∇2
θπJθ(π) = Eτ∼π,θ

[
∇πΦθ · ∇θ log p>θ +∇2

θπΦθ
] (9)

First part of the proof (policy gradient theorem). The first part of the proof follows the policy gradi-
ent theorem. We begin with definitions.

Let τ = {s1, a1, s2, a2, · · · , sh, ah} be a trajectory sampled according to policy π and MDP param-
eter θ. Define τj = {s1, a1, · · · , sj , aj} to be a partial trajectory up to time step j for any j ∈ [h].
Define Gθ(τ) =

∑h
j=1 γ

jRθ(sj , aj) to be the discounted value of trajectory τ . Let pθ(τ, π) be the
probability of seeing trajectory τ under parameter θ and policy π. Given MDP parameter θ, we can
compute the expected cumulative reward of policy π by:

Jθ(π) = Eτ∼π,θ Gθ(τ)

= Eτ∼π,θ
∑h

j=1
γjRθ(sj , aj)

=
∑h

j=1
Eτ∼pθ(τ,π) γ

iRθ(sj , aj) (13)

=
∑h

j=1
Eτj∼pθ(τj ,π) γ

jRθ(sj , aj) (14)

=
∑h

j=1

ˆ
τj

γjRθ(sj , aj)pθ(τj , π)dτj

Equation 13 to Equation 14 uses the fact that we only need to sample up to time step j in order to
compute γjRθ(sj , aj). Everything beyond time step j does not affect the expectation up to time step
j. We can compute the policy gradient by:

∇πJθ(π)

= ∇π
∑h

j=1

ˆ
τj

γjRθ(sj , aj)pθ(τj , π)dτj

=
∑h

j=1

ˆ
τj

γjRθ(sj , aj)∇πpθ(τj , π)dτj (15)

=
∑h

j=1

ˆ
τj

γjRθ(sj , aj)pθ(τj , π)∇π log pθ(τj , π)dτj (16)

where Equation 15 is because only the probability term is dependent on policy π, and Equation 16 is
by∇πpθ = pθ∇π log pθ.
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We can now merge the integral back to an expectation over trajectory τj by merging the probability
term pθ and the integral:

∇πJθ(π) =
∑h

j=1
Eτj∼pθ(τj ,π)

[
γjRθ(sj , aj)∇π log pθ(τj , π)

]
=
∑h

j=1
Eτ∼pθ(τ,π)

[
γjRθ(sj , aj)∇π log pθ(τj , π)

]
= Eτ∼pθ(τ,π)

[∑h

j=1
γjRθ(sj , aj)∇π log pθ(τj , π)

]
= Eτ∼pθ(τ,π)

[∑h

j=1
γjRθ(sj , aj)∇π

(∑j

i=1
log π(ai | si) +

∑j

i=1
log pθ(si, ai, si+1)

)]
(17)

= Eτ∼pθ(τ,π)

[∑h

j=1
γjRθ(sj , aj)

∑j

i=1
∇π log π(ai | si)

]
= Eτ∼pθ(τ,π)

[∑h

j=1

∑j

i=1
γjRθ(sj , aj)∇π log π(ai | si)

]
= Eτ∼pθ(τ,π)

[∑h

i=1

∑h

j=i
γjRθ(sj , aj)∇π log π(ai | si)

]
= Eτ∼pθ(τ,π) [∇πΦθ(τ, π)] (18)

where Equation 17 is by expanding the probability of seeing trajectory τj when parameter θ and
policy π are used, where the probability decomposes into the first term action probability π(ai | si),
and the second term transition probability pθ(si, ai, si+1), which is independent of policy π and thus
disappears. The last equation in Equation 18 connects back to the definition of Φ as defined in the
statement of Theorem 1. Φ is easy to compute and easy to differentiate through. We can therefore
sample a set of trajectories {τ} to compute the corresponding Φ and its derivative to get the unbiased
policy gradient estimate.

