
A Computation and Implementation Details

We propose several optimizations in the PREF-SHAP procedure. We consider fast sampling of
coalitions S in Algorithm 2 batched conjugate gradient descent in Algorithm 3 described below.
Fast coalitions We first propose an optimized sampling scheme for finding coalitions S in Algo-
rithm 2. In contrast to the implementation in [14] which samples the weights from p(Z), our method

Algorithm 2 Sampling unique n, d-dimensional coalitions in O(d) time

Input: Number of coalitions n, number of features d.
1: I = SampleWithoutReplacement(n, 0, 2d) ▷ Sample n unique integers between 0 and 2d

2: def base2(i): ▷ Convert integer to base-2 representation
3: S = [0, . . . , 0] ∈ Rd, r = i ▷ Initialize d-dimensional 0 vector and the rest term r
4: while r > 0 do
5: i = ⌊log2 (r)⌋ ▷ Find which index of S to set to 1
6: S[i] = 1 ▷ Update S
7: r = r − 2i ▷ Update rest term
8: end while
9: return S

return {S1, . . . Sn} = parallel_apply(I, base2) ▷ Each integer can be independently converted

is embarrassingly parallel, which allows for an additional O(n) reduction. A naive algorithm that
compares each sample Si has complexity O(n2d2) and cannot be parallelized.
Stabilizing the Shapley value estimation We remove the features which have 0 variance in the
data we are explaining, similar to the implementation in SHAP. To ensure we get numerically stable
Shapley Values, we calculate the inverse using Cholesky decomposition, as we found the regular
inverse function provided inconsistent results.

To calculate CMEs effectively, we use preconditioned batched conjugate gradient descent over
coalitions detailed in Algorithm 3.

Algorithm 3 Batched conjugate gradient descent

Input: Preconditioner P = K−1
xD

, batch X = [KxSi
. . .KxSn

], B = [KxSi
,xSi

. . .KxSn ,xSn
],

max_its, tolerance ε
Set R = B, Z = BatchMM(P,B),p = Z, a = 0
Set RZ = [(Ri ◦ Zi)++ . . . (Rn ◦ Zn)++] ▷ Element wise product and sum
for max_its do

L = BatchMM(X,B)
α = L ◦ 1

[(Li◦pi)++...(Ln◦pn)++]
a = a+α ◦ p
r = r−α ◦ L
if Mean([(ri ◦ ri)++ . . . (rn ◦ rn)++]) < ε then return a
end if
z = BatchMM(P, r)
Rnew

Z = [(Ri ◦ Zi)++ . . . (Rn ◦ Zn)++]
p = z+ [(Rnew

i ◦ 1
Ri

)++ . . . (Rnew
n ◦ 1

Rn
)++] ◦ p

RZ = Rnew
Z

end for
return a

We have run all our jobs on one Nvidia V100 GPU.

B Additional Experimental Results

Naive Concatenation We demonstrate the pathologies of the naive concatenation approach
mentioned in Sec. 3 with our synthetic experiment. Recall that naive-concatenation approach here
corresponds to first concatenating x(ℓ),x(r)’s features together and applying SHAP to the learned

15

function g directly, in order to to obtain 2d Shapley values, instead of the original d, since each feature
has been duplicated. This approach ignores that the items x(ℓ) and x(r) in fact consist of the same
features. Therefore, when we use the usual value function from SHAP (corresponding to the impact
an individual feature has on the model when it is turned “off” by integration), we would be turning
“off” the feature from the left item, while keeping “on” the feature from the right item, obtaining a
difficult to interpret attribution score. This is highly problematic, as we might be inferring vastly
different contributions of the same feature purely because of the item ordering when concatenating
them. We note that the item ordering in all our experiments is arbitrary and carries no additional
information about the match.

We can see from Fig. 9 that when we explain the preference model applied to the synthetic experiment,
we see that, for example, xAC(l) from x(ℓ) and xAC(r) from x(r) have in fact very different average
Shapley values. Even attempting to average each pair of corresponding features does not give a
meaningful feature contribution ordering (xAB and xAC are scored higher on average than xBC and
x[0]).

Figure 9: Explaining a naïve concatenation model

Additional synthetic data We consider an additional synthetic experiment where we generate data
directly from a GPM model and one where we construct synthetic dueling data. When simulating data,
we first generate player covariates as xi ∈ Rd ∼ N (0, 0.1Id) for each player i. When generating
from the GPM model, we would set 2 covariates as important, by only keeping the 2 first entries of
xi and fixing the rest to be constant (equal to 0). We build a GPM model for g out of these covariates
and generate match outcomes.

