
Appendix

A Proofs
We first introduce some handy concepts and results to make the proof succinct, meanwhile providing
more information for understanding our model and theory. We begin with some extended discussions
on CSG.

Definition 8. A homeomorphism Φ on S×V is called a reparameterization from CSG p to CSG p′, if
Φ#[ps,v] = p′s,v , and p(x|s, v) = p′(x|Φ(s, v)) and p(y|s) = p′(y|ΦS(s, v)) for any (s, v) ∈ S ×V .
A reparameterization Φ is called to be semantic-preserving, if its output dimensions in S is constant
of v: ΦS(s, v) = ΦS(s, v′) for any v, v′ ∈ V (hence denote ΦS(s, v) as ΦS(s) in this case).

Note that a reparameterization unnecessarily has its output dimensions in S, i.e. ΦS(s, v), constant
of v. The condition that p(y|s) = p′(y|ΦS(s, v)) for any v ∈ V does not indicate that ΦS(s, v) is
constant of v, since p′(y|s′) may ignore the change of s′ = ΦS(s, v) from the change of v. The
following lemma shows the meaning of a reparameterization: it allows a CSG to vary while inducing
the same distribution on the observed data variables (x, y) (i.e., holding the same effect on describing
data).

Lemma 9. If there exists a reparameterization Φ from CSG p to CSG p′, then p(x, y) = p′(x, y).

Proof. By the definition of a reparameterization, we have:

p(x, y) =

∫
p(s, v)p(x|s, v)p(y|s) dsdv =

∫
Φ−1

[p′s,v](s, v)p′(x|Φ(s, v))p′(y|ΦS(s, v)) dsdv

=

∫
p′s,v(s

′, v′)p′(x|s′, v′)p′(y|s′) ds′dv′ = p′(x, y),

where we used variable substitution (s′, v′) := Φ(s, v) in the second-last equality. Note that by
the definition of pushed-forward distribution and the bijectivity of Φ, Φ#[ps,v] = p′s,v implies
ps,v = Φ−1

[p′s,v], and
∫
f(s′, v′)p′s,v(s

′, v′) ds′dv′ =
∫
f(Φ(s, v))Φ−1

[p′s,v](s, v) dsdv (can also
be verified deductively using the rule of change of variables, i.e. Lemma 12 in the following).

We can now define and verify an equivalent relation on CSGs so that the resulting equivalent class
contains CSGs that induce the same (x, y) data distribution and hold the same semantic information
in their s variables.

Definition 10 (semantic-equivalence). We say two CSGs p and p′ are semantic-equivalent, if there
exists a homeomorphism11 Φ on S ×V , such that (i) is semantic-preserving: its output dimensions in
S is constant of v, ΦS(s, v) = ΦS(s) for any v ∈ V , and (ii) it acts as a reparameterization from p
to p′: Φ#[ps,v] = p′s,v , p(x|s, v) = p′(x|Φ(s, v)) and p(y|s) = p′(y|ΦS(s)).

Proposition 14 in Appx. A.1 below shows that the defined binary relation is indeed an equivalence
relation in common cases. As a reparameterization, Φ allows the two models to have different
latent-variable parameterizations while inducing the same distribution on the observed data variables
(x, y) (Lemma 9). The definition of semantic-identification (Def. 4) is then the semantic-equivalence
of the ground-truth CSG p∗ to the learned CSG p, which is also the semantic-equivalence of the
learned CSG p to the ground-truth CSG p∗ in common cases where it is an equivalence relation
(Prop. 14).

This definition of semantic-equivalence can be rephrased as the existence of a semantic-preserving
reparameterization. With proper model assumptions, we can show that any reparameterization
between two CSGs is semantic-preserving, so that semantic-preserving CSGs cannot be converted to
each other by a reparameterization that mixes s with v.

Lemma 11. For two CSGs p and p′, if p′(y|s) has a statistics M ′(s) that is an injective function of
s, then any reparameterization Φ from p to p′, if exists, has its ΦS constant of v.

Proof. Let Φ = (ΦS ,ΦV) be any reparameterization from p to p′. Then the condition that p(y|s) =
p′(y|ΦS(s, v)) for any v ∈ V indicates that M(s) = M ′(ΦS(s, v)). If there exist s ∈ S and
v(1) 6= v(2) ∈ V such that ΦS(s, v(1)) 6= ΦS(s, v(2)), then M ′(ΦS(s, v(1))) 6= M ′(ΦS(s, v(2)))

11A transformation is a homeomorphism if it is a continuous bijection with continuous inverse.

17

since M ′ is injective. This violates M(s) = M ′(ΦS(s, v)) which requires both M ′(ΦS(s, v(1)))
and M ′(ΦS(s, v(2))) to be equal to M(s). So ΦS(s, v) must be constant of v.

We then introduce two mathematical facts.

Lemma 12 (rule of change of variables). Let z be a random variable on a Euclidean space RdZ
with density function pz(z), and let Φ be a homeomorphism on RdZ whose inverse Φ−1 is dif-
ferentiable. Then the distribution of the transformed random variable z′ = Φ(z) has a density
function Φ#[pz](z

′) = pz(Φ
−1(z′))|JΦ−1(z′)|, where |JΦ−1(z′)| denotes the absolute value of the

determinant of the Jacobian matrix (JΦ−1(z′))ia := ∂
∂z′i

(Φ−1)a(z′) of Φ−1 at z′.

Proof. See e.g., Billingsley [13, Thm. 17.2]. Note that a homeomorphism is (Borel) measurable
since it is continuous [13, Thm. 13.2], so the definition of Φ#[pz] is valid.

Lemma 13. Let µ be a random variable whose characteristic function is a.e. non-zero. For two
functions f and f ′ on the same space, we have: f ∗ pµ = f ′ ∗ pµ ⇐⇒ f = f ′ a.e., where
(f ∗ pµ)(x) :=

∫
f(x)pµ(x− µ) dµ denotes convolution.

Proof. The function equality f ∗ pµ = f ′ ∗ pµ leads to the equality under Fourier transformation
F [f ∗ pµ] = F [f ′ ∗ pµ], which gives F [f]F [pµ] = F [f ′]F [pµ]. Since F [pµ] is the characteristic
function of pµ, the condition that it is a.e. non-zero indicates that F [f] = F [f ′] a.e. thus f = f ′ a.e.
See also Khemakhem et al. [57, Thm. 1].

A.1 Proof of the Equivalence Relation

Proposition 14. The semantic-equivalence in Def. 10 is an equivalence relation if V is connected
and is either open or closed in RdV .

Proof. Let Φ be a semantic-preserving reparameterization from one CSG p =
〈p(s, v), p(x|s, v), p(y|s)〉 to another p′ = 〈p′(s, v), p′(x|s, v), p′(y|s)〉. It has its ΦS con-
stant of v, so we can write Φ(s, v) = (ΦS(s),ΦV(s, v)) =: (φ(s), ψs(v)).

(1) We first show that φ, and ψs for any s ∈ S, are homeomorphisms on S and V , respectively, and
that Φ−1(s′, v′) = (φ−1(s′), ψ−1

φ−1(s′)(v
′)).

• Since Φ(S × V) = S × V , so φ(S) = ΦS(S) = S, so φ is surjective.
• Suppose that there exists s′ ∈ S such that φ−1(s′) = {s(i)}i∈I contains multiple distinct

elements.
1. Since Φ is surjective, for any v′ ∈ V , there exist i ∈ I and v ∈ V such that (s′, v′) =

Φ(s(i), v) = (φ(s(i)), ψs(i)(v)), which means that
⋃
i∈I ψs(i)(V) = V .

2. Since Φ is injective, the sets {ψs(i)(V)}i∈I must be mutually disjoint. Otherwise, there
would exist i 6= j ∈ I and v(1), v(2) ∈ V such that ψs(i)(v(1)) = ψs(j)(v

(2)) thus
Φ(s(i), v(1)) = (s′, ψs(i)(v

(1))) = (s′, ψs(j)(v
(2))) = Φ(s(j), v(2)), which violates the

injectivity of Φ since s(i) 6= s(j).
3. In the case where V is open, then so is any ψs(i)(V) = Φ(s(i),V) since Φ is continuous.

But the union of disjoint open sets
⋃
i∈I ψs(i)(V) = V cannot be connected. This

violates the condition that V is connected.
4. A similar argument holds in the case where V is closed.

So φ−1(s′) contains only one unique element for any s′ ∈ S. So φ is injective.
• The above argument also shows that for any s′ ∈ S, we have

⋃
i∈I ψs(i)(V) =

ψφ−1(s′)(V) = V . For any s ∈ S, there exists s′ ∈ S such that s = φ−1(s′), so we
have ψs(V) = V . So ψs is surjective for any s ∈ S.

• Suppose that there exist v(1) 6= v(2) ∈ V such that ψs(v(1)) = ψs(v
(2)). Then Φ(s, v(1)) =

(φ(s), ψs(v
(1))) = (φ(s), ψs(v

(2))) = Φ(s, v(2)), which contradicts the injectivity of Φ
since v(1) 6= v(2). So ψs is injective for any s ∈ S.
• That Φ is continuous and Φ(s, v) = (φ(s), ψs(v)) indicates that φ and ψs are

continuous. For any (s′, v′) ∈ S × V , we have Φ(φ−1(s′), ψ−1
φ−1(s′)(v

′)) =

(φ(φ−1(s′)), ψφ−1(s′)(ψ
−1
φ−1(s′)(v

′))) = (s′, v′). Applying Φ−1 to both sides gives
Φ−1(s′, v′) = (φ−1(s′), ψ−1

φ−1(s′)(v
′)).

• Since Φ−1 is continuous, φ−1 and ψ−1
s are also continuous.

18

(2) We now show that the relation is an equivalence relation. It amounts to showing the following
three properties.

• Reflexivity. For two identical CSGs, we have p(s, v) = p′(s, v), p(x|s, v) = p′(x|s, v) and
p(y|s) = p′(y|s). So the identity map as Φ obviously satisfies all the requirements.

• Symmetry. Let Φ be a semantic-preserving reparameterization from p =
〈p(s, v), p(x|s, v), p(y|s)〉 to p′ = 〈p′(s, v), p′(x|s, v), p′(y|s)〉. From the above conclusion
in (1), we know that (Φ−1)S(s′, v′) = φ−1(s′) is semantic-preserving. Also, Φ−1 is a home-
omorphism on S × V since Φ is. So we only need to show that Φ−1 is a reparameterization
from p′ to p for symmetry.

1. From the definition of pushed-forward distribution, we have Φ−1
[p′s,v] = ps,v

if Φ#[ps,v] = p′s,v. It can also be verified through the rule of change of vari-
ables (Lemma 12) when Φ and Φ−1 are differentiable. From Φ#[ps,v] = p′s,v,
we have for any (s′, v′), ps,v(Φ−1(s′, v′))|JΦ−1(s′, v′)| = p′s,v(s

′, v′). Since
for any (s, v) there exists (s′, v′) such that (s, v) = Φ−1(s′, v′), this implies
that for any (s, v), ps,v(s, v)|JΦ−1(Φ(s, v))| = p′s,v(Φ(s, v)), or ps,v(s, v) =
p′s,v(Φ(s, v))/|JΦ−1(Φ(s, v))| = p′s,v(Φ(s, v))|JΦ(s, v)| (inverse function theorem),
which means that ps,v = Φ−1

[p′s,v] by the rule of change of variables.
2. For any (s′, v′), there exists (s, v) such that (s′, v′) = Φ(s, v), so p′(x|s′, v′) =
p′(x|Φ(s, v)) = p(x|s, v) = p(x|Φ−1(s′, v′)), and p′(y|s′) = p′(y|ΦS(s)) =
p(y|s) = p(y|(Φ−1)S(s′)).

So Φ−1 is a reparameterization from p′ to p.
• Transitivity. Given a third CSG p′′ = 〈p′′(s, v), p′′(x|s, v), p′′(y|s)〉 that is semantic-

equivalent to p′, there exists a semantic-preserving reparameterization Φ′ from p′ to p′′. It
is easy to see that (Φ′ ◦ Φ)S(s, v) = Φ′S(ΦS(s, v)) = Φ′S(ΦS(s)) is constant of v thus
semantic-preserving. As the composition of two homeomorphisms Φ and Φ′ on S × V ,
Φ′◦Φ is also a homeomorphism. So we only need to show that Φ′◦Φ is a reparameterization
from p to p′′ for transitivity.

1. From the definition of pushed-forward distribution, we have (Φ′ ◦ Φ)#[ps,v] =
Φ′#[Φ#[ps,v]] = Φ′#[p′s,v] = p′′s,v if Φ#[ps,v] = p′s,v and Φ′#[p′s,v] = p′′s,v. It can
also be verified through the rule of change of variables (Lemma 12) when Φ−1 and
Φ′−1 are differentiable. For any (s′′, v′′), we have

(Φ′ ◦ Φ)#[ps,v](s
′′, v′′) = ps,v((Φ

′ ◦ Φ)−1(s′′, v′′))
∣∣J(Φ′◦Φ)−1(s′′, v′′)

∣∣
= ps,v(Φ

−1(Φ′−1(s′′, v′′)))
∣∣JΦ−1(Φ′−1(s′′, v′′))

∣∣|JΦ′−1(s′′, v′′)|
= Φ#[ps,v](Φ

′−1(s′′, v′′))|JΦ′−1(s′′, v′′)|
= p′s,v(Φ

′−1(s′′, v′′))|JΦ′−1(s′′, v′′)| = Φ′#[p′s,v](s
′′, v′′) = p′′s,v(s

′′, v′′).

2. For any (s, v), we have:
p(x|s, v) = p′(x|Φ(s, v)) = p′′(x|Φ′(Φ(s, v))) = p′′(x|(Φ′ ◦ Φ)(s, v)),

p(y|s) = p′(y|ΦS(s)) = p′′(y|Φ′S(ΦS(s))) = p′′(y|(Φ′ ◦ Φ)S(s)).

So Φ′ ◦ Φ is a reparameterization from p to p′′.

This completes the proof for an equivalence relation.

A.2 Proof of the Semantic-Identifiability Thm. 5

We present a more general and detailed version of Thm. 5 and prove it. The conclusions in the
theorem in the main context corresponds to conclusions (ii) and (i) below by taking the two CSGs p′
and p as the well-learned CSG p and the ground-truth CSG p∗, respectively.

Theorem 5’ (semantic-identifiability). Consider two CSGs p and p′ that have Assumption 3 hold,
with the bounded derivative conditions specified to be that for both CSGs, f−1 and g are twice
and f thrice differentiable with mentioned derivatives bounded. Further assume that they have
absolutely continuous priors whose log-densities log p(s, v) and log p′(s, v) are bounded up to the
second-order. If the two CSGs induce the same distribution on data, i.e. p(x, y) = p′(x, y), then they

19

are semantic-equivalent, under one of the following three conditions: 12

(i) pµ has an a.e. non-zero characteristic function (e.g., a Gaussian distribution);13

(ii) 1
σ2
µ
→∞, where σ2

µ := E[µ>µ];

(iii) 1
σ2
µ
�B′2f−1max{B′log pB

′
g + 1

2B
′′
g + 3

2dB
′
f−1B′′fB

′
g, BpB

′d
f−1(B′2log p+B

′′
log p+3dB′f−1B′′fB

′
log p+

3d
3
2B′2f−1B′′2f +d3B′′′f B

′
f−1)}, where d := dS + dV , and for both CSGs, the constant Bp bounds

p(s, v), B′f−1 , B′g, B
′
log p and B′′f , B

′′
g , B

′′
log p bound the 2-norms14 of the gradient/Jacobian and the

Hessians of the respective functions, and B′′′f bounds all the 3rd-order derivatives of f .