Second part of the proof (second-order derivatives). Given the policy gradient theorem as we recall
in the above derivation, we have:

∇πJθ(π) = Eτ∼pθ(τ,π) [∇πΦθ(τ, π)] (19)

We can compute the derivative of Equation 19 by:

∇2
πJθ(π) = ∇π∇πJθ(π)

= ∇π Eτ∼pθ(τ,π) [∇πΦθ(τ, π)]

= ∇π
ˆ
τ

∇πΦθ(τ, π)pθ(τ, π)dτ

=

ˆ
τ

[
∇πΦθ(τ, π)∇πpθ(τ, π)> +∇2

πΦθ(τ, π)pθ(τ, π)
]
dτ (20)

=

ˆ
τ

[
∇πΦθ(τ, π)∇π log pθ(τ, π)> +∇2

πΦθ(τ, π)
]
pθ(τ, π)dτ

= Eτ∼pθ(τ,π)
[
∇πΦθ(τ, π)∇π log pθ(τ, π)> +∇2

πΦθ(τ, π)
]

(21)

where Equation 20 passes gradient inside the integral and applies chain rule. Equation 21 provides an
unbiased estimate of the second-order derivative∇2

πJθ(π).

14



Similarly, we can compute:

∇2
θπJθ(π) = ∇θ∇πJθ(π)

= ∇θ Eτ∼pθ(τ,π) [∇πΦθ(τ, π)]

= ∇θ
ˆ
τ

∇πΦθ(τ, π)pθ(τ, π)dτ

=

ˆ
τ

[
∇πΦθ(τ, π)∇θpθ(τ, π)> +∇2

θπΦθ(τ, π)pθ(τ, π)
]
dτ

=

ˆ
τ

[
∇πΦθ(τ, π)∇θ log pθ(τ, π)> +∇2

θπΦθ(τ, π)
]
pθ(τ, π)dτ

= Eτ∼pθ(τ,π)
[
∇πΦθ(τ, π)∇θ log pθ(τ, π)> +∇2

θπΦθ(τ, π)
]

(22)

Equation 21 and Equation 22 both serve as unbiased estimates of the corresponding second-order
derivatives. We can sample a set of trajectories to compute both of them and get an unbiased estimate
of the second-order derivatives. This concludes the proof of Theorem 1.

Theorem 2 (Bellman-based unbiased derivative estimate). We follow the notation in Definition 2 to
define Jθ(π) = 1

2 Eτ∼π,θ
[
δ2θ(τ, π)

]
. We have:

∇πJθ(π) = Eτ∼π,θ
[
δ∇πδ +

1

2
δ2∇π log pθ

]
=⇒ ∇2

πJθ(π) = Eτ∼π,θ
[
∇πδ∇πδ> +O(δ)

]
∇2
θπJθ(π)=Eτ∼π,θ

[
∇πδ∇θδ>+

(
∇πδ∇θ log p>θ +∇π log pθ∇θδ>+∇2

θπδ
)
δ +O(δ2)

]
(10)

First part of the proof (first-order derivative). By the definition of Jθ(π) = 1
2 Eτ∼π,θ

[
δ2(τ, π)

]
,

we can compute its first-order derivative by:

∇πJθ(π) = ∇π
1

2
Eτ∼π,θ

[
δ2θ(τ, π)

]
= ∇π

1

2

ˆ
τ

δ2θ(τ, π)pθ(τ, π)dτ

=

ˆ
τ

[
pθ(τ, π)δθ(τ, π)∇πδθ(τ, π) +

1

2
δ2θ(τ, π)∇πpθ(τ, π)

]
dτ

=

ˆ
τ

[
δθ(τ, π)∇πδθ(τ, π) +

1

2
δ2θ(τ, π)∇π log pθ(τ, π)

]
pθ(τ, π)dτ

= Eτ∼π,θ

[
δθ(τ, π)∇πδθ(τ, π) +

1

2
δ2θ(τ, π)∇π log pθ(τ, π)

]
(23)

Second part of the proof (second-order derivative). Given Equation 23, we can further compute the
second-order derivatives by:

∇2
πJθ(π) = ∇π∇πJθ(π)

= ∇π Eτ∼π,θ
[
δθ(τ, π)∇πδθ(τ, π) +

1

2
δ2θ(τ, π)∇π log pθ(τ, π)

]
= ∇π

ˆ
τ

[
δθ(τ, π)∇πδθ(τ, π) +

1

2
δ2θ(τ, π)∇π log pθ(τ, π)

]
pθ(τ, π)dτ

=

ˆ
τ

(
∇πδ∇πδ> + δ∇2

πδ + δ∇ log pθ∇πδ> +
1

2
δ2∇2 log pθ

)
pθ

+

(
δ∇πδ(τ, π) +

1

2
δ2∇π log pθ

)
pθ∇ log p>θ dτ

= Eτ∼π,θ
[
∇πδ∇πδ> + δ∇2

πδ + δ∇ log pθ∇πδ> + δ∇πδ(τ, π)∇ log p>θ +O(δ2)
]