We consider d = 10, where only the two first features are set to be important in predicting the
outcome.

PREF-SHAP Explaining UPM PREF-SHAP Explaining UPM

Figure 10: Bar and Beehive plots for Simulation A. PREF-SHAP recovers the correct features (1,2),
while explaining UPM does not.

Chameleon data We further provide explanations of the Chameleon dataset on several different
folds in Figure 11 and Figure 12.

Additional local explanations We additionally provide local explanations on the synthetic dataset
in Figure 13 and Figure 14.

16

Figure 11: PREF-SHAP applied to 6 different folds of Chameleon. PREF-SHAP consistently finds
that higher values of jaw length (jl.res) have a negative impact on outcome.

Figure 12: UPM explanations on 6 different folds of Chameleon. UPM is unable to find a consistent
pattern for the impact of jaw length (jl.res) on the outcome.

PREF-SHAP Explaining UPM PREF-SHAP Explaining UPM

Figure 13: Explaining matches between clusters 0 and 2 on the synthetic dataset.

PREF-SHAP Explaining UPM PREF-SHAP Explaining UPM

Figure 14: Explaining matches between clusters 1 and 2 on the synthetic dataset.

Website dataset The Website dataset considers anonymized visitors on a fashion retail website,
where we are given what garment each visitor viewed and what each visitor clicked in a session. A
user may have more than one session. In this setup, we interpret a browsing session for a visitor as
multiple matches between items, such that the winning item (clicked) competes against all losing
items (only viewed). If several items are winners, they do not play against each other. Each item
has several descriptive statistics such as colour, garment type, assortment characteristic etc. There

17

Table 5: Dataset summary
Dataset NMatches NPlayers NContext Dcontinuous Dbinary DContext

continuous DContext
binary

Website 85144 20626 129117 (users) 0 93 1 4

are some limited descriptive statistics of the visitors, such as year of birth and gender code (i.e.
Male/Female/Unspecified/Unknown).

Explaining Website For the website dataset, we explain product and user preferences in Figure 15.
We generally found that, for the period considered, cosmetic products and the “Jersey Basic category”
drove clicks.

Products User Products User

Figure 15: Barplots and beeplots for the website dataset, products on the left and user variables on
the right.

Table 4: GPM vs UPM. Mean and standard deviations of performance averaged over 5 runs.
Synthetic Chameleon Pokémon Tennis Website

GPM UPM GPM UPM GPM UPM C-GPM UPM C-GPM UPM
Test AUC 0.98±0.00 0.71±0.01 0.92±0.07 0.80±0.07 0.86±0.00 0.82±0.00 0.58±0.02 0.52±0.02 0.66±0.01 0.65±0.01

SpecR 0.09 0.24 0.20 0.13±0.07 0.53±0.10

C Proofs

Proposition 3.1 (Preferential value functional for items). Let k be a product kernel on X , i.e.
k(x(ℓ),x(r)) =

∏d
j=1 k

(j)(x(j), x′(j)). Assume k(j) are bounded for all j, then the Riesz representa-

tion of the functional ν(p)
x(ℓ),x(r),S

exists and takes the form:

ν
(p)

x(ℓ),x(r),S
=

1√
2

(
K(x(ℓ), S)⊗K(x(r), S)−K(x(r), S)⊗K(x(ℓ), S)

)
where K(x, S) = kS(·,xS)⊗ µXSc |XS=xS

and kS(·,xS) =
⊗

j∈S k(j)(·, x(j)) is the sub-product
kernel defined analogously as XS .