Proof. Without loss of generality, we assume that µ and ν (for continuous y) have zero mean. If it is
not, we can redefine f(s, v) := f(s, v) + E[µ] and µ := µ− E[µ] (similarly for ν for continuous y)
which does not alter the joint distribution p(s, v, x, y) nor violates any assumptions. Also without
loss of generality, we consider one scalar component (dimension) l of y, and abuse the use of symbols
y and g for yl and gl to avoid unnecessary complication. Note that for continuous y, due to the
additive noise structure y = g(s) + ν and that ν has zero mean, we also have E[y|s] = g(s) as the
same as the categorical y case (under the one-hot representation). We sometimes denote z := (s, v)
for convenience.

First note that for both CSGs and both continuous and categorical y, by construction g(s) is a sufficient
statistics of p(y|s) (not only the expectation E[y|s]), and it is injective. So by Lemma 11, we only
need to show that there exists a reparameterization from p to p′. We will show that Φ := f ′−1 ◦ f is
such a reparameterization.

Since f and f ′ are bijective and continuous, we have Φ−1 = f−1 ◦ f ′, so Φ is bijective and Φ and
Φ−1 are continuous. So Φ is a homeomorphism. Also, by construction, we have:

p(x|z) = pµ(x− f(z)) = pµ(x− f ′(f ′−1(f(z)))) = pµ(x− f ′(Φ(z))) = p′(x|Φ(z)). (7)

So we only need to show that p(x, y) = p′(x, y) indicates Φ#[pz] = p′z and p(y|s) =
p′(y|ΦS(s, v)),∀v ∈ V under the conditions.

Proof under condition (i). We begin with a useful reformulation of the integral
∫
t(z)p(x|z) dz

for a general function t of z. We will encounter integrals in this form. By the additive noise
Assumption 3, we have p(x|z) = pµ(x− f(z)), so we consider a transformation Ψx(z) := x− f(z)
and let µ = Ψx(z). It is invertible, Ψ−1

x (µ) = f−1(x − µ), and JΨ−1
x

(µ) = −Jf−1(x − µ). By
these definitions and the rule of change of variables, we have:∫

t(z)p(x|z) dz =

∫
t(z)pµ(Ψx(z)) dz =

∫
t(Ψ−1

x (µ))p(µ)
∣∣∣JΨ−1

x
(µ)
∣∣∣ dµ

=

∫
t(f−1(x− µ))p(µ)

∣∣Jf−1(x− µ)
∣∣dµ

= Ep(µ)[(t̄V)(x− µ)] (8)

= (f#[t] ∗ pµ)(x), (9)

where we have denoted functions t̄ := t ◦ f−1, V :=
∣∣Jf−1

∣∣, and abused the push-forward notation
f#[t] for a general function t to formally denote (t ◦ f−1)

∣∣Jf−1

∣∣ = t̄V .

According to the graphical structure of CSG, we have:

p(x) =

∫
p(z)p(x|z) dz, (10)

E[y|x] =
1

p(x)

∫
yp(x, y) dy =

1

p(x)

∫∫
yp(z)p(x|z)p(y|s) dzdy

12To be precise, the conclusions are that the equalities in Def. 10 hold a.e. for condition (i), hold asymptotically
in the limit 1

σ2
µ
→∞ for condition (ii), and hold up to a negligible quantity for condition (iii).

13This also requires that p and p′ have the same pµ, or that the ground-truth pµ is known in learning. However,
pµ is easier to model/specify/learn than f , and f dominates p(x|s, v) over pµ when the causal mechanism tends
to be strong. So learning or specifying pµ in learning is not a significant violation of this requirement.

14As an induced operator norm for matrices (not the Frobenius norm).

20

=
1

p(x)

∫
p(z)p(x|z)E[y|s] dz =

1

p(x)

∫
g(s)p(z)p(x|z) dz. (11)

So from Eq. (9), we have:

p(x) = (f#[pz] ∗ pµ)(x), E[y|x] =
1

p(x)
(f#[gpz] ∗ pµ)(x). (12)

Matching the data distribution p(x, y) = p′(x, y) indicates both p(x) = p′(x) and E[y|x] = E′[y|x].
Using Lemma 13 under condition (i), this further indicates:

f#[pz] = f ′#[p′z] a.e., f#[gpz] = f ′#[g′p′z] a.e.,

given that p and p′ have the same pµ. The former indicates Φ#[pz] = p′z . The latter can be
reformed as ḡf#[pz] = ḡ′f ′#[p′z] a.e., so ḡ = ḡ′ a.e., where we have denoted ḡ := g ◦ (f−1)S and
ḡ′ := g′ ◦ (f ′−1)S similarly. From ḡ = ḡ′, we have for any v ∈ V ,

g(s) = g((f−1 ◦ f)S(s, v)) = g((f−1)S(f(s, v))) = ḡ(f(s, v))

= ḡ′(f(s, v)) = g′((f ′−1)S(f(s, v))) = g′(ΦS(s, v)). (13)

For both continuous and categorical y, g(s) uniquely determines p(y|s). So the above equality means
that p(y|s) = p′(y|ΦS(s, v)) for any v ∈ V .

Proof under condition (ii). Applying Eq. (8) to Eqs. (10, 11) (or expanding Eq. (12)), we have:

p(x) = Ep(µ)[(p̄zV)(x− µ)], E[y|x] =
1

p(x)
Ep(µ)[(ḡp̄zV)(x− µ)],

where we have similarly denoted p̄z := pz ◦ f−1. Under condition (ii), E[µ>µ] is infinitesimal, so
we can expand the expressions w.r.t µ. For p(x), we have:

p(x) = Ep(µ)

[
p̄zV −∇(p̄zV)>µ+

1

2
µ>∇∇>(p̄zV)µ+O(E[‖µ‖32])

]
= p̄zV +

1

2
Ep(µ)

[
µ>∇∇>(p̄zV)µ

]
+O(σ3

µ),

where all functions are evaluated at x. For E[y|x], we first expand 1/p(x) using 1
x+ε = 1

x−
ε
x2 +O(ε2)

to get: 1
p(x) = 1

p̄zV
− 1

2p̄2
zV

2Ep(µ)

[
µ>∇∇>(p̄zV)µ

]
+ O(σ3

µ). The second term is expanded as:
ḡp̄zV + 1

2Ep(µ)

[
µ>∇∇>(ḡp̄zV)µ

]
+O(σ3

µ). Combining the two parts, we have:

E[y|x] = ḡ +
1

2
Ep(µ)

[
µ>
(
(∇ log p̄zV)∇ḡ> +∇ḡ(∇ log p̄zV)> +∇∇>ḡ

)
µ
]

+O(σ3
µ). (14)

This equation holds for any x ∈ supp(px) since the expectation is taken w.r.t the distribution p(x, y).
Since p(x, y) = p′(x, y), the considered x here is any value generated by the model. So up to O(σ2

µ),

|p(x)− (p̄zV)(x)| = 1

2

∣∣Ep(µ)

[
µ>∇∇>(p̄zV)µ

]∣∣ 6 1

2
Ep(µ)

[∣∣µ>∇∇>(p̄zV)µ
∣∣]

6
1

2
Ep(µ)

[
‖µ‖2

∥∥∇∇>(p̄zV)
∥∥

2
‖µ‖2

]
=

1

2
E[µ>µ]

∥∥∇∇>(p̄zV)
∥∥

2

=
1

2
E[µ>µ]|p̄zV |

∥∥∇∇> log p̄zV + (∇ log p̄zV)(∇ log p̄zV)>
∥∥

2

6
1

2
E[µ>µ]|p̄zV |

(∥∥∇∇> log p̄zV
∥∥

2
+ ‖∇ log p̄zV ‖

2
2

)
, (15)

|E[y|x]− ḡ(x)| = 1

2

∣∣∣Ep(µ)

[
µ>
(
(∇ log p̄zV)∇ḡ> +∇ḡ(∇ log p̄zV)> +∇∇>ḡ

)
µ
]∣∣∣

6
1

2
Ep(µ)

[∣∣µ>((∇ log p̄zV)∇ḡ> +∇ḡ(∇ log p̄zV)> +∇∇>ḡ
)
µ
∣∣]

6
1

2
Ep(µ)

[
‖µ‖2

∥∥(∇ log p̄zV)∇ḡ> +∇ḡ(∇ log p̄zV)> +∇∇>ḡ
∥∥

2
‖µ‖2

]
6

1

2
E[µ>µ]

(∥∥(∇ log p̄zV)∇ḡ>
∥∥

2
+
∥∥∇ḡ(∇ log p̄zV)>

∥∥
2

+
∥∥∇∇>ḡ∥∥

2

)
= E[µ>µ]

(∣∣(∇ log p̄zV)>∇ḡ
∣∣+

1

2

∥∥∇∇>ḡ∥∥
2

)
. (16)

21

Given the bounding conditions in the theorem, the multiplicative factors to E[µ>µ] in the last
expressions are bounded by a constant. So when 1

σ2
µ
→ ∞, i.e. E[µ>µ] → 0, we have p(x) and

E[y|x] converge uniformly to (p̄zV)(x) = f#[pz](x) and ḡ(x), respectively. So p(x, y) = p′(x, y)
indicates f#[pz] = f ′#[p′z] and ḡ = ḡ′, which means Φ#[pz] = p′z and p(y|s) = p′(y|ΦS(s, v)) for
any v ∈ V , due to Eq. (13) and the explanation that follows.

Proof under condition (iii). We only need to show that when 1
σ2
µ

is much larger than the given
quantity, we still have p(x, y) = p′(x, y) =⇒ p̄zV = p̄′zV

′, ḡ = ḡ′ up to a negligible effect. This
task amounts to showing that the residuals |p(x)− (p̄zV)(x)| and |E[y|x]− ḡ(x)| controlled by
Eqs. (15, 16) are negligible. To achieve this, we need to further expand the controlling functions using
derivatives of f , g and pz explicitly, and bound them by the bounding constants. In the following,
we use indices a, b, c for the components of x and i, j, k for those of z. For functions of z appearing
in the following (e.g., f , g, pz and their derivatives), they are evaluated at z = f−1(x) since we are
bounding functions of x.

(1) Bounding |E[y|x]− ḡ(x)| 6 E[µ>µ]
(∣∣(∇ log p̄zV)>∇ḡ

∣∣+ 1
2

∥∥∇∇>ḡ∥∥
2

)
from Eq. (16).

From the chain rule of differentiation, it is easy to show that:
∇ log p̄z = Jf−1∇ log pz, ∇ḡ = J(f−1)S∇g = Jf−1∇zg, (17)

where ∇zg = (∇g>, 0>dV)> (recall that g is a function only of s). For the term ∇ log V , we apply
Jacobi’s formula for the derivative of the log-determinant:

∂a log V (x) = ∂a log
∣∣Jf−1(x)

∣∣ = tr
(
J−1
f−1(x)

(
∂aJf−1(x)

))
=
∑
b,i

J−1
f−1(x)ib

(
∂aJf−1(x)bi

)
=
∑
b,i

Jf (f−1(x))ib∂b∂af
−1
i (x) =

∑
i

(
Jf (∇∇>f−1

i)
)
ia
. (18)

However, as bounding Eq. (17) already requires bounding
∥∥Jf−1

∥∥
2
, directly using this expression

to bound ‖∇ log V ‖2 would require to also bound ‖Jf‖2. This requirement to bound the first-order
derivatives of both f and f−1 is a relatively restrictive one. To ease the requirement, we would like
to express ∇ log V in terms of Jf−1 . This can be achieved by expressing ∇∇>f−1

i ’s in terms of
∇∇>fc’s. To do this, first consider a general invertible-matrix-valued function A(α) on a scalar α.
We have 0 = ∂α

(
A(α)−1A(α)

)
= (∂αA

−1)A + A−1∂αA, so we have A−1∂αA = −(∂αA
−1)A,

consequently ∂αA = −A(∂αA
−1)A. Using this relation (in the fourth equality below), we have:(

∇∇>f−1
i

)
ab

= ∂a∂bf
−1
i = ∂a

(
Jf−1

)
bi

=
(
∂aJf−1

)
bi

= −
(
Jf−1(∂aJ

−1
f−1)Jf−1

)
bi

= −
(
Jf−1

(
∂aJf

)
Jf−1

)
bi

= −
∑
jc

(Jf−1)bj
(
∂a(∂jfc)

)
(Jf−1)ci = −

∑
jck

(Jf−1)bj(∂k∂jfc)(∂af
−1
k)(Jf−1)ci

= −
∑
c

(Jf−1)ci
∑
jk

(Jf−1)bj(∂k∂jfc)(Jf−1)ak = −
∑
c

(Jf−1)ci
(
Jf−1(∇∇>fc)J>f−1

)
ab
,

or in matrix form,

∇∇>f−1
i = −

∑
c

(Jf−1)ciJf−1(∇∇>fc)J>f−1 =: −
∑
c

(Jf−1)ciK
c, (19)

where we have defined the matrix Kc := Jf−1(∇∇>fc)J>f−1 which is symmetric. Substituting with
this result, we can transform Eq. (18) into a desired form:

∇ log V (x) =
∑
i

(
Jf (∇∇>f−1

i)
)>
i:

= −
∑
i

(
Jf
∑
c

(Jf−1)ciJf−1(∇∇>fc)J>f−1

)>
i:

= −
∑
i

(∑
c

(Jf−1)ciJfJ
−1
f (∇∇>fc)J>f−1

)>
i:

= −
∑
ci

(Jf−1)ci

(
(∇∇>fc)J>f−1

)>
i:

= −
∑
c

(
Jf−1(∇∇>fc)J>f−1

)>
c:

= −
∑
c

(Kc
c:)
> = −

∑
c

Kc
:c, (20)

22

so its norm can be bounded by:

‖∇ log V (x)‖2 =
∥∥∥∑

c

Kc
c:

∥∥∥
2

=
∥∥∥∑

c

(Jf−1)c:(∇∇>fc)J>f−1

∥∥∥
2

6
∑
c

∥∥(Jf−1)c:
∥∥

2

∥∥∇∇>fc∥∥2

∥∥Jf−1

∥∥
2
6 B′′fB

′
f−1

∑
c

∥∥(Jf−1)c:
∥∥

2

6 dB′2f−1B′′f , (21)

where we have used the following result in the last inequality:∑
c

∥∥(Jf−1)c:
∥∥

2
6 d1/2

√∑
c

∥∥(Jf−1)c:
∥∥2

2
= d1/2

∥∥Jf−1

∥∥
F
6 d
∥∥Jf−1

∥∥
2
6 dB′f−1 . (22)

Integrating Eq. (17) and Eq. (21), we have:∣∣(∇ log p̄zV)>∇ḡ
∣∣ = (Jf−1∇ log pz +∇ log V)>Jf−1∇zg
6
(∥∥Jf−1

∥∥
2
‖∇ log pz‖2 + ‖∇ log V ‖2

)∥∥Jf−1

∥∥‖∇g‖2
6
(
B′f−1B′log p + dB′2f−1B′′f

)
B′f−1B′g

=
(
B′log p + dB′f−1B′′f

)
B′2f−1B′g. (23)

For the Hessian of ḡ, direct calculus gives:

∇∇>ḡ = J(f−1)S (∇∇>g)J>(f−1)S +

dS∑
i=1

(∇g)si(∇∇>f−1
si)

= Jf−1(∇z∇>z g)J>f−1 +
∑
i

(∇zg)i(∇∇>f−1
i).