= Eτ∼π,θ
[
∇πδ∇πδ> +O(δ)

]
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Similarly, we have:
∇2
θπJθ(π) = ∇θ∇πJθ(π)

= ∇θ Eτ∼π,θ
[
δθ(τ, π)∇πδθ(τ, π) +

1

2
δ2θ(τ, π)∇π log pθ(τ, π)

]
= ∇θ

ˆ
τ

[
δθ∇πδθ +

1

2
δ2θ∇π log pθ

]
pθdτ

=

ˆ
τ

(
∇πδ∇θδ> + δ∇2

θπδ + δ∇π log pθ∇θδ> +
1

2
δ2∇2

θπ log pθ

)
pθ

+

(
δ∇πδ +

1

2
δ2∇π log pθ

)
pθ∇θ log p>θ dτ

= Eτ∼π,θ
[
∇πδ∇θδ> + δ∇2

θπδ + δ∇π log pθ∇θδ> + δ∇πδ∇θ log p>θ +O(δ2)
]

= Eτ∼π,θ
[
∇πδ∇θδ> +

(
∇2
θπδ +∇π log pθ∇θδ> +∇πδ∇θ log p>θ

)
δ +O(δ2)

]
(24)

which concludes the proof.

B Additional Discussions of Decision-focused Learning

In this section, we provide additional discussions of applying decision-focused learning to MDPs
problems.

B.1 Smoothness of the Optimal Policy Derived From Reinforcement Learning Solver

In Equation 8, we compute the gradient of the final evaluation metric with respect to the predictive
model by applying chain rule. This implicitly requires each individual component in the chain rule to
be well-defined. Specifically, the mapping from the MDP parameters to the optimal policy needs to
be smooth so that we can compute a meaningful derivative of the policy with respect to the MDP
parameters. However, this smoothness requirement is only required in the training time to make the
gradient computation available. Once the training is finished, there is no restriction on the policy and
the corresponding solver. This smoothness requirement does not restrict the kind of problems that we
can solve. We just need to find a solver that can give a smooth policy to ensure the differentiability at
training time, e.g., soft actor critic and soft Q learning.

Specifically, the assumption on smooth policy is similar to the idea of soft Q-learning [12] and
soft actor-critic [13] proposed by Haarnoja et al. Soft Q-learning relaxes the Bellman equation to
a soft Bellman equation to make the policy smoother, while soft actor-critic adds an entropy term
as regularization to make the optimal policy smoother. These relaxed policy not only can make the
training smoother as stated in the above papers, but also can allow back-propagation through the
optimal policy to the input MDP parameters in our paper. These benefits are all due to the smoothness
of the optimal policy. Similar issues arise in decision-focused learning in discrete optimization, with
Wilder et al. [36] proposing to relaxing the optimal solution by adding a regularization term, which
serves as the same purpose as we relax our optimal policy in the sequential decision problem setting.

B.2 Unbiased Second-order Derivative Estimates

As we discuss in Section 6, correctly approximating the second-order derivatives is the crux of our
algorithm. Incorrect approximation may lead to incorrect gradient direction, which can further lead to
divergence. Since the second-order derivative formulation as stated in Theorem 1 and Theorem 2 are
both unbiased derivative estimate. However, their accuracy depends on how many samples we use to
approximate the derivatives. In our experiments, we use 100 sampled trajectories to approximate the
second-order derivatives across three domains. The number of samples required to get a sufficiently
accurate derivative estimate may depend on the problem size. Larger problems may require more
samples to get a good derivative estimate, but more samples also implies more computation cost
required to run the back-propagation.

In practice, we find that normalization effect of the Hessian term as discussed in Section 6 is very
important to reduce the variance caused by the incorrect derivative estimate. Additionally, we also
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notice that adding a small additional predictive loss term to run back-propagation can stabilize the
training process because the predictive loss does not suffer from sampling variance. This is why we
add a weighted predictive loss to the back-propagation in Algorithm 1.

B.3 Impact of Optimality in the Forward Pass

In order to differentiate through the KKT conditions, we need the policy π∗ return by the reinforce-
ment learning solver to be optimal in Figure 1. However, sub-optimal solution is often reached
by the reinforcement learning solver and the optimality can impact the gradient computed from
differentiating through the KKT conditions.