Proof. From [16], we know the generalised preferential kernel has the following feature map:

kE((x
(ℓ),x(r)), ·) = 1√

2

(
k(·,x(ℓ))⊗ k(·,x(r))− k(·,x(r))⊗ k(·,x(ℓ))

)
(9)

where ⊗ are the usual tensor product. Recall we defined the preferential value function for items as,

ν
(pI)

x(ℓ),x(r),S
(g) = E[g(X(ℓ), X(r)) | X(ℓ)

S = x
(ℓ)
S , X

(r)
S = x

(r)
S] (10)

as ν(pI)

x(ℓ),x(r),S
is a bounded linear functional on g where g ∈ HkE

is bounded, Riesz representation
theorem [25] tells us there exists a Riesz representation of the functional in HkE

, which for notation
simplicity, we will denote it as ν(pI)

x(ℓ),x(r),S
as well. This corresponds to,

ν
(pI)

x(ℓ),x(r),S
(g) = E[g(X(ℓ), X(r)) | X(ℓ)

S = x
(ℓ)
S , X

(r)
S = x

(r)
S] (11)

= ⟨g,E[kE
(
(X(ℓ), X(r)), ·

)
| X(ℓ)

S = x
(ℓ)
S , X

(r)
S = x

(r)
S]⟩HkE

(12)

= ⟨g, ν(pI)

x(ℓ),x(r),S
⟩HkE

(13)

18

now we expand the expectation of the feature map as,

ν
(pI)

x(ℓ),x(r),S
= E

[
1√
2

(
k(·, X(ℓ))⊗ k(·, X(r))− k(·, X(r))⊗ k(·, X(ℓ)) | X(ℓ)

S = x
(ℓ)
S , X

(r)
S = x

(r)
S

]
(14)

However, we note that

E[k(·, X(ℓ))⊗ k(·, X(r)) | X(ℓ)
S = x

(ℓ)
S , X

(r)
S = x

(r)
S] = E[k(·, X) | XS = x

(ℓ)
S]

⊗ E[k(·, X) | XS = x
(r)
S],

because X(ℓ) and X(r) are identical copies of X and we take the reference distribution as
p(X(ℓ), X(r) | X

(ℓ)
S = x

(ℓ)
S , X

(r)
S = x

(r)
S) = p(X(ℓ) | X

(ℓ)
S = x

(ℓ)
S)p(X(r) | X

(r)
S = x

(r)
S).

Focusing on the duplicating component, we have,

E[k(·, X) | XS = x(ℓ)] = E[kS(·, XS)⊗ kSc(·, XSc) | XS = x
(ℓ)
S] (15)

= kS(·,x(ℓ)
S)⊗ E[kSc(·, XSc) | XS = x

(ℓ)
S] (16)

= kS(·,x(ℓ)
S)⊗ µ

XSc |XS=x
(ℓ)
S

(17)

=: K(x(ℓ), S) (18)

therefore by symmetry, we can arrange the terms in Eq 14 and conclude the proposition,

ν
(pI)

x(ℓ),x(r),S
=

1√
2

(
K(x(ℓ), S)⊗K(x(r), S)−K(x(r), S)⊗K(x(ℓ), S)

)
(19)

To estimate the preferential value functional, we simply replace the conditional mean embeddings
with the empirical versions, i.e. K̂(x, S) = kS(·,xS) ⊗ µ̂XSc |XS=xS

, where µ̂XSc |XS=xS
=

KxS ,XS
(KXS ,XS

+ nλI)−1Φ⊤
XSc is the standard conditional mean embedding estimator (ΦXSc is

the feature map matrix of rv XSc).

Now we proceed to estimate the preferential value function given a function g from the RKHS,

Proposition 3.2 (Non-parametric Estimation). Given ĝ =
∑m

j=1 αjkE((x
(ℓ)
j ,x

(r)
j), ·), datasets

X(ℓ),X(r), test items x(ℓ),x(r), the preferential value function at test items x(ℓ),x(r) for coalition S
and preference function ĝ can be estimated as

ν̂
(pI)

x(ℓ),x(r),S
(ĝ) = α⊤

(
Γ(X

(ℓ)
S ,x

(ℓ)
S)⊙ Γ(X

(r)
S ,x

(r)
S)− Γ(X

(ℓ)
S ,x

(r)
S)⊙ Γ(X

(r)
S ,x

(ℓ)
S)

)
,

where Γ(X
(ℓ)
S ,x

(ℓ)
S) = K

X
(ℓ)
S ,x

(ℓ)
S

⊙ K
X

(ℓ)
Sc ,XSc

K−1
XS ,λKXS ,x

(ℓ)
S

,KXS ,λ = KXS ,XS
+ nλI , α =

{αj}mj=1 and λ > 0 is a regularisation parameter.