To avoid the requirement of bounding both∇∇>fc’s and∇∇>f−1
i ’s, we substitute∇∇>f−1

i using
Eq. (19):

∇∇>ḡ = Jf−1(∇z∇>z g)J>f−1 −
∑
i

(∇zg)i
∑
c

(Jf−1)ciK
c

= Jf−1(∇z∇>z g)J>f−1 −
∑
c

(
(Jf−1)c,:(∇zg)

)
Kc.

So its norm can be bounded by:∥∥∇∇>ḡ∥∥
2
6
∥∥Jf−1

∥∥2

2

∥∥∇∇>g∥∥
2

+
∑
c

∣∣(Jf−1)c:(∇zg)
∣∣‖Kc‖2

6 B′2f−1B′′g +
∑
c

∣∣(Jf−1)c:(∇zg)
∣∣B′2f−1B′′f

6 B′2f−1

(
B′′g +B′′f

∑
c

∥∥(Jf−1)c:
∥∥

2
‖∇zg‖2

)
6 B′2f−1

(
B′′g +B′′fB

′
g

∑
c

∥∥(Jf−1)c:
∥∥

2

)
6 B′2f−1

(
B′′g + dB′f−1B′′fB

′
g

)
, (24)

where we have used Eq. (22) in the last inequality. Assembling Eq. (23) and Eq. (24) into Eq. (16),
we have:

|E[y|x]− ḡ(x)| 6 E[µ>µ]B′2f−1

(
B′log pB

′
g +

1

2
B′′g +

3

2
dB′f−1B′′fB

′
g

)
. (25)

So given the condition (iii), this residual can be neglected.

(2) Bounding |p(x)− (p̄zV)(x)| 6 1
2E[µ>µ]|p̄zV |

(
‖∇ log p̄zV ‖

2
2 +

∥∥∇∇> log p̄z
∥∥

2
+∥∥∇∇> log V

∥∥
2

)
from Eq. (15).

23

To begin with, for any x, p̄z(x) = pz(f
−1(x)) 6 Bp, and V (x) =

∣∣Jf−1(x)
∣∣ is the product of

absolute eigenvalues of Jf−1(x). Since
∥∥Jf−1(x)

∥∥
2

is the largest absolute eigenvalue of Jf−1(x), so

V (x) 6
∥∥Jf−1(x)

∥∥d
2
6 B′df−1 .

For the first norm in the bracket of the r.h.s of Eq. (15), we have:

‖∇ log p̄zV ‖
2
2 = ‖∇ log p̄z‖

2
2 + 2(∇ log p̄z)

>∇ log V + ‖∇ log V ‖22
6 ‖∇ log p̄z‖

2
2 + 2‖∇ log p̄z‖2‖∇ log V ‖2 + ‖∇ log V ‖2

6 B′2f−1B′2log p + 2dB′3f−1B′′fB
′
log p + ‖∇ log V ‖22, (26)

where we have utilized Eq. (17) and Eq. (21) in the last inequality. We consider bounding ‖∇ log V ‖22
separately. Using Eq. (20) (in the second equality below), we have:

‖∇ log V ‖22 =
∣∣(∇ log V)>(∇ log V)

∣∣ =
∣∣∣∑
c

(Kc
:c)
>
∑
d

Kd
:d

∣∣∣
=
∣∣∣∑
cd

Kc
c:K

d
:d

∣∣∣ 6∑
cd

∣∣Kc
c:K

d
:d

∣∣
=
∑
cd

∣∣∣(Jf−1)c:(∇∇>fc)J>f−1Jf−1(∇∇>fd)(Jf−1)>d:

∣∣∣
6
∑
cd

∣∣(Jf−1)c:(Jf−1)>d:

∣∣∥∥∥(∇∇>fc)J>f−1Jf−1(∇∇>fd)
∥∥∥

2

6
∑
cd

∣∣(Jf−1)c:(Jf−1)>d:

∣∣B′2f−1B′′2f = B′2f−1B′′2f
∑
cd

∣∣∣(Jf−1J>f−1)cd

∣∣∣
6 d3/2B′2f−1B′′2f

∥∥∥Jf−1J>f−1

∥∥∥
2
6 d3/2B′4f−1B′′2f , (27)

where we have used the facts for general matrix A and (column) vectors α, β that∣∣α>Aβ∣∣ =
∥∥α(Aβ)>

∥∥
2

=
∥∥αβ>A>∥∥

2
6
∥∥αβ>∥∥

2
‖A‖2 =

∣∣α>β∣∣‖A‖2 (28)

in the fifth last inequality, and that∑
cd

|Acd| 6
√
d2

√∑
cd

|Acd|2 = d‖A‖F 6 d3/2‖A‖2 (29)

in the second last inequality. Substituting Eq. (27) into Eq. (26), we have:

‖∇ log p̄zV ‖
2
2 6 B′2f−1B′2log p + 2dB′3f−1B′′fB

′
log p + d3/2B′4f−1B′′2f . (30)

For the second norm in the bracket of the r.h.s of Eq. (15), similar to Eq. (24), we have:∥∥∇∇> log p̄z
∥∥

2
6 B′2f−1

(
B′′log p + dB′f−1B′′fB

′
log p

)
. (31)

The third norm
∥∥∇∇> log V

∥∥
2

in the bracket of the r.h.s of Eq. (15) needs some more effort. From
Eq. (20), we have ∂b log V = −

∑
cij(Jf−1)ci(∂i∂jfc)(Jf−1)bj , thus

∂a∂b log V = −
∑
cij

∂a(Jf−1)ci(∂i∂jfc)(Jf−1)bj −
∑
cij

(Jf−1)ci(∂i∂jfc)∂a(Jf−1)bj

−
∑
cij

(Jf−1)ci∂a(∂i∂jfc)(Jf−1)bj

= −
∑
cij

(∂a∂cf
−1
i)(∂i∂jfc)(Jf−1)bj −

∑
cij

(Jf−1)ci(∂i∂jfc)(∂a∂bf
−1
j)

−
∑
cijk

(Jf−1)ci(∂af
−1
k)(∂k∂i∂jfc)(Jf−1)bj

24

=
∑
cijd

(Jf−1)diK
d
ac(∂i∂jfc)(J−1)bj +

∑
cijd

(Jf−1)ci(∂i∂jfc)(Jf−1)djK
d
ab

−
∑
cijk

(Jf−1)ci(∂k∂i∂jfc)(Jf−1)ak(Jf−1)bj

=
∑
cd

Kd
acK

c
db +

∑
cd

Kc
cdK

d
ab −

∑
cijk

(Jf−1)ci(∂k∂i∂jfc)(Jf−1)ak(Jf−1)bj ,

where we have used Eq. (19) in the third equality for the first two terms. In matrix form, we have:

∇∇> log V =
∑
cd

Kd
:cK

c
d: +

∑
cd

Kc
cdK

d −
∑
cijk

(Jf−1)ci(∂k∂i∂jfc)(Jf−1):k(Jf−1)>:j .

We now bound the norms of the three terms in turn. For the first term,∥∥∥∑
cd

Kd
:cK

c
d:

∥∥∥
2
6
∑
cd

∥∥Kd
:cK

c
d:

∥∥
2

=
∑
cd

∣∣Kc
d:K

d
:c

∣∣
=
∑
cd

∣∣∣(Jf−1)d:(∇∇>fc)J>f−1Jf−1(∇∇>fd)(Jf−1)>c:

∣∣∣
6
∑
cd

∣∣(Jf−1)d:(Jf−1)>c:
∣∣∥∥∥(∇∇>fc)J>f−1Jf−1(∇∇>fd)

∥∥∥
2

6 B′2f−1B′′2f
∑
cd

∣∣∣(Jf−1J>f−1)dc

∣∣∣ 6 d3/2B′2f−1B′′2f

∥∥∥Jf−1J>f−1

∥∥∥
2

6 d3/2B′4f−1B′′2f , (32)

where we have used Eq. (28) in the fourth last inequality and Eq. (29) in the second last inequality.
For the second term,∥∥∥∑

cd

Kc
cdK

d
∥∥∥

2
6
∑
cd

|Kc
cd|
∥∥Kd

∥∥
2
6 B′2f−1B′′f

∑
cd

|Kc
cd|

6 d1/2B′2f−1B′′f
∑
c

√∑
d

|Kc
cd|

2
= d1/2B′2f−1B′′f

∑
c

‖Kc
c:‖2

6 d1/2B′2f−1B′′f
∑
c

∥∥(Jf−1)c:
∥∥

2

∥∥∥(∇∇>fc)J>f−1

∥∥∥
2
6 d1/2B′3f−1B′′2f

∑
c

∥∥(Jf−1)c:
∥∥

2

6 d3/2B′4f−1B′′2f , (33)

where we have used Eq. (22) in the last inequality. For the third term,∥∥∥∑
cijk

(Jf−1)ci(∂k∂i∂jfc)(Jf−1):k(Jf−1)>:j

∥∥∥
2

6
∑
cijk

∣∣(Jf−1)ci(∂k∂i∂jfc)
∣∣∥∥(Jf−1):k(Jf−1)>:j

∥∥
2
6 B′′′f

∑
ci

∣∣(Jf−1)ci
∣∣∑
jk

∥∥(Jf−1):k(Jf−1)>:j
∥∥

2

6 d3/2B′′′f
∥∥Jf−1

∥∥
2

∑
jk

∣∣(Jf−1)>:k(Jf−1):j

∣∣ 6 d3/2B′′′f B
′
f−1

∑
jk

∣∣∣(J>f−1Jf−1)kj

∣∣∣
6 d3B′′′f B

′
f−1

∥∥∥J>f−1Jf−1

∥∥∥
2
6 d3B′′′f B

′3
f−1 , (34)

where we have used Eq. (29) in the fourth last and second last inequalities.

Finally, by assembling Eqs. (30, 31, 32, 33, 34) into Eq. (15), we have:

|p(x)− (p̄zV)(x)| 6 1

2
E[µ>µ]BpB

′d
f−1

(
B′2f−1B′2log p + 2dB′3f−1B′′fB

′
log p + d3/2B′4f−1B′′2f

+B′2f−1(B′′log p + dB′f−1B′′fB
′
log p) + 2d3/2B′4f−1B′′2f + d3B′′′f B

′3
f−1

)
=

1

2
E[µ>µ]BpB

′d+2
f−1

(
B′2log p +B′′log p + 3dB′f−1B′′fB

′
log p

+ 3d3/2B′2f−1B′′2f + d3B′′′f B
′
f−1

)
.

25

So given the condition (iii), this residual can be neglected.

A.3 Proof of the OOD Generalization Error Bound Thm. 6

We give the following more detailed version of Thm. 6 and prove it. The theorem in the main context
corresponds to conclusion (ii) below (i.e., Eq. (38) below recovers Eq. (6)), by taking the CSGs
p′, p and p̃, as the semantic-identified CSG p on the training domain, and the ground-truth CSGs
p∗ and p̃∗ on the training and test domains, respectively. In the theorem in the main context, the
semantic-identification requirement on the learned CSG p is to guarantee that it is semantic-equivalent
to the ground-truth CSG p∗ on the training domain, so that the condition in conclusion (ii) below is
satisfied.

Theorem 6’ (OOD generalization error). Let Assumption 3 hold. (i) Consider two CSGs p and p̃ that
share the same generative mechanisms p(x|s, v) and p(y|s) but have different priors ps,v and p̃s,v.
Then up to O(σ2

µ) where σ2
µ := E[µ>µ], we have for any x ∈ supp(px) ∩ supp(p̃x),∣∣∣E[y|x]− Ẽ[y|x]
∣∣∣ 6 σ2

µ‖∇g‖2
∥∥Jf−1

∥∥2

2

∥∥∇ log(ps,v/p̃s,v)
∥∥

2

∣∣∣
(s,v)=f−1(x)

, (35)

where Jf−1 is the Jacobian of f−1. Further assume that the bounds B’s defined in Thm. 5’(iii) hold.
Then the error is negligible for any x ∈ supp(px) ∩ supp(p̃x) if 1

σ2
µ
� B′log pB

′
gB
′2
f−1 , and:

Ep̃(x)

∣∣∣E[y|x]− Ẽ[y|x]
∣∣∣2 6 σ4

µB
′2
g B
′4
f−1Ep̃s,v

∥∥∇ log(ps,v/p̃s,v)
∥∥2

2

= σ4
µB
′2
g B
′4
f−1Ep̃s,v [2∆ log ps,v −∆ log p̃s,v + ‖∇ log ps,v‖22] (36)

if supp(px) = supp(p̃x), where ∆ denotes the Laplacian operator.

(ii) Let p′ be a CSG that is semantic-equivalent to the CSG p introduced in (i). Then up to O(σ2
µ), we

have for any x ∈ supp(p′x) ∩ supp(p̃x),∣∣∣E′[y|x]− Ẽ[y|x]
∣∣∣ 6 σ2

µ‖∇g′‖2
∥∥Jf ′−1

∥∥2

2

∥∥∇ log(p′s,v/p̃
′
s,v)
∥∥

2

∣∣∣
(s,v)=f ′−1(x)

, (37)

where p̃′s,v := Φ#[p̃s,v] is the prior of CSG p̃ under the parameterization of CSG p′, derived as the
pushed-forward distribution by the reparameterization Φ := f ′−1 ◦ f from p to p′. Similarly,

Ep̃(x)

∣∣∣E′[y|x]− Ẽ[y|x]
∣∣∣2 6 σ4

µB
′2
g B
′4
f−1Ep̃′s,v

∥∥∇ log(p′s,v/p̃
′
s,v)
∥∥2

2
(38)

= σ4
µB
′2
g B
′4
f−1Ep̃′s,v [2∆ log p′s,v −∆ log p̃′s,v +

∥∥∇ log p′s,v
∥∥2

2
]. (39)

In the expected OOD generalization error in Eqs. (36, 39), the term Ep̃s,v [2∆ log ps,v −∆ log p̃s,v +

‖∇ log ps,v‖22] is actually the score matching objective (Fisher divergence) [47] that measures the
difference between p̃s,v and ps,v . For Gaussian priors p(s, v) = N (0,Σ) and p̃(s, v) = N (0, Σ̃), the

term reduces to the matrix trace, tr(−2Σ−1 + Σ̃
−1

+ Σ−1Σ̃Σ−1). For Σ = Σ̃, the term vanishes.

For conclusion (ii), note that since p and p′ are semantic-equivalent, we have p′x = px and E′[y|x] =
E[y|x] (from Lemma 9). So Eqs. (35, 37) and Eqs. (36, 39) bound the same quantity. Equation (37)
expresses the bound using the structures of the CSG p′. It is considered since recovering the exact
CSG p from (x, y) data is impractical and we can only learn a CSG p′ that is semantic-equivalent to
p.

Proof. Following the proof A.2 of Thm. 5’, we assume the additive noise variables µ and ν (for
continuous y) have zero mean without loss of generality, and we denote z := (s, v).