In this section, we analyze the impact of a sub-optimal policy produced by the reinforcement learning
solver. When the problem is smooth, or more precisely when the function Jθ(π) is smooth around
the optimal policy π∗, we can bound the gradients∇2

πJθ(π
′) and∇πJθ(π′) computed in Equation 8

using a sub-optimal policy π′ by the gradients computed using the optimal policy π∗. Specifically,
if the Hessian ∇2

πJθ(π
∗) is sufficiently far from singular, the difference between two gradients

computed from sub-optimal and optimal policy using Equation 8 can be written as:∣∣∣∣d Eval(π′)
dπ

(∇2
πJθ(π

′))−1∇2
θπJθ(π

′)
dθ

dw
− d Eval(π∗)

dπ
(∇2

πJθ(π
∗))−1∇2

θπJθ(π
∗)
dθ

dw

∣∣∣∣
which can be further bounded by applying telescoping sum to decompose the difference into lin-
ear combination of the difference in each individual gradient term. This suggests that when the
smoothness condition of the above derivatives is met, we can bound the error incurred by sub-optimal
policy.

C Experimental Setup

In this section, we describe how we randomly generate the MDP problems and the corresponding
missing parameters.

Feature generation Across all three domains, once the missing parameters are generated, we feed
each MDP parameter into a randomly initialized neural network with two intermediate layers each
with 64 neurons, and an output dimension size 16 to generate a feature vector of size 16 for the
corresponding MDP parameter. For example, in the gridworld example, each grid cell comes with a
missing reward. So the feature corresponding to this grid cell and the missing reward is generated by
feeding the missing reward into a randomly initialized neural network to generate a feature vector of
size 16 for this particular grid cell. We repeat the same process for all the parameters in the MDP
problem, e.g., all the grid cells in the gridworld problem. The randomly initiated neural network
uses ReLU layers as nonlinearity followed by a linear layer in the end. The generated features are
normalized to mean 0 and variance 1, and we add Gaussian noiseN (0, 1) to the features, with a signal
noise ratio is 1 : 3, to model that the original missing parameters may not be perfectly recovered from
the noisy features. The predictive model we use to map from generated noisy features to the missing
parameters is a single layer neural network with 16 neurons.

Training parameters Across all three examples, we consider the discounted setting where the
discount factor is γ = 0.95. The learning rate is set to be α = 0.01. The number of demonstrated
trajectories is set to be 100 in both the random and near-optimal settings.

Reinforcement learning solvers In order to train the optimal policy, in the gridworld example, we
use tabular value-iteration algorithm to learn the Q value of each state action pair. In the snare finding
and the TB problems, since the state space is continuous, we apply DDQN [27, 32] to train the Q
function and the corresponding policy, where we use a neural network with two intermediate layers
each with 64 neurons to represent the function approximators of the Q values. There is one exception
in the runtime plot of the snare finding problem in Figure 3(c), where the full Hessian computation is
infeasible when a two layer neural network is used. Thus we use an one layer neural network with 64
neurons only to test the runtime of different Hessian approximations.
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C.1 Gridworld Example With Missing Rewards

Problem setup We consider a 5× 5 Gridworld environment with unknown rewards as our MDP
problems with unknown parameters. The bottom left corner is the starting point and the top right
corner is a safe state with a high reward drawn from a normal distribution N (5, 1). The agent can
walk between grid cells by going north, south, east, west, or deciding to stay in the current grid cells.
So the number of available actions is 5, while the number of available states is 5× 5 = 25.

The agent collects reward when the agent steps on each individual grid cell. There is 20% chance that
each intermediate grid cell is a cliff that gives a high penalty drawn from another normal distribution
N (−10, 1). All the other 80% of grid cells give rewards drawn from N (0, 1). The goal of the agent
is to collect as much reward as possible. We consider a fixed time horizon case with 20 steps, which
is sufficient for the agent to go from bottom left to the top right corner.

Training details Within each individual training step for each MDP problem with missing parame-
ters, we first predict the rewards using the predictive model, and then solve the resulting problem
using tabular value-iteration. We run in total 10000 iterations to learn the Q values, which are later
used to construct the optimal policy. To relax the optimal policy given by the RL solver, we relax
the Bellman equation used to run value-iteration by relaxing all the argmax and max operators in
the Bellman equation to softmax with temperature 0.1, i.e., we use SOFTMAX(0.1 · Q-values) to
replace all the argmax over Q values. The choice of the tempreratue 0.1 is to make sure that the
optimal policy is smooth enough but the relaxation does not impact the optimal policy too much as
well.