Proof. Given ĝ, the preferential value function evaluated at ĝ can be written as,

ν̂
(pI)

x(ℓ),x(r),S
(ĝ) = ⟨ĝ, ν̂(pI)

x(ℓ),x(r),S
⟩HkE

(20)

= ⟨
m∑
j=1

αjkE((x
(ℓ)
j ,x

(r)
j), ·), 1√

2

(
K̂(x(ℓ), S)⊗ K̂(x(r), S)− K̂(x(r), S)⊗ K̂(x(ℓ), S)

)
⟩HkE

(21)

=
1√
2

〈
m∑
j=1

αjkE((x
(ℓ)
j ,x

(r)
j), ·), K̂(x(ℓ), S)⊗ K̂(x(r), S)

〉
(22)

− 1√
2

〈
m∑
j=1

αjkE((x
(ℓ)
j ,x

(r)
j), ·), K̂(x(r), S)⊗ K̂(x(ℓ), S)

〉
(23)

19

Now we focus on the first component, and rewrite:

1√
2

〈
m∑
j=1

αjkE((x
(ℓ)
j ,x

(r)
j), ·), K̂(x(ℓ), S)⊗ K̂(x(r), S)

〉
=

m∑
j=1

A
(1)
j (24)

and we continue to expand the terms,

A
(1)
j :=

1√
2

〈
αjkE((x

(ℓ)
j ,x

(r)
j), ·), K̂(x(ℓ), S)⊗ K̂(x(r), S)

〉
(25)

=
1√
2

〈
αj√
2

(
k(·,x(ℓ)

j)⊗ k(·,x(r)
j)− k(·,x(r)

j)⊗ k(·,x(ℓ)
j)

)
, K̂(x(ℓ), S)⊗ K̂(x(r), S)

〉
(26)

=
αj

2

(〈
k(·,x(ℓ)

j)⊗ k(·,x(r)
j), K̂(x(ℓ), S)⊗ K̂(x(r), S)

〉
−
〈
k(·,x(r)

j)⊗ k(·,x(ℓ)
j), K̂(x(ℓ), S)⊗ K̂(x(r), S)

〉)
(27)

=
αj

2

(
A

(1,ℓ)
j −A

(1,r)
j

)
(28)

We then note that

A
(1,ℓ)
j :=

〈
k(·,x(ℓ)

j))⊗ k(·,x(r)
j), K̂(x(ℓ), S)⊗ K̂(x(r), S)

〉
(29)

=
〈
k(·,x(ℓ)

j), K̂(x(ℓ), S)
〉〈

k(·,x(r)
j), K̂(x(r), S)

〉
(30)

= kS(x
(ℓ)
j ,x(ℓ))K

x
(ℓ)
j S

,XS
(KXS ,XS

+ nλI)−1K
XSc ,x

(ℓ)
Sc

(31)

× kS(x
(r)
j ,x(r))K

x
(r)
j S

,XS
(KXS ,XS

+ nλI)−1K
XSc ,x

(r)
Sc

(32)

= Γ(x
(ℓ)
jS

,x
(ℓ)
S)⊙ Γ(x

(r)
jS

,x
(r)
S) (33)

To go from the second equation to the third equation in this paragraph, realise k(·,x(ℓ)) =

kS(·,x(ℓ)
S)⊗ kSc(·,x(ℓ)

Sc) by product kernel assumption. In this case, we can rewrite A
(1)
j as,

A
(1)
j =

αj

2

(
Γ(x

(ℓ)
jS

,x
(ℓ)
S)⊙ Γ(x

(r)
jS

,x
(r)
S)− Γ(x

(r)
jS

,x
(ℓ)
S)⊙ Γ(x

(ℓ)
jS

,x
(r)
S)

)
(34)

Analogously, define
∑

A
(2)
j as the second component after the subtraction sign, by symmetry, we

know

A
(2)
j =

αj

2

(
Γ(x

(ℓ)
jS

,x
(r)
S)⊙ Γ(x

(r)
jS

,x
(ℓ)
S)− Γ(x

(r)
jS

,x
(r)
S)⊙ Γ(x

(ℓ)
jS

,x
(ℓ)
S)

)
(35)

by subtracting A
(1)
j and A

(1)
j , we get the following:

ν̂
(pI)

x(ℓ),x(r),S
(ĝ) =

m∑
j=1

αj

(
Γ(x

(ℓ)
jS

,x
(ℓ)
S)⊙ Γ(x

(r)
jS

,x
(r)
S)− Γ(x

(r)
jS

,x
(ℓ)
S)⊙ Γ(x

(ℓ)
jS

,x
(r)
S)