Proof under condition (i). Under the assumptions, we have Eq. (14) in the proof A.2 of Thm. 5’
hold. Noting that the two CSGs share the same ḡ and V (since they share the same p(x|s, v) and
p(y|s) thus f and g), we have for any x ∈ supp(px) ∩ supp(p̃x),

E[y|x] = ḡ +
1

2
Ep(µ)

[
µ>
(
(∇ log p̄zV)∇ḡ> +∇ḡ(∇ log p̄zV)> +∇∇>ḡ

)
µ
]

+O(σ3
µ),

Ẽ[y|x] = ḡ +
1

2
Ep(µ)

[
µ>
(
(∇ log ¯̃pzV)∇ḡ> +∇ḡ(∇ log ¯̃pzV)> +∇∇>ḡ

)
µ
]

+O(σ3
µ), (40)

26

where we have similarly defined ¯̃pz := p̃z ◦ f−1. By subtracting the two equations, we have that up
to O(σ2

µ),∣∣∣E[y|x]− Ẽ[y|x]
∣∣∣ =

1

2

∣∣∣Ep(µ)

[
µ>
(
∇ log(p̄z/ ¯̃pz)∇ḡ> +∇ḡ∇ log(p̄z/ ¯̃pz)

>)µ]∣∣∣
6

1

2
Ep(µ)

[∣∣µ>(∇ log(p̄z/ ¯̃pz)∇ḡ> +∇ḡ∇ log(p̄z/ ¯̃pz)
>)µ∣∣]

6
1

2
Ep(µ)

[
‖µ‖22

(∥∥∇ log(p̄z/ ¯̃pz)∇ḡ>
∥∥

2
+
∥∥∇ḡ∇ log(p̄z/ ¯̃pz)

>∥∥
2

)]
=
∣∣∇ḡ>∇ log(p̄z/ ¯̃pz)

∣∣E[µ>µ]. (41)

The multiplicative factor to E[µ>µ] on the right hand side can be further bounded by:∣∣∇ḡ>∇ log(p̄z/ ¯̃pz)
∣∣ =

∣∣(J(f−1)S∇g)>(Jf−1∇ log(pz/p̃z))
∣∣

=
∣∣∣∇g>J>(f−1)SJf−1∇ log(pz/p̃z)

∣∣∣
=
∣∣∣((∇g)>, 0>dV)J>f−1Jf−1∇ log(pz/p̃z)

∣∣∣
6 ‖∇g‖2

∥∥Jf−1

∥∥2

2
‖∇ log(pz/p̃z)‖2, (42)

where∇g and ∇ log(pz/p̃z) are evaluated at z = f−1(x). This gives:∣∣∣E[y|x]− Ẽ[y|x]
∣∣∣ 6 σ2

µ‖∇g‖2
∥∥Jf−1

∥∥2

2
‖∇ log(pz/p̃z)‖2,

i.e. Eq. (35) in conclusion (i). When the bounds B’s in Thm. 5’(iii) hold, we further have:∣∣∣E[y|x]− Ẽ[y|x]
∣∣∣ 6 σ2

µ‖∇g‖2
∥∥Jf−1

∥∥2

2
‖∇ log pz −∇ log p̃z‖2

6 σ2
µ‖∇g‖2

∥∥Jf−1

∥∥2

2
(‖∇ log pz‖2 + ‖∇ log p̃z‖2)

6 2σ2
µB
′
gB
′2
f−1B′log p.

So when 1
σ2
µ
� B′log pB

′
gB
′2
f−1 , this difference is negligible for any x ∈ supp(px) ∩ supp(p̃x).

We now turn to the expected OOD generalization error Eq. (36) in conclusion (i). When supp(px) =
supp(p̃x), Eq. (35) hold on p̃x. Together with the bounds in Thm. 5’(iii), we have:

Ep̃(x)

∣∣∣E[y|x]− Ẽ[y|x]
∣∣∣2 6 σ4

µB
′2
g B
′4
f−1Ep̃(x)

∥∥∥∇ log(pz/p̃z)
∣∣
z=f−1(x)

∥∥∥2

2

= σ4
µB
′2
g B
′4
f−1Ep̃z‖∇ log(pz/p̃z)‖

2
2,

where the equality holds due to the generating process of the model. Note that the term
Ep̃z‖∇ log(pz/p̃z)‖

2
2 therein is the score matching objective (Fisher divergence). By Hyvärinen [47,

Thm. 1], we can reformulate it as Ep̃z [2∆ log pz −∆ log p̃z + ‖∇ log pz‖22], so we have:

Ep̃(x)

∣∣∣E[y|x]− Ẽ[y|x]
∣∣∣2 6 σ4

µB
′2
g B
′4
f−1Ep̃z [2∆ log pz −∆ log p̃z + ‖∇ log pz‖22].

Proof under condition (ii). From Eq. (14) in the proof A.2 of Thm. 5’, we have for CSG p′ that
for any x ∈ supp(p′x) or equivalently x ∈ supp(px),

E′[y|x] = ḡ′ +
1

2
Ep(µ)

[
µ>
(
(∇ log p̄′zV

′)∇ḡ′>+∇ḡ′(∇ log p̄′zV
′)>+∇∇>ḡ′

)
µ
]

+O(σ3
µ), (43)

where we have similarly defined p̄′z := p′z ◦ f ′−1 and ḡ′ := g′ ◦ (f ′−1)S . Since p and p′ are
semantic-equivalent with reparameterization Φ from p to p′, we have p(y|s) = p′(y|ΦS(s, v))
thus g(s) = g′(ΦS(s, v)) for any v ∈ V . So for any x ∈ supp(px) or equivalently x ∈
supp(p′x), we have g((f−1)S(x)) = g′(ΦS((f−1)S(x), (f−1)V(x))) = g′(ΦS(f−1(x))) =
g′((f ′−1)S(f(f−1(x)))) = g′((f ′−1)S(x)), i.e., ḡ = ḡ′. For another fact, since p̃′z := Φ#[p̃z] =

(f ′−1 ◦ f)#[p̃z] by definition, we have f ′#[p̃′z] = f#[p̃z], i.e., ¯̃p
′
zV
′ = ¯̃pzV . Subtracting Eqs. (43, 40)

and applying these two facts, we have up to O(σ2
µ), for any x ∈ supp(p′x) ∩ supp(p̃x),∣∣∣E′[y|x]− Ẽ[y|x]

∣∣∣ =
1

2

∣∣∣Ep(µ)

[
µ>
(
∇ log(p̄′z/ ¯̃p

′
z)∇ḡ′> +∇ḡ′∇ log(p̄′z/ ¯̃p

′
z)
>)µ]∣∣∣

27

6
∣∣∣∇ḡ′>∇ log(p̄′z/ ¯̃p

′
z)
∣∣∣E[µ>µ],

where the inequality follows Eq. (41). Using a similar result of Eq. (42), we have:∣∣∣E′[y|x]− Ẽ[y|x]
∣∣∣ 6 σ2

µ‖∇g′‖2
∥∥Jf ′−1

∥∥2

2

∥∥∇ log(p′z/p̃
′
z)
∥∥

2
,

where ∇g′ and ∇ log(p′z/p̃
′
z) are evaluated at z = f ′−1(x). This gives Eq. (37). Derivation of

Eqs. (38, 39) is similar as in conclusion (i).

A.4 Proof of the Domain Adaptation Error Thm. 7

To be consistent with the notation in the proofs, we prove the theorem by denoting the semantic-
identified CSG p and the ground-truth CSG p̃∗ on the test domain as p′ and p̃, respectively.

Proof. The new prior p̃′(z) is learned by fitting unsupervised data from the test domain p̃(x).
Applying the deduction in the proof A.2 of Thm. 5’ to the test domain, we have that under any
of the three conditions in Thm. 5’, p̃(x) = p̃′(x) indicates f#[p̃z] = f ′#[p̃′z]. This gives p̃′z =

(f ′−1 ◦ f)#[p̃z] = Φ#[p̃z].

From Eq. (12) in the same proof, we have that:

p̃(x)Ẽ[y|x] = (f#[gp̃z] ∗ pµ)(x) = ((f#[p̃z]ḡ) ∗ pµ)(x),

p̃′(x)Ẽ
′
[y|x] = (f ′#[g′p̃′z] ∗ pµ)(x) = ((f ′#[p̃′z]ḡ

′) ∗ pµ)(x).

From the proof A.3 of Thm. 6’(ii) (the paragraph under Eq. (43)), the semantic-equivalence between
CSGs p and p′ indicates that ḡ = ḡ′. So from the above two equations, we have p̃(x)Ẽ[y|x] =

p̃′(x)Ẽ
′
[y|x] (recall that p̃(x) = p̃′(x) indicates f#[p̃z] = f ′#[p̃′z]). Since p̃(x) = p̃′(x) (that is how

p̃′z is learned), we have for any x ∈ supp(p̃x) or equivalently x ∈ supp(p̃′x),

Ẽ
′
[y|x] = Ẽ[y|x]. (44)

B Alternative Identifiability Theory for CSG
The presented identifiability theory, particularly Thm. 5, shows that the semantic-identifiability can
be achieved in the deterministic limit (1

σ2
µ
→∞), but does not quantitatively describe the extent of

violation of the identifiability for a finite variance σ2
µ. Here we define a “soft” version of semantic-

equivalence and show that it can be achieved with a finite variance, with a trade-off between the
“softness” and the variance.

Definition 15 (δ-semantic-dependency). For δ > 0 and two CSGs p and p′, we say that they are
δ-semantic-dependent, if there exists a homeomorphism Φ on S × V such that: (i) p(x|s, v) =
p′(x|Φ(s, v)), (ii) supv∈V

∥∥g(s)− g′(ΦS(s, v))
∥∥

2
6 δ where we have denoted g(s) := E[y|s], and

(iii) supv(1),v(2)∈V
∥∥ΦS(s, v(1))− ΦS(s, v(2))

∥∥
2
6 δ.

In the definition, we have released the prior conversion requirement, and relaxed the exact likelihood
conversion for p(y|s) in (ii) and the v-constancy of ΦS in (iii) to allow an error bounded by δ. When
δ = 0, the v-constancy of ΦS is exact, and under the additive noise Assumption 3 we also have the
exact likelihood conversion p(y|s) = p′(y|ΦS(s, v)) for any v ∈ V . So 0-semantic-dependency with
the prior conversion requirement reduces to the semantic-equivalence.

Due to the quantitative nature, the binary relation cannot be made an equivalence relation but only a
dependency. Here, a dependency refers to a binary relation with reflexivity and symmetry, but no
transitivity.

Proposition 16. The δ-semantic-dependency is a dependency relation if the function g := E[y|s] is
bijective and its inverse g−1 is 1

2 -Lipschitz.

Proof. Showing a dependency relation amounts to showing the following two properties.

• Reflexivity. For two identical CSGs p and p′, we have p(x|s, v) = p′(x|s, v) and p(y|s) =
p′(y|s). So the identity map as Φ obviously satisfies all the requirements in Def. 15.

28

• Symmetry. Let CSG p be δ-semantic-dependent to CSG p′ with homeomorphism Φ. Ob-
viously Φ−1 is also a homeomorphism. For any (s′, v′) ∈ S × V , we have p′(x|s′, v′) =
p′(x|Φ(Φ−1(s′, v′))) = p(x|Φ−1(s′, v′)), and

∥∥g′(s′)− g((Φ−1)S(s′, v′))
∥∥

2
=∥∥g′(ΦS(s, v))− g(s)

∥∥
2
6 δ where we have denoted (s, v) := Φ−1(s′, v′) here. So Φ−1

satisfies requirements (i) and (ii) in Def. 15.
For requirement (iii), we need the following fact: for any s(1), s(2) ∈ S,

∥∥s(1) − s(2)
∥∥

2
=∥∥g−1(g(s(1)))− g−1(g(s(2)))

∥∥
2

6 1
2

∥∥g(s(1))− g(s(2))
∥∥

2
, where the inequality holds

since g−1 is 1
2 -Lipschitz. Then for any s′ ∈ S, we have:

sup
v′(1),v′(2)∈V

∥∥∥(Φ−1)S(s′, v′(1))− (Φ−1)S(s′, v′(2))
∥∥∥

2

6 sup
v′(1),v′(2)∈V

1

2

∥∥∥g((Φ−1)S(s′, v′(1))
)
− g
(
(Φ−1)S(s′, v′(2))

)∥∥∥
2

= sup
v′(1),v′(2)∈V

1

2

∥∥∥(g((Φ−1)S(s′, v′(1))
)
− g′(s′)

)
−
(
g
(
(Φ−1)S(s′, v′(2))

)
− g′(s′)

)∥∥∥
2

6 sup
v′(1),v′(2)∈V

1

2

(∥∥∥g((Φ−1)S(s′, v′(1))
)
− g′(s′)

∥∥∥
2

+
∥∥∥g((Φ−1)S(s′, v′(2))

)
− g′(s′)

∥∥∥
2

)
=

1

2

(
sup

v′(1)∈V

∥∥∥g((Φ−1)S(s′, v′(1))
)
− g′(s′)

∥∥∥
2

+ sup
v′(2)∈V

∥∥∥g((Φ−1)S(s′, v′(2))
)
− g′(s′)

∥∥∥
2

)
6 δ,

where in the last inequality we have used the fact that Φ−1 satisfies requirement (ii). So p′
is δ-semantic-dependent to p via the homeomorphism Φ−1.

The corresponding δ-semantic-identifiability result follows.
Theorem 17 (δ-semantic-identifiability). Assume the same as Thm. 5’ and Prop. 16, and let the
bounds B’s defined in Thm. 5’(iii) hold. For two such CSGs p and p′, if they have p(x, y) = p′(x, y),
then they are δ-semantic-dependent for any δ > σ2

µB
′2
f−1

(
2B′log pB

′
g +B′′g + 3dB′f−1B′′fB

′
g

)
, where

d := dS + dV .

Proof. Let Φ := f ′−1 ◦ f , where f and f ′ are given by the two CSGs p and p′ via the additive noise
Assumption 3. We now show that p and p′ are δ-semantic-dependent via this Φ for any δ in the
theorem. Obviously Φ is a homeomorphism on S × V , and it satisfies requirement (i) in Def. 15 by
construction due to Eq. (7) in the proof A.2 of Thm. 5’.

Consider requirement (ii) in Def. 15. Based on the same assumptions as Thm. 5’, we have Eq. (25)
hold for both CSGs:

max{‖E[y|x]− ḡ(x)‖2, ‖E
′[y|x]− ḡ′(x)‖2} 6 σ2

µB
′2
f−1

(
B′log pB

′
g +

1

2
B′′g +

3

2
dB′f−1B′′fB

′
g

)
,

where we have denoted σ2
µ := E[µ>µ]. Since both CSGs induce the same p(y|x), so E[y|x] =

E′[y|x]. This gives:
‖ḡ(x)− ḡ′(x)‖2 =

∥∥(E′[y|x]− ḡ′(x)
)
−
(
E[y|x]− ḡ(x)

)∥∥
2

6 ‖E′[y|x]− ḡ′(x)‖2 + ‖E[y|x]− ḡ(x)‖2
6 σ2

µB
′2
f−1

(
2B′log pB

′
g +B′′g + 3dB′f−1B′′fB

′
g

)
.

So for any (s, v) ∈ S × V , by denoting x := f(s, v), we have:∥∥g(s)− g′(ΦS(s, v))
∥∥

2
=
∥∥g((f−1)S(x))− g′((f ′−1)S(f(s, v)))

∥∥
2

= ‖ḡ(x)− ḡ′(x)‖2
6 σ2

µB
′2
f−1

(
2B′log pB

′
g +B′′g + 3dB′f−1B′′fB

′
g

)
.

So the requirement is satisfied.

For requirement (iii), note from the proof of Prop. 16 that when g is bijective and its inverse is
1
2 -Lipschitz, requirement (ii) implies requirement (iii). So this Φ is a homeomorphism that makes p
δ-semantic-dependent to p′ for any δ > σ2

µB
′2
f−1

(
2B′log pB

′
g +B′′g + 3dB′f−1B′′fB

′
g

)
.