Random and near-optimal trajectories generation To generate the random trajectories, we have
the agent randomly select actions between all actions. To generate the near-optimal trajectories, we
replace the softmax with temperature 0.1 by softmax with temperature 1 and train an RL agent using
ground truth reward values by 50000 value-iterations to get a near-optimal policy. We then use the
trained near-optimal policy to generate 100 independent trajectories as our near-optimal demonstrated
trajectories.

C.2 Snare Finding Problem With Missing Transition Probability

Problem setup In the snare finding problem, we consider a set of 20 sites that are vulnerable to
poaching activity. We randomly select 20% of the sites as high-risk locations where the probability
of having a poacher coming and placing a snare is randomly drawn from a normal distribution
N (0.8, 0.1), while the remaining 80% of low-risk sites with probability N (0.1, 0.05) having a
poacher coming to place a snare. These transition probabilities are not known to the ranger, and the
ranger has to rely on features of each individual site to predict the corresponding missing transition
probability.

We assume the maximum number of snare is 1 per location, meaning that if there is a snare and it
has not been removed by the ranger, then the poacher will not place an additional snare there until
the snare is removed. The ranger only observes a snare when it is removed. Thus the MDP problem
with given parameters is partially observable, where the state maintained by the ranger is the belief of
whether a site contains a snare or not, which is a fractional value between 0 and 1 for each site.

The available actions for the ranger are to select a site from 20 sites to visit. If there is a snare in
the location, the ranger successfully removes the snare and gets reward 1 with probability 0.9, and
otherwise the snare remains there with a reward −1. If there is no snare in the visited site, the ranger
gets reward −1. Thus the number of actions to the ranger is 20, while the state space is continuous
since the ranger uses continuous belief as the state.

Training details To solve the optimal policy from the predicted parameters, we run DDQN with
1000 iterations to collect random experience and 10000 iterations to train the model. We use a replay
buffer to store all the past experience that the agent executed before. To soften the optimal policy, we
also use a relaxed Bellman equation as stated in Section C.2. Because the cumulative reward and the
corresponding Q values in this domain is relatively smaller than the Gridworld domain, we replace all
the argmax and max operators by softmax with a larger temperature 1 to reflect the relatively smaller
reward values.
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Random and near-optimal trajectories generation Similar to Section C.1, we generate the ran-
dom trajectories by having the agent choose action from all available actions uniformly at random.
To generate the near-optimal trajectories, we replace all the softmax with temperature 1 by softmax
with temperature 5, and we use the ground truth transition probabilities to train the RL agent by
DDQN using 50000 iterations to generate a near-optimal policy. The near-optimal trajectories are
then generated by running the trained near-optimal policy for 100 independent runs.

C.3 Tuberculosis With Missing Transition Probability

Problem setup There are a total of 5 patients who need to take their medication at each time-step
for 30 time-steps. For each patient, there are 2 states – non-adhering (0), and adhering (1). The
patients are assumed to start from a non-adhering state. Then, in subsequent time-steps, the patients’
states evolve based on their current state and whether they were intervened on by a healthcare worker
according to a transition matrix.

The raw transition probabilities for different patients are taken from [18].5 However, these raw
probabilities do not record a patient’s responsiveness to an intervention. To incorporate the effect
of intervening, we sample numbers from U(0, 0.4), and (a) add them to the probability of adhering
when intervened on, and (b) subtract them from the probability of adhering when not. Finally, we clip
the probabilities to the range of [0.05, 0.95] and re-normalize. We use the raw transition probabilities
and the randomly generated intervention effect to model the behavior of our synthetic patients and
generate all the training trajectories accordingly. The entire transition matrix for each patient is
then fed as an input to the feature generation network to generate features for that patient. In this
example, we assume the transition matrices to be missing parameters, and try to learn a predictive
model to recover the transition matrices from the generated features using either two-stage or various
decision-focused learning methods as discussed in the main paper.

Given the synthetic patients, we consider a healthcare worker who has to choose one patient at every
time-step to intervene on. However, the healthcare worker can only observe the ‘true state’ of a
patient when she intervenes on them. At every other time, she has a ‘belief’ of the patient’s state that
is constructed from the most recent observation and the predicted transition probabilities. Therefore,
the healthcare worker has to learn a policy that maps from these belief states to the action of whom to
intervene on, such that the sum of adherences of all patients is maximised over time. The healthcare
worker gets a reward of 1 for an adhering patient and 0 for a non-adhering one. Like Problem C.2,
this problem has a continuous state space (because of the belief states) and discrete action space.