)
(36)

writing it in compact form, we arrive to our result,

= α⊤
(
Γ(X

(ℓ)
S ,x

(ℓ)
S)⊙ Γ(X

(r)
S ,x

(r)
S)− Γ(X

(ℓ)
S ,x

(r)
S)⊙ Γ(X

(r)
S ,x

(ℓ)
S)

)
(37)

Proposition 3.3 (Preferential value function for contexts). Given a preference function gU ∈ HkU
E

,
denote Ω′ = {1, ..., d′}, then the utility of context features S′ ⊆ Ω′ on {u,x(ℓ),x(r)} is measured
by ν

(pU)

u,x(ℓ),x(r),S′(gU) = E[gU
(
{uS′ , US′c},x(ℓ),x(r)

)
| US′ = uS′] where the expectation is

taken over the observational distribution of U . Now, given a test triplet (u,x(ℓ),x(r)), if ĝU =∑m
j=1 αjk

U
E

(
(uj ,x

(ℓ)
j ,x

(r)
j), ·

)
, the non-parametric estimator is:

ν̂
(pU)

u,x(ℓ),x(r),S′(ĝU) = α⊤
((

KUS′ ,uS′ ⊙KUS′c ,US′c

(
KUS′ ,US′ +mλ′I

)−1
KUS′ ,uS′

)
⊙ Ξx(ℓ),x(r)

)
where Ξx(ℓ),x(r) =

(
KX(ℓ),x(ℓ) ⊙KX(r),x(r) −KX(r),x(ℓ) ⊙KX(ℓ),x(r)

)
.

20

Proof. Recall the feature map of the kernel kUE takes the following form,

kUE

(
(u,x(ℓ),x(r)), ·

)
= ku(u, ·)⊗ kE((x

(ℓ),x(r)), ·) (38)

Therefore we can express the preferential value function for context as,

ν
(pU)

u,x(ℓ),x(r),S′(gU) = E
[
gU

(
{uS′ , USc},x(ℓ),x(r)

)
| US = uS′

]
(39)

=
〈
gU ,E

[
kUE

(
({uS′ , US′c},x(ℓ),x(r)), ·

)
| US′ = uS′

]〉
(40)

=
〈
gU ,E [ku({uS′ , USc} | US′ = uS′]⊗ kE((x

(ℓ),x(r)), ·)
〉

(41)

=
〈
gU , kuS′ (uS′)⊗ µUS′c |US′=uS′ ⊗ kE((x

(ℓ),x(r)), ·)
〉

(42)

The remaining steps are analogous to [12, Prop.2]. To obtain the empirical estimation, we first replace
the conditional mean embedding µUS′c |US′=uS′ with its empirical estimate and replace gU with

ĝU =
∑m

j=1 αjk
U
E

(
(uj ,x

(ℓ)
j ,x

(r)
j), ·

)
. Now the empirical estimator has the following form,

ν̂
(pU)

u,x(ℓ),x(r),S′(ĝU) =

〈
m∑
j=1

αjk
U
E

(
(uj ,x

(ℓ)
j ,x

(r)
j), ·

)
, kuS′ (uS′)⊗ µ̂US′c |US′=uS′ ⊗ kE((x

(ℓ),x(r)), ·)

〉
(43)

=

m∑
j=1

αj

〈
ku(uj , ·)⊗ kE((x

(ℓ)
j ,x

(r)
j), ·), kuS′ (uS′)⊗ µ̂US′c |US′=uS′ ⊗ kE((x

(ℓ),x(r)), ·)
〉

(44)

=

m∑
j=1

αj

〈
ku(uj , ·), kuS

(uS)⊗ µ̂US′c |US=uS

〉
kE

(
(x

(ℓ)
j ,x

(r)
j), (x(ℓ),x(r))

)
(45)

Now write everything in terms of matrices,

= α⊤
((

KUS′ ,uS′ ⊙KUS′c ,US′c

(
KUS′ ,US′ +mλ′I

)−1
KUS′ ,uS′

)
⊙ Ξx(ℓ),x(r)

)
(46)

where Ξx(ℓ),x(r) =
(
KX(ℓ),x(ℓ) ⊙KX(r),x(r) −KX(r),x(ℓ) ⊙KX(ℓ),x(r)

)
.

21

	Computation and Implementation Details
	Additional Experimental Results
	Proofs