29

Note that although the δ-semantic-dependency does not have transitivity, the above theorem is still
informative: for any two CSGs sharing the same data distribution, particularly for a well-learned CSG
p and the ground-truth CSG p∗, the likelihood conversion error sup(s,v)∈S×V

∥∥g(s)− g′(ΦS(s, v))
∥∥

2
,

and the degree of mixing v into s, measured by supv(1),v(2)∈V
∥∥ΦS(s, v(1))− ΦS(s, v(2))

∥∥
2
, are

bounded by σ2
µB
′2
f−1

(
2B′log pB

′
g +B′′g + 3dB′f−1B′′fB

′
g

)
.

C More Explanations on the Model

Explanations on our model. We see the data generating process as coming up with a conceptual
latent factors (s, v) first, and then generating both x and y based on the factors. A prototyping
example is that a photographer takes an image x of an object and meanwhile gives a label y to it,
based on conceptual features (s, v) in the scene (e.g., shape, color, texture, orientation and pose of the
object, background objects and environment, illumination during imaging). The image x is produced
by assembling these factors (s, v) in the scene and passing the reflected light through a camera, and
the label y is produced by processing causally relevant factors s (e.g., object shape, texture) by the
photographer. Under this view, intervening the image x is to break the imaging process (e.g., by
malfunctioning the camera by breaking a sensor unit or making the sensor noisy), which does not
alter the latent factors (s, v) and the labeling process, hence also the label y. Similarly, intervening
the label y is to break the labeling process (e.g., by reforming the labeling rule or randomly flipping
the labels), which does not alter the latent factors (s, v) and the imaging process, hence also the
image x. On the other hand, intervening the latent factors (s, v) (e.g., by replacing the object with a
different one at the imaging and labeling moment) may change both x and y through the imaging and
labeling processes. This verifies the model in Fig. 1a by checking its causal implications.

This view of the data generating process is also adopted and promoted by popular existing works.
Mcauliffe and Blei [78] treat both a document and its label be generated by the involved topics in
the document (represented as a topic proportion), which is an abstract latent factor. Peters et al. [88,
Sec. 1.4]; Kilbertus et al. [59] view the generation of an OCR dataset under a causal perspective as
the writer first comes up with an intension to write a character, and then writes down the character
and gives its label based on the intension. Teshima et al. [108] treat both an image and its label be
produced from a set of latent factors. This view of the data generating process is also natural for
medical image datasets, where the label may be diagnosed based on more fundamental features (e.g.,
PCR test results showing the pathogen) that are not included in the dataset but actually cause the
medical image.

On the labeling process from images that one would commonly think of, we also view it as a s→ y
process. Human directly knows the critical semantic feature s (e.g., the shape and position of each
stroke) by seeing the image, through the nature gift of the vision system [12]. The label is given by
processing the feature (e.g., the angle between two linear strokes, the position of a circular stroke
relative to a linear stroke), which is a s→ y process.

The causal graph in Fig. 1a implies that x ⊥⊥ y | s. However, this does not indicate that the semantic
factor s generates an image x regardless of the label y. Given s, the generated image is dictated to
hold the given semantics regardless of randomness, so the statistical independence does not mean
semantic irrelevance. If an image x is given, the corresponding label is given by p(y|x), which is∫
p(s|x)p(y|s) ds by the causal graph. So the semantic concept to cause the label through p(y|s), is

inferred from the image through p(s|x).

Comparison with the graph ytx → s→ x→ yrx. One may consider this graph as a communica-
tion channel, where ytx is a transmitted signal and yrx is the received signal.

If the observed label y is treated as ytx, the graph then implies y → s. This is argued at the end of
item (2) in Sec. 3 that it may make unreasonable implications. Moreover, the graph also implies
that y is a cause of x, as is challenged in item (1) in Sec. 3. The unnatural implications arise since
intervening y is different from intervening the “ground-truth” label. We consider y as an observation
that may be noisy, while the “ground-truth label” is never observed: one cannot tell if the labels at
hand are noise-corrupted, based on the dataset alone. For example, the label of either image in Fig. 2
may be given by a labeler’s random guess. Our adopted causal direction s → y is consistent with
these examples and is also argued and adopted by Mcauliffe and Blei [78]; Peters et al. [88, Sec. 1.4];
Kilbertus et al. [59]; Teshima et al. [108].

30

If the observed label y is treated as yrx, the graph then implies x→ y, as is challenged in item (1)
in Sec. 3. It is also argued by Schölkopf et al. [97]; Peters et al. [88, Sec. 1.4]; Kilbertus et al. [59].
Treating the observed label y as yrx and ytx as the “ground-truth” label may be the motivation of this
graph. But the graph implies ytx ⊥⊥ yrx | x, that is, p(ytx|x, yrx) = p(ytx|x) and p(yrx|x, ytx) =
p(yrx|x). So modeling ytx (resp. yrx) does not benefit predicting yrx (resp. ytx) from x.

D More Related Work

Generative supervised learning is not new [78, 63], but most works do not consider the encoded
causality. Other works consider solving causality tasks, notably causal/treatment effect estimation [76,
118, 114]. The task does not focus on OOD prediction, and requires labels for both treated and
controlled groups.

Causality with latent variable has been considered in a rich literature [111, 105, 92, 45, 103], while
most works focus on the consequence on observation-level causality. Others consider identifying
the latent variable. Janzing et al. [51], Lee et al. [68] show the identifiability under additive noise
or similar assumptions. For discrete data, a “simple” latent variable can be identified under various
specifications [52, 99, 64]. Romeijn and Williamson [94] consider using interventional datasets
for identification. Over these works, we step further to separate and identify the latent variable as
semantic and variation factors, and show the benefit for OOD prediction.

E Relation to Existing Domain Adaptation Theory
In this section, to align with the domain adaptation (DA) literature, we call “training/test domain” as
“source/target domain”, and use p(x, y) and p̃(x, y) to denote the underlying data-generating distribu-
tions p∗(x, y) and p̃∗(x, y) on the source and target domains, respectively. In a DA task, supervised
data from p(x, y) on the source domain are available, but on the target domain, only unsupervised
data from p̃(x) =

∫
p̃(x, y) dy 15 are available. The goal is to find a labeling function h : X → Y

within a hypothesis space H that minimizes the target-domain risk R̃(h) := Ep̃(x,y)[`(h(x), y)]
defined by a loss function ` : Y × Y → R.

General DA theory Since p̃(x, y) is not accessible, it is of practical interest to consider the source-
domain risk R(h) and investigate its relation to R̃(h). Ben-David et al. [7, Thm. 1] give a bound
relating the two risks:

R̃(h) 6 R(h) + 2d1(px, p̃x)

+ min{Ep(x)[|h∗(x)− h̃
∗
(x)|],Ep̃(x)[|h∗(x)− h̃

∗
(x)|]}, (45)

where: d1(px, p̃x) := sup
X∈X

|px[X]− p̃x[X]|

is the total variation between the two distributions, X denotes the sigma-field on X , and h∗ ∈
argminh∈HR(h) and h̃

∗
∈ argminh̃∈H R̃(h̃) are the oracle labeling functions on the source and

target domains, respectively (e.g., h∗(x) = E[y|x] and h̃
∗
(x) = Ẽ[y|x] if supp(px) = supp(p̃x)).

Note that as oracle labeling functions, h∗ and h̃
∗

are two certain but not any risk minimizers. The
second and third terms on the r.h.s measure the domain difference in terms of the distribution on x and
the correspondence of y on x, respectively. Zhao et al. [125, Thm. 4.1] give a similar bound in the case
of binary classification Y = {0, 1}, in terms of the H̃-divergence dH̃ in place of the total variance d1,
which is defined as dH̃(px, p̃x) := supX∈XH̃

|px[X]− p̃x[X]|, where XH̃ := {h−1(1) : h ∈ H̃}
and H̃ := {sign(|h(x)− h′(x)| − t) : h, h′ ∈ H, t ∈ [0, 1]}.
Ben-David et al. [7] also argue that in this bound, the total variation d1 is overly strict (thus making
the bound unnecessarily loose) and hard to estimate from finite data samples, so they develop another
bound which is better known (7, Thm. 2; 54, Thm. 1) (only showing the asymptotic version here, i.e.,
omitting the estimation error from finite samples):

R̃(h) 6 R(h) + dH∆H(px, p̃x) + λH, (46)

15Under the general definition of an integral (e.g., Billingsley [13, p.211]), it also allows a discrete Y , in
which case dy is the counting measure and the integral reduces to a summation.

31

where: dH∆H(px, p̃x) := sup
h,h′∈H

∣∣Ep(x)[`(h(x), h′(x))]− Ep̃(x)[`(h(x), h′(x))]
∣∣,

λH := inf
h∈H

[
R(h) + R̃(h)

]
.

Here, dH∆H(px, p̃x) is called theH∆H-divergence measuring the difference between p(x) and p̃(x),
under the discriminative efficacy of the labeling function family H (thus not as strict as the total
variation d1), and λH is the ideal joint risk achieved byH measuring the richness or expressiveness
of H for the two prediction tasks. The H∆H-divergence dH∆H is also estimable from finite data
samples [7, Lemma 1]. Long et al. [73, Thm. 1] give a similar bound in terms of maximum mean
discrepancy (MMD) dK in place of dH∆H.

For successful adaptation, some assumptions on the unknown distribution p̃(x, y) are required. A
commonly adopted one is:

(covariate shift) h̃
∗
(x) = h∗(x) or p(y|x) = p̃(y|x),∀x ∈ supp(px, p̃x) := supp(px) ∪ supp(p̃x).

DA-DIR Domain-invariant representation (DIR) based DA methods (DA-DIR) [83, 5, 73, 33] aims
to learn a deterministic representation extractor η : X → S to some representation space S , in order
to achieve a domain-invariant representation:

(DIR) p(s) = p̃(s),where p(s) := η#[px](s) and p̃(s) := η#[p̃x](s)

are the representation distributions on the two domains. The motivation is that, once DIR is achieved,
the distribution difference term (the second term on the r.h.s) of bound Eq. (45) or Eq. (46) diminishes
on the representation space S. So the bound on S is then controlled by the source risk (the first
term), and driving h to let R(h) approach R(h∗) (i.e., to minimize the source risk R(h)) effectively
minimizes the target risk.

Let g : S → Y be a labeling function on the representation space S . The end-to-end labeling function
is then h = g ◦ η. Combining the two desiderata of achieving DIR and R(h∗), the typical objective
of DA-DIR is in the following form:

min
η∈E,g∈G

R(g ◦ η) + λd(η#[px], η#[p̃x]),

where d(·, ·) is a metric or discrepancy (d(q, p) > 0; d(q, p) = 0⇐⇒ q = p) on distributions, λ is a
weighting parameter, and E and G are the hypothesis spaces for η and g, respectively.

For the existence of the solution of this problem, Johansson et al. [54] consider the following
assumption:

(strong existence assumption) ∃η∗ ∈ E , g∗ ∈ G, s.t. η∗#[px] = η∗#[p̃x], g∗ ◦ η∗ = h∗.

They also mention that this is not guaranteed to hold in practice, since it is quite strong: both DIR
and R(h∗) can be simultaneously achieved.

Problem of DA-DIR Johansson et al. [54], Zhao et al. [125] give examples where even under the
strong assumption of both covariate shift and the strong existence assumption [54, Assumption 3],
simultaneously achieving both DIR and R(h∗) still leads the target risk R̃(g ◦ η) to the worst value.

We first analyze the problem through the lens of the above DA bounds. We will show that when
reducing the bounds on S , they can be uselessly large.

(1) For the bound Eq. (45). Applying the bound on the representation space S gives:

R̃(g ◦ η) 6 R(g ◦ η) + 2d1(η#[px], η#[p̃x])

+ min{Eη#[px](s)[|g∗η(s)− g̃∗η(s)|],Eη#[p̃x](s)[|g∗η(s)− g̃∗η(s)|]}, (47)

where g∗η and g̃∗η are the optimal labeling functions on top of the representation extractor η. It is
shown that under the assumption of covariate shift [8, 35] or additionally strong existence [54],
simultaneously achieving both DIR and R(h∗) is not sufficient to guarantee g∗η = g̃∗η, so the bound
may still be large.

In both examples of Johansson et al. [54] and Zhao et al. [125], the considered η, although achieving
both desiderata, is not η∗, and this η renders different optimal representation-level labeling functions
on the two domains: g∗η 6= g̃∗η, so the bound is still large. Johansson et al. [54] claim that it is

32

necessary to require η to be invertible to make g∗η = g̃∗η , and develop a bound (Thm. 2) that explicitly
shows the effect of the invertibility of η. The η functions in the examples are not invertible.

(2) For the bound Eq. (46). Applying the bound on the representation space S gives:
Ep̃(s,y)[`(g(s), y)] 6 Ep(s,y)[`(g(s), y)] + dG∆G(η#[px], η#[p̃x])

+ inf
g∈G

[
Ep̃(s,y)[`(g(s), y)] + Ep(s,y)[`(g(s), y)]

]
,

where ps,y := (η, idy)#[px,y] with idy : (x, y) 7→ y and similarly p̃s,y := (η, idy)#[p̃x,y]. Note that
Ep(s,y)[`(g(s), y)] = Ep(x,y)[`(g(η(x)), y)] = R(g ◦η) and similarly Ep̃(s,y)[`(g(s), y)] = R̃(g ◦η).

So the last term on the r.h.s becomes infg∈G

[
R̃(g ◦ η) +R(g ◦ η)

]
= λG◦η , where G ◦ η := {g ◦ η :

g ∈ G}, and the bound then reformulates to:

R̃(g ◦ η) 6 R(g ◦ η) + dG∆G(η#[px], η#[p̃x]) + λG◦η. (48)

This result is shown by Johansson et al. [54]. They argue that finding η that achieves both DIR and
R(h∗) simultaneously (with some g∗η) cannot guarantee a tighter bound since the last term λG◦η may
be very large.

In both examples of Johansson et al. [54] and Zhao et al. [125], it holds that supp(px)∩supp(p̃x) = ∅.
It may cause the problem that g◦η is very different from h∗ on supp(p̃x) even whenR(h∗) is achieved,
since R(g ◦ η) = R(h∗) only constraints the behavior of g ◦ η on supp(px). The developed bound
by Johansson et al. [54, Thm. 2] also explicitly shows the role of a support overlap, thus is called a
support-invertibility bound. They also give an example showing that DIR (particularly implemented
by minimizing MMD) is not necessary (“sometimes too strict”) for learning the shared/invariant
p(y|x).

The problem of DA-DIR is also studied under more modern bounds (3) (4) and arguments (5).

(3) A third bound. Zhao et al. [125] develop another bound for binary classification Y := {0, 1},
under the risk function R(h) := Ep(x)[|h∗(x) − h(x)|]. The bound is expressed in terms of the
JS distance [29] dJS(p, q) :=

√
JS(p, q), where JS(p, q) is the JS divergence, which is bounded:

0 6 JS(p, q) 6 1 16. It is shown that [125, Lemma 4.8]:

dJS(py, p̃y) 6 dJS(η#[px], η#[p̃x]) +
√
R(g ◦ η) +

√
R̃(g ◦ η).