Training details Same as Section C.2.

Random and near-optimal trajectories generation Similar to Section C.2, we generate the ran-
dom trajectories by having the agent choose action from all available actions uniformly at random.
To generate the near-optimal trajectories, we replace all the softmax with temperature 5 by softmax
with temperature 20,6 and we use the ground truth transition probabilities to train the RL agent by
DDQN using 100, 000 iterations to generate a near-optimal policy. The near-optimal trajectories are
then generated by running the trained near-optimal policy for 100 independent runs.

D Additional Experiment Results

Tuberculosis Adherence The results for this problem can be found in Table 1, and the training
curves can be found in Figure 4. While the standard errors associated with the results seem very large,
this is in large part because of the way in which we report them. To keep it consistent with other
problems, we average the absolute OPE scores for each method across multiple problem instances.
However, in the TB case, each problem instance can be very different because the patients in each

5The raw transition probabilities taken from [18] are only used to generate synthetic patients.
6The reason that we use a relatively larger temperature is because the range of the cumulative reward in TB

domain is smaller than the previous two domains. In TB domain, the patients could change from non-adhering
back to adhering even if there is no intervention, while in contrast, a snare placed in a certain location will not be
removed until the ranger visits the place. In other words, the improvement that intervention can introduce is
relatively limited compared to the snare finding domain. Thus even though the cumulative reward in TB domain
is larger than the previous two domains, the range is smaller and thus we need a larger temperature.
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Figure 4: Learning curves of for the TB problem with random trajectories.
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(a) Backpropagation runtime per gradient step of
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(b) Backpropagation runtime per gradient step of
Bellman equation-based decision-focused learning
using different Hessian approximations in the snare
finding problem.

Figure 5: We compare the backpropagation runtime of decision-focused learning methods using
bellman optimality with different Hessian approximations. We can see that the runtime of both identity
and Woodbury methods largely outperform the runtime of full Hessian computation, demonstrating
the importance of the Hessian approximation. Additionally, the runtime of Woodbury method using
low-rank approximation is similar to the runtime of identity method. Woodbury method provides a
more accurate approximation with a similar runtime.

of these instances are sampled from the transition probabilities previously studied in [18] that have
diverse patient behaviour. As a result, the baseline OPE values vary widely across different problem
instances, causing a larger variation in Figure 4(b) and contributing as the major source of standard
deviation.

Computation cost of Bellman equation-based decision-focused methods We additionally com-
pare the runtime of the operation of backpropagation per gradient step of Bellman equation-based
decision-focused learning using different Hessian approximations. This is the runtime required to
compute the gradient in the backward pass. We can see that the runtime of methods using identity and
Woodbury methods are much smaller than the runtime of full Hessian approximation. This matches
to our analysis in Section 6 and the experimental results in Figure 2(c) and Figure 3(c).

Choice of regularizer λ in Algorithm 1 and ablation study We ran an ablation study by varying
the regularization constant λ in Algorithm 1 using the snare-finding problem. The experimental result
is shown in Figure 6. The role of regularization in Algorithm 1 is to help resolve the non-convexity
issue of the off-policy evaluation (OPE) objective. Decision-focused learning methods can easily
get trapped by various local minima due to the non-convexity of the OPE metric. Adding a small
two-stage loss can improve the convexity of the optimizing objective and thus help improve the
performance as well. We can see that adding small amount of regularization can usually help improve
the overall performance in both cases with random and near-optimal trajectories. However, adding too
much regularization in Algorithm 1 can push decision-focused learning toward two-stage approach,
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(a) The off-policy evaluation performance of different
regularization λ in snare-finding problem with random
trajectories.
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Figure 6: Ablation study of different regularization λ in Algorithm 1 on the snare-finding problem
using different decision-focused learning methods.

which can degrade the performance sometimes. The right amount of regularization is critical to
balance between the issue of convexity and the optimizing objective.

E Computing Infrastructure

All experiments except were run on a computing cluster, where each node is configured with 2
Intel Xeon Cascade Lake CPUs, 184 GB of RAM, and 70 GB of local scratch space. Within each
experiment, we did not implement parallelization nor use GPU, so each experiment was purely run
on a single CPU core.
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