If dJS(py, p̃y) > dJS(η#[px], η#[p̃x])17, the bound is given as [125, Thm. 4.3]:

R(g ◦ η) + R̃(g ◦ η) >
1

2

(
dJS(py, p̃y)− dJS(η#[px], η#[p̃x])

)2
, (49)

or when the two domains are allowed to have their own representation-level labeling functions g and
g̃, we have [125, Corollary 4.1]:

R(g ◦ η) + R̃(g̃ ◦ η) >
1

2

(
dJS(py, p̃y)− dJS(η#[px], η#[p̃x])

)2
. (50)

When p(y) 6= p̃(y), we have dJS(py, p̃y) > 0, so DIR, which minimizes dJS(η#[px], η#[p̃x]),
becomes harmful to minimizing the target risk R̃(g̃ ◦ η).

(4) Chuang et al. [23, Thm. 6] probe into the mysterious term λG◦η in the bound Eq. (48) and show
how it is affected by the complexity of E (the hypothesis space of η):

R̃(g ◦ η) 6 R(g ◦ η) + dG∆G(η#[px], η#[p̃x]) + dGE∆E (px, p̃x) + λG◦E(η), (51)

where: dGE∆E (px, p̃x) := sup
g∈G;η,η′∈E

∣∣Epx [`(g ◦ η, g ◦ η′)]− Ep̃x [`(g ◦ η, g ◦ η′)]
∣∣,

λG◦E(η) := inf
g′∈G,η′∈E

2R(g′ ◦ η) +R(g′ ◦ η′) + R̃(g′ ◦ η′).

16This bound is under the unit of bits, i.e., base 2 logarithm is used in the KL divergence defining the JS
divergence. Under the unit of nats, i.e., the natural logarithm ln is used, the bound becomes 0 6 JS(p, q) 6 ln 2.

17Unfortunately, it seems that the opposite direction of the inequality holds when there exist η∗ and g∗

(unnecessarily the ones in the strong existence assumption or Assumption 3 of Johansson et al. [54]) such that
py = (g∗ ◦ η∗)#[px] and p̃y = (g∗ ◦ η∗)#[p̃x] and that η is a reparameterization of η∗, due to the celebrated
data processing inequality.

33

Here, dG∆G(η#[px], η#[p̃x]) measures the representation distribution difference, dGE∆E (px, p̃x) mea-
sures the complexity of the representation-extractor family E w.r.t G [23, Def. 5], and λG◦E(η) is “a
variant of the best in-class joint risk”. For a given G, although a more expressive E lowers λG◦E(η)
and contains a more capable η to reduce dG∆G(η#[px], η#[p̃x]), such an E also incurs a larger
dGE∆E (px, p̃x), so there is a trade-off when choosing a proper E . Chuang et al. [23] illustrate this
trade-off by a toy example, and observe this trade-off in experiments. Similarly, there is also a trade-
off in the complexity of G (a more expressive G lowers λG◦E(η) but increases dG∆G(η#[px], η#[p̃x])
and dGE∆E (px, p̃x)), but Chuang et al. [23] find the performance of DA-DIR much less sensitive to it
empirically. They also point out the implication of this trade-off in choosing which layer in a neural
network as the representation (Prop. 7) with an empirical study.

Chuang et al. [23] also propose a method to estimate the target-domain performance (i.e., the OOD
generalization performance) in terms of R̃(h) of a supervised model h using a set of DA-DIR
models Ĥ∗. The method is supported by its Lemma 4:

∣∣∣R̃(h)− suph′∈Ĥ∗ Ep̃(x)[`(h(x), h′(x))]
∣∣∣ 6

suph′∈Ĥ∗ R̃(h′). The supremum on the l.h.s can be estimated using unsupervised data on the target
domain, and it is treated as an estimate to R̃(h) given that the r.h.s is believed to be small for DA-DIR
models Ĥ∗.
(5) Arjovsky et al. [2] point out that in the covariate shift case p(y|s) = p̃(y|s), achieving DIR
p(s) = p̃(s) implies p(y) = p̃(y) (since p(s)p(y|s) = p̃(s)p̃(y|s)). This may not hold in practice.
When it does not hold, the bound Eq. (49) shows that DIR may limit the target-domain performance.

Comparison with CSG The key feature of our CSG is that it is based on causal invariance. In most
of the above bounds, including Eqs. (45, 46) for general DA and Eqs. (47, 48, 49, 51) for DA-DIR,
the same labeling function h or g ◦ η is used in both domains (the risks R and R̃ on both domains
measure the same h or g ◦ η). So for successful adaptation, covariate shift (invariant h∗ or p(y|x)) is
a basic assumption, which implies inference invariance (invariant η∗ or p(s|x)) for DA-DIR. Yet, as
explained in Sec. 3.2, since the data at hand is produced from a certain mechanism of nature anyway,
the invariance in the causal generative direction p(x|s, v) is more fundamental and reliable than
covariate shift or inference invariance. The causal invariance allows p(s) 6= p̃(s) and subsequently a
difference in the inference direction: p(s|x) 6= p̃(s|x) or η∗ 6= η̃∗, and p(y|x) 6= p̃(y|x) or h∗ 6= h̃

∗
.

Following this new philosophy, CSG-ind and CSG-DA use a different inference and prediction rule in
the target domain, and Theorems 6 and 7 give OOD prediction guarantees for this different prediction
rule. This is in contrast to most existing DA methods and theory.

Another advantage of CSG is that it has an identifiability guarantee (Thm. 5). In the above analyses
(1) and (2), we see that the problem of DA-DIR arises since achieving both DIR and R(h∗) simulta-
neously cannot guarantee η = η∗ or g = g∗ or g ◦ η = h∗ on supp(px, p̃x), even in some sense of
semantic or performance equivalence. This is essentially an identifiability problem. CSG achieves
identifiability by fitting the entire data distribution p(x, y). In contrast, DA-DIR is not a generative
method, and only fits p(y|x). Although DA-DIR also seeks to achieve DIR, it is a weaker goal than
fitting p(x) (DIR cannot give p(x)). So DA-DIR does not fully exploit the data distribution p(x, y),
and identifiability is a problem even with the strong assumption of both covariate shift and the strong
existence assumption.

In terms of the considered quantity in the bounds, all the existing ones above bound the objective
of the target risk R̃(h) in terms of the accessible source risk R(h) for an arbitrary labeling function
h, while our bound Eq. (36) relates the target risks of the optimally-learned source-domain labeling
function h′∗ and of the target-domain oracle labeling function h̃

∗
, i.e., it bounds |R̃(h′

∗
)− R̃(h̃

∗
)|.

It measures the risk gap of the best source labeling function on the target domain. After adaptation,
Thm. 7 (Eq. (44)) shows that CSG-DA achieves the optimal labeling function on the target domain.

Under bounds Eqs. (49, 50), we are not minimizing dJS(η#[p(x)], η#[p̃(x)]), so our method is
good under that view. In fact, in CSG the representation distributions on the two domains are
p(s) =

∫
p(s, v) dv and p̃(s) =

∫
p̃(s, v) dv (replacing η#[p(x)] and η#[p̃(x)]). They are generally

different and we do not seek to match them.

34

F Methodology Details

F.1 Derivation of Learning Objectives

F.1.1 The Evidence Lower BOund (ELBO).

A common and effective approach to let the model p match the data distribution p∗(x, y) is
maximizing likelihood, that is to maximize Ep∗(x,y)[log p(x, y)]. It is equivalent to minimizing
KL(p∗(x, y)‖p(x, y)) (since Ep∗(x,y)[log p∗(x, y)] is constant of p), so it drives p(x, y) towards
p∗(x, y). But the likelihood function p(x, y) =

∫
p(s, v, x, y) dsdv involves an intractable integra-

tion, which is hard to estimate and optimize. To address this, the popular method of variational
expectation-maximization (variational EM) introduces a tractable (has closed-form density function
and easy to draw samples from it) distribution q(s, v|x, y) of the latent variables given observed
variables, and a lower bound of the likelihood function can be derived:

log p(x, y) = logEp(s,v)[p(s, v, x, y)] = logEq(s,v|x,y)

[
p(s, v, x, y)

q(s, v|x, y)

]
> Eq(s,v|x,y)

[
log

p(s, v, x, y)

q(s, v|x, y)

]
=: Lp, qs,v|x,y (x, y), (52)

where the inequality follows Jensen’s inequality and the concavity of the log function. The function
Lp, qs,v|x,y (x, y) is thus called Evidence Lower BOund (ELBO). The tractable distribution q(s, v|x, y)
is called variational distribution, and is commonly instantiated by a standalone model (from the
generative model) called an inference model. Moreover, we have:

Lp, qs,v|s,y (x, y) + KL(q(s, v|x, y)‖p(s, v|x, y))

= Eq(s,v|x,y)

[
log

p(s, v, x, y)

q(s, v|x, y)

]
+ Eq(s,v|x,y)

[
log

q(s, v|x, y)

p(s, v|x, y)

]
= Eq(s,v|x,y)

[
log

p(s, v, x, y)

p(s, v|x, y)

]
= Eq(s,v|x,y)[log p(x, y)]

= log p(x, y),

so maximizing Lp, qs,v|x,y (x, y) w.r.t q(s, v|x, y) is equivalent to minimizing
KL(q(s, v|x, y)‖p(s, v|x, y)) (since the r.h.s log p(x, y) is constant of q(s, v|x, y)), which
drives q(s, v|x, y) towards the true posterior (i.e., the goal of variational inference), and once
this is (perfectly) done, Lp, qs,v|x,y (x, y) becomes a lower bound of log p(x, y) that is tight at
the current model p, so maximizing Lp, qs,v|x,y (x, y) w.r.t p effectively maximizes log p(x, y)
(i.e., the goal of maximizing likelihood). So the training objective becomes the expected ELBO
Ep∗(x,y)[Lp, qs,v|x,y (x, y)]. Optimizing it w.r.t q(s, v|x, y) and p alternately drives q(s, v|x, y)

towards p(s, v|x, y) and p(x, y) towards p∗(x, y) eventually. The derivations and conclusions above
hold for general latent variable models, with (s, v) representing the latent variables, and (x, y)
observed variables (data variables).

This standard form of ELBO gives the objective for fitting unsupervised test-domain data from
the underlying data distribution p̃∗(x). In this case, the observed variable is only x while the
latent variable is still (s, v), so the required joint distribution for latent and observed variables is
p̃(s, v, x) = p̃(s, v)p(x|s, v), and the inference model is in the form q̃(s, v|x). Following the form of
Eq. (52), the ELBO objective for fitting p̃∗(x) (i.e., the lower bound for log p̃(x)) is:

Lp̃, q̃s,v|x(x) = Eq̃(s,v|x)

[
log

p̃(s, v, x)

q̃(s, v|x)

]
.

This leads to Eq. (4).

F.1.2 Variational EM for learning CSG.

In the supervised case, the expected ELBO objective Ep∗(x,y)[Lp, qs,v|x,y (x, y)] can also be understood
as the conventional supervised learning loss, i.e. the cross entropy, regularized by a generative
reconstruction term. As explained in the main text (Sec. 4), after training, we only have the model
p(s, v, x, y) and an approximation q(s, v|x, y) to the posterior p(s, v|x, y), and prediction using
p(y|x) is still intractable. So we employ a tractable distribution q(s, v, y|x) to model the required
variational distribution as q(s, v|x, y) = q(s, v, y|x)/q(y|x), where q(y|x) =

∫
q(s, v, y|x) dsdv

35

is the derived marginal distribution of y from q(s, v, y|x) (we will show that it can be effectively
estimated and sampled from). With this instantiation, the expected ELBO becomes:

Ep∗(x,y)[Lp, qs,v|x,y=···(qs,v,y|x)(x, y)]

=

∫
p∗(x, y)

q(s, v, y|x)

q(y|x)
log

p(s, v, x, y)q(y|x)

q(s, v, y|x)
dsdvdxdy

=

∫
p∗(x, y)

q(s, v, y|x)

q(y|x)
log q(y|x) dsdvdxdy +

∫
p∗(x, y)

q(s, v, y|x)

q(y|x)
log

p(s, v, x, y)

q(s, v, y|x)
dsdvdxdy

=

∫
p∗(x)

(∫
p∗(y|x)

∫
q(s, v, y|x) dsdv

q(y|x)
log q(y|x) dy

)
dx

+

∫
p∗(x)

(∫
p∗(y|x)

q(y|x)
q(s, v, y|x) log

p(s, v, x, y)

q(s, v, y|x)
dsdvdy

)
dx

= Ep∗(x)Ep∗(y|x)[log q(y|x)] + Ep∗(x)Eq(s,v,y|x)

[
p∗(y|x)

q(y|x)
log

p(s, v, x, y)

q(s, v, y|x)

]
,

which is Eq. (1). Here, we use the shorthand “qs,v|x,y = · · · (qs,v,y|x)” for the above substi-
tution q(s, v|x, y) = q(s, v, y|x)/

∫
q(s, v, y|x) dsdv and highlight the argument therein. The

first term is the (negative) expected cross entropy loss, which drives the inference model (pre-
dictor) q(y|x) towards p∗(y|x) for p∗(x)-a.e. x. Once this is (perfectly) done, the sec-
ond term becomes Ep∗(x)Eq(s,v,y|x)[log

(
p(s, v, x, y)/q(s, v, y|x)

)
], which is the expected ELBO

Ep∗(x)[Lp, qs,v,y|x(x, y)] for q(s, v, y|x). It thus drives q(s, v, y|x) towards p(s, v, y|x) and p(x) to-
wards p∗(x). It accounts for a regularization by fitting the input distribution p∗(x) and align the
inference model (predictor) with the generative model.

The target of q(s, v, y|x), i.e. p(s, v, y|x), adopts a factorization p(s, v, y|x) = p(s, v|x)p(y|s) due
to the graphical structure (Fig. 1a) of CSG (i.e., y ⊥⊥ (x, v) | s). The factor p(y|s) is known (the
invariant causal mechanism to generate y in CSG), so we only need to employ an inference model
q(s, v|x) for the intractable factor p(s, v|x), so q(s, v, y|x) = q(s, v|x)p(y|s). Using this relation,
we can reformulate Eq. (1) as:

Ep∗(x,y)[Lp, qs,v|x,y=···(qs,v|x,py|s)(x, y)]

= Ep∗(x,y)[log q(y|x)] + Ep∗(x)

[∫
q(s, v|x)p(y|s)p

∗(y|x)

q(y|x)
log

p(s, v, x)

q(s, v|x)
dsdvdy

]
= Ep∗(x,y)[log q(y|x)] + Ep∗(x)

[∫
p∗(y|x)

q(y|x)

(∫
q(s, v|x)p(y|s) log

p(s, v, x)

q(s, v|x)
dsdv

)
dy

]
= Ep∗(x,y)[log q(y|x)] + Ep∗(x,y)

[
1

q(y|x)
Eq(s,v|x)

[
p(y|s) log

p(s, v, x)

q(s, v|x)

]]
, (53)

which is Eq. (2). We used the shorthand “qs,v|x,y = · · · (qs,v|x, py|s)” for the substitution for
q(s, v|x, y) using q(s, v|x) and p(y|s). With this form of q(s, v, y|x) = q(s, v|x)p(y|s), we have
q(y|x) = Eq(s,v|x)[p(y|s)] which can also be estimated and optimized using reparameterization. For
prediction, we can sample from the approximation q(y|x) instead of the intractable p(y|x). This
can be done by ancestral sampling: first sample (s, v) from q(s, v|x), and then use the sampled s to
sample y from p(y|s).

F.1.3 Variational EM for learning CSG with test-domain inference model (Learning
CSG-ind and CSG-DA on the training domain).

See the main text in Sec. 4.1 and Sec. 4.2 for motivations and the basic idea of the methods. Methods
for CSG-ind and CSG-DA are similar, so we mainly show the detailed derivation for CSG-ind.

Since the prior is the only difference between p(s, v, x, y) and p⊥⊥(s, v, x, y), we have p(s,v,x,y)
p⊥⊥(s,v,x,y)

=

p(s,v)
p⊥⊥(s,v)

. So p(s, v, y|x) = p(s,v)
p⊥⊥(s,v)

p⊥⊥(x)
p(x) p

⊥⊥(s, v, y|x). As explained, inference models now only need
to approximate the posterior (s, v) | x. Since p(s, v, y|x) = p(s, v|x)p(y|s) and p⊥⊥(s, v, y|x) =

p⊥⊥(s, v|x)p(y|s) share the same p(y|s) factor, we have p(s, v|x) = p(s,v)
p⊥⊥(s,v)

p⊥⊥(x)
p(x) p

⊥⊥(s, v|x). The
variational distributions q(s, v|x) and q⊥⊥(s, v|x) target p(s, v|x) and p⊥⊥(s, v|x) respectively, so we

36

can express the former with the latter:

q(s, v|x) =
p(s, v)

p⊥⊥(s, v)

p⊥⊥(x)

p(x)
q⊥⊥(s, v|x). (54)

Once q⊥⊥(s, v|x) achieves its goal, such represented q(s, v|x) also does so. So we only need to
construct an inference model for q⊥⊥(s, v|x) and optimize it. With this representation, we have:

q(y|x) = Eq(s,v|x)[p(y|s)] = Eq⊥⊥(s,v|x)

[
p(s, v)

p⊥⊥(s, v)

p⊥⊥(x)

p(x)
p(y|s)

]
=
p⊥⊥(x)

p(x)
Eq⊥⊥(s,v|x)

[
p(s, v)

p⊥⊥(s, v)
p(y|s)

]
=
p⊥⊥(x)

p(x)
π(y|x), (55)

where π(y|x) := Eq⊥⊥(s,v|x)

[p(s,v)
p⊥⊥(s,v)

p(y|s)
]

as in the main text, which can be estimated and optimized
using the reparameterization of q⊥⊥(s, v|x). From Eq. (2), the expected ELBO training objective can
be reformulated as:

Ep∗(x,y)[Lp, qs,v|x,y=···(q⊥⊥
s,v|x,p)

(x, y)]

= Ep∗(x,y)

[
log q(y|x) +

1

q(y|x)
Eq(s,v|x)

[
p(y|s) log

p(s, v, x)

q(s, v|x)

]]
= Ep∗(x,y)

[
log

p⊥⊥(x)

p(x)
+ log π(y|x)

+
p(x)

p⊥⊥(x)

1

π(y|x)
Eq⊥⊥(s,v|x)

[p(s, v)

p⊥⊥(s, v)

p⊥⊥(x)

p(x)
p(y|s) log

p(s, v)p(x|s, v)
p(s,v)
p⊥⊥(s,v)

p⊥⊥(x)
p(x) q

⊥⊥(s, v|x)

]]

= Ep∗(x,y)

[
log

p⊥⊥(x)

p(x)
+ log π(y|x)

+
1

π(y|x)
Eq⊥⊥(s,v|x)

[p(s, v)

p⊥⊥(s, v)
p(y|s)

(
log

p(x)

p⊥⊥(x)
+ log

p⊥⊥(s, v)p(x|s, v)

q⊥⊥(s, v|x)

)]]
= Ep∗(x,y)

[
log

p⊥⊥(x)

p(x)
+ log π(y|x) +

1

π(y|x)
Eq⊥⊥(s,v|x)

[p(s, v)

p⊥⊥(s, v)
p(y|s)

]
log

p(x)

p⊥⊥(x)

+
1

π(y|x)
Eq⊥⊥(s,v|x)

[p(s, v)

p⊥⊥(s, v)
p(y|s) log

p⊥⊥(s, v)p(x|s, v)

q⊥⊥(s, v|x)

]]
= Ep∗(x,y)

[
log

p⊥⊥(x)

p(x)
+ log π(y|x) +

1

π(y|x)
π(y|x) log

p(x)

p⊥⊥(x)

+
1

π(y|x)
Eq⊥⊥(s,v|x)

[p(s, v)

p⊥⊥(s, v)
p(y|s) log

p⊥⊥(s, v, x)

q⊥⊥(s, v|x)

]]
= Ep∗(x,y)

[
log π(y|x) +

1

π(y|x)
Eq⊥⊥(s,v|x)

[p(s, v)

p⊥⊥(s, v)
p(y|s) log

p⊥⊥(s, v, x)

q⊥⊥(s, v|x)

]]
, (56)

where in the second-last equality we have used the definition of π(y|x). The shorthand “qs,v|x,y =

· · · (q⊥⊥s,v|x, p)” represents the substitution using q⊥⊥(s, v|x) and p = 〈p(s, v), p(x|s, v), p(y|s)〉 for
q(s, v|x, y) = q(s, v|x)p(y|s)/

∫
q(s, v|x)p(y|s) dsdv where q(s, v|x) is determined by q⊥⊥(s, v|x)

and p via Eq. (54) (recall that p⊥⊥(s, v) is determined by p(s, v), so p⊥⊥(x) is also determined by
p(s, v) and p(x|s, v)). This Eq. (56) gives Eq. (3) for CSG-ind. Note that π(y|x) is not used in
prediction, so there is no need to sample from it. Prediction is done by ancestral sampling from
q⊥⊥(y|x), that is to first sample from q⊥⊥(s, v|x) and then from p(y|s). Using this reformulation, we
can train a CSG with independent prior even on data that manifests a correlated prior.

For CSG-DA, we only need to replace the independent prior p⊥⊥(s, v) hypothesized for the test domain
with the standalone prior model p̃(s, v) dedicated to learning the test-domain prior, and re-denote the
test-domain inference model q⊥⊥(s, v|x) with q̃(s, v|x). By doing so, Eq. (56) gives Eq. (5), i.e. the
objective for CSG-DA on the training domain. For numerical stability, we employ the log-sum-exp
trick to estimate the expectations and compute the gradients.

37

F.1.4 Methods for CSGz for ablation study.

The conclusions and methods can also be applied to general latent-variable generative models for
supervised learning, by replacing (s, v) with their latent variables. Particularly, the method also
applies to the counterpart of CSG in the ablation study experiment, which does not distinguish the
two latent factors s and v and treats them as a united latent variable z = (s, v). We thus call it
CSGz. The essential difference from CSG is that CSGz keeps the v → y arrow, which is unlikely
a causal relation as we argued in Sec. 3, item (4). Formally, a CSGz model is defined as the tuple
p := 〈p(z), p(x|z), p(y|z)〉, and the corresponding inference model is in the form q(z|x).

Following a similar derivation of Eq. (53), we have the objective for fitting training-domain data:
Ep∗(x,y)[Lp, qz|x,y=···(qz|x,py|z)(x, y)]

= Ep∗(x,y)[log q(y|x)] + Ep∗(x,y)

[
1

q(y|x)
Eq(z|x)

[
p(y|z) log

p(z, x)

q(z|x)

]]
,

where q(y|x) = Eq(z|x)[p(y|z)]. The shorthand “qz|x,y = · · · (qz|x, py|z)” is similarly for the
substitution q(z|x, y) = q(z|x)p(y|z)/

∫
q(z|x)p(y|z) dz using q(z|x) and p(y|z).

As CSGz does not consider the distinction between s and v, there is no CSGz-ind version. The
CSGz-DA version for domain adaptation is possible by using a standalone prior model p̃(z) for the
test domain, which is learned by optimizing the corresponding ELBO objective similar to Eq. (4):

max
p̃, q̃z|x

Ep̃∗(x)[Lp̃, q̃z|x(x)],where Lp̃, q̃z|x(x) = Eq̃(z|x)

[
log

p̃(z)p(x|z)
q̃(z|x)

]
.

To fit training-domain data using the test-domain inference model q̃(z|x), following a similar deriva-
tion of Eq. (56), we have the objective on the training domain for CSG-DA:

max
p, q̃z|x

Ep∗(x,y)

[
log π(y|x) +

1

π(y|x)
Eq̃(z|x)

[p(z)
p̃(z)

p(y|z) log
p̃(z)p(x|z)
q̃(z|x)

]]
,

where π(y|x) := Eq̃(z|x)

[p(z)
p̃(z)p(y|z)

]
.

F.2 Instantiating the Inference Model

Although motivated from learning a generative model, the method can be implemented using a general
discriminative model (with hidden nodes) with causal behavior. By parsing some of the hidden nodes
as s and some others as v, a discriminative model could formalize a distribution q(s, v, y|x), which
implements the inference model and the generative mechanism p(y|s). The parsing mode is shown in
Fig. 3, which is based on the following consideration.

Figure 3: Parsing a general dis-
criminative model as an infer-
ence model for CSG. The black
solid arrow constructs p(y|s) in
the generative model, and the
blue dashed arrows (representing
computational but not causal di-
rections) construct q(s, v|x) (or
q⊥⊥(s, v|x) or q̃(s, v|x)) as the in-
ference model.

(1) The graphical structure of CSG in Fig. 1a indicates that
(v, x) ⊥⊥ y | s, so the hidden nodes for s should isolate y
from v and x. The model then factorizes the distribution as
q(s, v, y|x) = q(s, v|x)q(y|s), and since the inference and gen-
erative models share the distribution on y|s (see the main text
for explanation), we can thus use the component q(y|s) given by
the discriminative model to implement the generative mechanism
p(y|s).

(2) The graphical structure in Fig. 1a also indicates that s 6⊥⊥
v | x due to the v-structure (collider) at x (“explain away”).
The component q(s, v|x) should embody this dependence, so the
hidden nodes chosen as v should have an effect on those as s.
Note that the arrows in Fig. 3 represent computation directions
but not causal directions. We orient the computation direction
v → s since all hidden nodes in a discriminative model eventually
contribute to computing y.

38

After parsing, the discriminative model gives a mapping (s, v) = η(x). We implement the distribution
by18 q(s, v|x) = N (s, v|η(x),Σq). For all the three cases of CSG, CSG-ind and CSG-DA, only
one inference model for (s, v) | x is required. The component (s, v) | x of the discriminative
model thus parameterizes q⊥⊥(s, v|x) and q̃(s, v|x) for CSG-ind and CSG-DA. The expectations in
all objectives (except for expectations over p∗ which are estimated by averaging over data) are all
under the respective (s, v) | x. They can be estimated using η(x) by the reparameterization trick [62],
and the gradients can be back-propagated.

We need two more components beyond the discriminative model to implement the method, i.e.
the prior p(s, v) and the generative mechanism p(x|s, v). The latter can be implemented using a
generator or decoder architecture comparable to the component q(s, v|x). The prior can be commonly
implemented using a multivariate Gaussian distribution, p(s, v) = N ((sv)|(µsµv),Σ =

(
Σss Σsv
Σvs Σvv

)
).

In implementation, the means µs and µv are fixed as zero vectors. We parameterize Σ via its
Cholesky decomposition, Σ = LL>, where L is a lower-triangular matrix with positive diagonals,
which is in turn parameterized as L =

(
Lss 0
Mvs Lvv

)
with smaller lower-triangular matrices Lss and

Lvv and any matrix Mvs. Matrices Lss and Lvv are parameterized by a summation of positive
diagonals (guaranteed via an exponential map) and a lower-triangular (excluding diagonals) matrix.
Training CSG-ind via Eq. (3) requires estimating the ratio p(s,v)

p⊥⊥(s,v)
= p(s,v)

p(s)p(v) = p(v|s)
p(v) , where

p(v) = N (v|µv,Σvv) with Σvv = LvvL
>
vv + MvsM

>
vs, and the conditional distribution p(v|s) is

given by p(v|s) = N (v|µv|s,Σv|s) with µv|s = µv + MvsL
−1
ss (s − µs), Σv|s = LvvL

>
vv (see e.g.,

Bishop [14]). This prior does not imply a causal direction between s and v (the linear Gaussian case
of Zhang and Hyvärinen [122]) thus well serves as a prior for CSG.

F.3 Model Selection Details

We use a validation set on the training domain for hyperparameter selection, to avoid overfitting
due to the finiteness of training data samples, and to guarantee a good fit to the training-domain
data distribution p∗(x, y) as the semantic-identifiability theorem 5 recommends. We note that model
selection in OOD prediction tasks is itself controversial and nontrivial, and it is still an active research
direction [120, 39]. It is argued that if a validation set from the test domain is available, the OOD
setup that there is no supervision on the test domain is violated, and then a better choice would be to
incorporate it in learning as the semi-supervised adaptation task, instead of using it just for validation.
As our methods are designed to fit the training domain data and our theory shows guarantees under a
good fit to the training-domain data distribution, model selection using a training-domain validation
set is reasonable. This does not contradict the trade-off between training- and test-domain accuracies
shown in some prior works (e.g., [95]), since they consider arbitrary distribution change, and using
the same prediction rule in both domains, while we leverage causal invariance and develop a different
prediction rule in the test domain. In implementation, the training and validation sets are constructed
by a 80%-20% random split of all training-domain data in each task.

More specifically, for hyperparameter selection, we align the scale of the supervision loss terms
(Ep∗(x,y)[log π(y|x)] for CSG-ind/-DA and CSGz-DA, and the CE loss term for others) in the
objectives of all methods, and tune the coefficients of the ELBOs to be their largest values that make
the accuracy near 1 on the validation set, so that they wield the most power on the test domain while
being faithful to explicit supervision. The coefficients are preferred to be large to well fit p∗(x) (and
p̃∗(x) for domain adaptation) to gain generalizability in the test domain, while they should not affect
training accuracy, which is required for a good fit to the training distribution.

For CSG-ind/-DA and CSGz-DA, since their inference models target the test domain, it is not
reasonable to evaluate validation accuracy directly using them in the form of Eqtest(s,v|x)[p(y|s)] (qtest

here refers to q⊥⊥ or q̃). Instead, Eq. (55) shows that π(y|x) := Eqtest(s,v|x)[
p(s,v)
ptest(s,v)p(y|s)] (ptest(s, v)

refers to p⊥⊥(s, v) or p̃(s, v)) is an unnormalized density of q(y|x), the training-domain predictor. So
we evaluate π(y|x) for every value of y (which is not too large for classification tasks) and normalize
them for the validation accuracy.

18Other approaches to introducing randomness are also possible, such as employing stochasticity on the
parameters/weights as in Bayesian neural networks [82], or using dropout [106, 32]. Here we adopt this simple
treatment to highlight the main contribution.

39

Compared with recent model selection methods [120, 119], our method does not introduce additional
hyperparameters or assumptions, and does not require multiple training domains. These advantages
stem from the explicit description of domain change of our CSG model based on the causal invariance
principle 2.

G Experiment Details

The CSGz baseline for ablation study. To show the benefit of modeling s and v separately, we
consider a counterpart of CSG that does not separate its latent variable z into s and v; or equivalently,
it does not remove the edge v → y. This means that all its latent variables in z directly (i.e., not
mediated by s) affect the output y. We thus call it CSGz. Detailed methods for OOD generalization
(CSGz; note it does not have a “-ind” version) and domain adaptation (CSGz-DA) are introduced in
Appx. F.1.4. To align the model architecture for fair comparison, this means that the latent variable z
of CSGz can only be taken as the latent variable s in CSG (see Appx. F.2, Fig. 3).

More about the baselines. The CSGz(-DA) baselines are implemented in our codebase along
with the proposed CSG(-ind/-DA) methods. The CNBB method [41] as an OOD generalization
baseline is also implemented, based on the description in the paper. For domain adaptation baseline
methods DANN [33], DAN [73], CDAN [74] and MDD [124], we use their implementation in the
dalib package19 [53]. The BNM method [25] is integrated into our codebase based on its official
implementation20. Results of CE, DANN, DAN and CDAN are taken from [74] for the ImageCLEF-
DA dataset and from [39] except DAN for the PACS and VLCS datasets. All methods share the same
optimization setup.

Note that we do not consider domain generalization baselines (e.g., invariant risk minimization [2])
as they degenerate to the CE baseline (i.e., the standard supervised learning method, or empirical risk
minimization) when given only one training domain.

Computation infrastructure. Each run of the experiment is on a single Tesla P100 GPU. All the
experiments are implemented in PyTorch [84].

More analysis on the results. Complete results including the MDD, CSGz and CSGz-DA base-
lines, as well as the VLCS [30] dataset, are shown in Table 2 for OOD generalization and in Table 3
for domain adaptation. The complete results support the same conclusions in the main text.

In addition, for the ablation study, we observe that our CSG methods outperform CSGz methods in
all tasks, demonstrating the benefit of modeling the semantic and variation factors separately. Also,
CSGz methods usually have a larger variance, possibly due to the lack of semantic-identifiability so
the learned representation gets misled by the variation factor more or less from run to run. On the other
hand, CSGz methods still outperform existing methods most of the time, which are discriminative
methods. This shows the advantage of using a generative model: the invariance of generative
mechanisms (causal invariance) is more reliable.

From the domain adaptation results in Table 3, we note that the advantage of CSG-DA on ImageCLEF-
DA is not as significant as on other datasets (shifted-MNIST, PACS, VLCS); existing methods CDAN
and BNM achieve a comparable or sometimes better result than CSG-DA on ImageCLEF-DA. This
reveals the suitable problem that our CSG methods solve the best, as discussed in the main text. We
expand the analysis below.

Generally speaking, most domain adaptation methods are designed to extract prediction-informative
features that are also common across domains, but at the risk to end up with such a feature that
leverages a spurious correlation and misleads prediction. In contrast, our CSG methods can be seen
to filter out misleading candidates of such features, but with the requirement for identifiability that
the training domain shows a diverse v for each s. This requirement comes from the bounded prior
condition in the identifiability theorem 5, or the intuition to reduce the risk of extreme cases (Thm. 5
Remark (1)).

For the ImageCLEF-DA task, there is no severe spurious correlation, since the style factor as v has
no preference on a particular class in any domain. So existing domain adaptation methods do not

19https://github.com/thuml/Transfer-Learning-Library
20https://github.com/cuishuhao/BNM

40

https://github.com/thuml/Transfer-Learning-Library
https://github.com/cuishuhao/BNM

Table 2: Test accuracy (%) for OOD generalization by various methods (ours in bold and line
separated; CSGz baseline included) on Shifted-MNIST (top two rows), ImageCLEF-DA (mid-top
four rows), PACS (mid-bottom four rows) and VLCS (bottom four rows) datasets. Results of CE are
taken from [74] for ImageCLEF-DA and from [39] for PACS and VLCS. Averaged over 10 runs.

task CE CNBB CSGz CSG CSG-ind

Shifted-
MNIST

δ0 = δ1 = 0 42.9±3.1 54.7±3.3 53.0±6.7 81.4±7.4 82.6±4.0

δ0, δ1∼N (0,22) 47.8±1.5 59.2±2.4 54.8±5.6 61.7±3.6 62.3±2.2

Image
CLEF-

DA

C→P 65.5±0.3 72.7±1.1 73.3±1.0 73.6±0.6 74.0±1.3
P→C 91.2±0.3 91.7±0.2 91.6±0.9 92.3±0.4 92.7±0.2
I→P 74.8±0.3 75.4±0.6 77.0±0.2 76.9±0.3 77.2±0.2
P→I 83.9±0.1 88.7±0.5 90.4±0.3 90.4±0.3 90.9±0.2

PACS

others→P 97.8±0.0 96.9±0.2 97.7±0.3 97.7±0.2 97.8±0.2
others→A 88.1±0.1 73.1±0.3 87.3±0.8 88.5±0.6 88.6±0.6
others→C 77.9±1.3 50.2±1.2 84.3±0.9 84.4±0.9 84.6±0.8
others→S 79.1±0.9 43.3±1.2 80.6±1.4 80.7±1.0 81.1±1.2

VLCS

others→V 76.4±1.5 75.5±0.9 79.4±1.0 79.3±1.1 80.0±0.9
others→L 63.3±0.9 61.1±1.2 69.6±0.8 69.6±0.5 70.1±0.8
others→C 97.6±1.0 97.1±0.4 99.2±0.3 99.4±0.3 99.5±0.2
others→S 72.2±0.5 73.7±0.6 75.0±0.9 76.1±1.3 76.9±1.2

Table 3: Test accuracy (%) for domain adaptation by various methods (ours in bold and line
separated; BNM and CSGz-DA baselines included) on Shifted-MNIST (top two rows), ImageCLEF-
DA (mid-top four rows), PACS (mid-bottom four rows) and VLCS (bottom four rows) datasets.
Results of DANN, DAN and CDAN on ImageCLEF-DA are taken from [74], and results of DANN
and CDAN on PACS and VLCS are taken from [39]. Averaged over 10 runs.

task DANN DAN CDAN MDD BNM CSGz-DA CSG-DA

Shifted-
MNIST

δ0 = δ1 = 0 40.9±3.0 40.4±2.0 41.0±0.5 41.9±0.8 40.8±1.0 78.0±27.2 97.6±4.0

δ0,δ1∼N(0,22) 46.2±0.7 45.6±0.7 46.3±0.6 45.8±0.3 45.7±1.0 68.1±17.4 72.0±9.2

Image
CLEF-

DA

C→P 74.3±0.5 69.2±0.4 74.5±0.3 74.1±0.7 75.2±1.4 74.3±0.3 75.1±0.5
P→C 91.5±0.6 89.8±0.4 93.5±0.4 92.1±0.6 93.5±2.8 92.7±0.4 93.4±0.3
I→P 75.0±0.6 74.5±0.4 76.7±0.3 76.8±0.4 76.7±1.4 77.0±0.3 77.4±0.3
P→I 86.0±0.3 82.2±0.2 90.6±0.3 90.2±1.1 91.0±0.8 90.6±0.4 91.1±0.5

PACS

others→P 97.6±0.2 97.6±0.4 97.0±0.4 97.6±0.3 87.6±4.2 97.6±0.4 97.9±0.2
others→A 85.9±0.5 84.5±1.2 84.0±0.9 88.1±0.8 86.4±0.4 88.0±0.8 88.8±0.7
others→C 79.9±1.4 81.9±1.9 78.5±1.5 83.2±1.1 83.6±1.7 84.6±0.9 84.7±0.8
others→S 75.2±2.8 77.4±3.1 71.8±3.9 80.2±2.2 59.1±1.5 80.9±1.2 81.4±0.8

VLCS

others→V 78.3±0.3 74.6±0.8 76.9±0.2 79.0±1.1 70.0±2.5 79.1±1.4 81.1±0.8
others→L 64.9±1.1 67.1±0.5 65.2±0.4 63.8±0.8 54.0±5.9 69.6±0.9 70.2±0.7
others→C 98.5±0.2 98.5±0.6 97.5±0.1 99.3±0.3 96.5±5.1 99.3±0.3 99.5±0.2
others→S 73.1±0.7 75.0±1.1 73.4±1.1 75.8±1.8 66.8±2.0 76.1±1.8 77.1±1.1

meet a serious problem. But the task is hard for identifiability: for each value of a semantic factor, a
single elementary training domain cannot show a diverse variation factor. This weakens the power of
CSG-DA. On other datasets (shifted-MNIST, PACS, VLCS), spurious correlation is stronger. Shifted-
MNIST is deliberately constructed to show a strong digit-position correlation in the training domain
while the correlation disappears in test domains. As for PACS and VLCS, whenever different domains
have different class proportions, pooling them together introduces a class-style(domain) correlation,
which does not hold in a test domain. On the other hand, the training domain of shifted-MNIST
shows a noisy position for each digit, and the pooled training domains of PACS and VLCS show a
diverse style for each class. So these datasets better satisfy the requirement of CSG-DA meanwhile
ameliorating spurious correlation is the key problem. This makes the advantage of CSG-DA more
salient.

41

G.1 Shifted-MNIST

Dataset. The dataset is based on the standard MNIST dataset21, where only images of “0” and “1”
are collected. The resulting training set has 5,923 (46.77%) “0”s and 6,742 (53.23%) “1”s (12,665 in
total) and the test set has 980 (46.34%) “0”s and 1,135 (53.66%) “1”s (2,115 in total). As described
in the main text, we horizontally shift each “0” in the training data at random by δ0 pixels where
δ0 ∼ N (−5, 12), and each “1” by δ1 ∼ N (5, 12) pixels. We construct two test sets, where in the
first one, each digit from the test set is not moved δ0 = δ1 = 0, and is horizontally shifted randomly
by δ0, δ1 ∼ N (0, 22) pixels in the second. All domains have balanced classes.

Setup and implementation details. For generative methods (i.e., CSGz(-DA) and our methods
CSG(-ind/-DA)), we use a multilayer perceptron (MLP) with 784(for x)-400-200(first 100 for v)-
50(for s or z)-1(for y) nodes in each layer for the inference model, and use an MLP with 50(for
s)-(100(for v)+100)-400-784(for x) nodes in each layer for the generative component (i.e., the
mean function of the additive Gaussian p(x|s, v)). The activation function in the MLPs is the
sigmoid function, and the variables s and v are taken after the activation. The expectation under
q(s, v|x) in ELBO is estimated by evaluating the function at the mode of the additive Gaussian
with reparameterization. For discriminative methods (i.e., CE, CNBB, DANN, DAN, CDAN, MDD,
BNM), we use a larger MLP architecture with 784-600-300-75-1 nodes in each layer to compensate
the additional parameters of the generative component in generative methods.

For all the methods, we use a mini-batch of size 128 in each optimization step, and use the RMSprop
optimizer [110], with weight decay parameter 1 × 10−5, and learning rate 1 × 10−3 for OOD
generalization and 3× 10−4 for domain adaptation. These hyperparameters are chosen by running
and validating using CE and DANN. For generative methods, we take the additive Gaussian variance
of the generative mechanism p(x|s, v) as 0.032. The scale of the standard derivations of these
additive Gaussian distributions are chosen small to meet the intense causal mechanism assumption
in our theory.22 For the Gaussian variances of s and v in q(s, v|x), they are also outputs from the
discriminative model through additional branches. Each of these branches is a fully-connected layer
forked from the last layer of s or v, with a softplus activation to ensure positivity. Their weights are
learned via the same objectives.

Hyperparameter configurations. For both OOD generalization and domain adaptation tasks on
the two test domains, we train the models for 100 epochs (average runtime 10 minutes) when all the
methods converge in terms of loss and validation accuracy. We align the scale of the supervision
loss terms in the objectives of all methods, and scale the ELBO terms with the largest weight that
makes training accuracy near 1 in OOD generalization. We then fix the tuned ELBO weight and scale
the weight of adaptation terms in a similar way for domain adaptation. Other parameters are tuned
similarly. For generative methods (i.e., CSGz(-DA) and our methods CSG(-ind/-DA)), the ELBO
weight is 1 × 10−4 selected from {1, 3} × 10{−1,−2,··· ,−6}. For domain adaptation methods, the
adaptation weight is 1×10−4 for DANN, 1×10−8 for DAN, 1×10−6 for CDAN, 1×10−6 for MDD,
1× 10−7 for BNM, and 1× 10−4 for CSGz-DA and CSG-DA, all selected from 1× 10{−1,−2,··· ,−8}.
For CNBB, we use regularization coefficients 1× 10−4 and 3× 10−6 to regularize the sample weight
and learned representation, and run 4 inner gradient descent iterations with learning rate 1× 10−3 to
optimize the sample weight. These four parameters are selected from a grid search where the range
of the parameters are: {1, 3} × 10{−2,−3,−4}, {1, 3} × 10{−4,−5,−6}, {4, 8}, 1× 10{−1,−2,−3}.

G.2 ImageCLEF-DA

Dataset. ImageCLEF-DA23 is a standard benchmark dataset for the ImageCLEF 2014 domain
adaptation challenge [1]. There are three domains in this dataset: Caltech-256, ImageNet and
Pascal VOC 2012. Each domain has 12 classes and 600 images. Each image is center-cropped to
shape (3, 224, 224) as x (also for PACS and VLCS experiments).

21http://yann.lecun.com/exdb/mnist/
22Choosing small variances is also supported by a direct analysis of additive Gaussian VAEs [26] for well

learning the data manifold.
23http://imageclef.org/2014/adaptation

42

http://yann.lecun.com/exdb/mnist/
http://imageclef.org/2014/adaptation

Setup and implementation details. We adopt the same setup as in Long et al. [74] 24 for a common
practice and fair comparison with existing results. This means that we use the ResNet50 structure [40]
pretrained on the ImageNet dataset as the backbone of the discriminative/inference model. For CSG(-
ind/-DA), we select the first 128 dimensions of the bottleneck layer (i.e., the layer that replaces the
last fully-connected layer of the pretrained ResNet50; its output dimension is 1024) as the variable v,
and take s as the 256-dimensional output of the two-layer MLP (with 1024 hidden nodes) built on
the bottleneck layer. Both s and v are taken before activation. The logits for y is produced by a linear
layer built on s.

For generative methods (i.e., CSGz(-DA) and our methods CSG(-ind/-DA)), we construct an image
decoder/generator for the mean function of the additive Gaussian p(x|s, v) that uses the DCGAN
generator model [90] pretrained on the Cifar10 dataset as the backbone. The pretrained DCGAN
is taken from the PyTorch-GAN-Zoo25. The generator connects to the DCGAN backbone by an
MLP with 384(dimension of (s, v))-128-120(input dimension of DCGAN) nodes in each layer,
and generates images of desired size (3, 224, 224) by appending to the output of DCGAN of size
(3, 64, 64) with an transposed convolution layer with kernel size 4, stride size 4, and padding size 16.
The expectation under q(s, v|x) in ELBO is estimated by evaluating the function at the mean of the
conditional Gaussian with reparameterization.

Following Long et al. [74], we use a mini-batch of size nB = 32 in each optimization step, and adopt
the SGD optimizer with Nesterov momentum parameter 0.9, weight decay parameter 5× 10−4, and
a shrinking step size scheme εi = ε0(1 + αnBi)

−β for optimization iteration i, with initial scale
ε0 = 1 × 10−3, per-datum coefficient26 α = 6.25 × 10−6, and shrinking exponent β = 0.75. For
the parameters of the backbone components, a 10 times smaller learning rate is used. For generative
methods, the Gaussian variances of s and v in q(s, v|x) are also outputs from the discriminative
model through additional branches. Each of these branches is a fully-connected layer forked from the
last layer of s or v, with a softplus activation to ensure positivity. Their weights are learned via the
same objectives.

Hyperparameter configurations. For all the four OOD prediction tasks, we train the models
for 30 epochs (average runtime 10 minutes) when all the methods converge in terms of loss and
validation accuracy. For generative methods, the Gaussian variance of p(x|s, v) is taken as 0.1, which
is searched within {1, 3}× 10{−4,−2,−1,0,2,4}. The ELBO weight is 1× 10−7 for CSGz(-DA) and is
1× 10−8 for our CSG(-ind/-DA), both selected from 1× 10{−2,−4,−6} ∪ {1, 3}× 10{−7,−8,−9,−10}.
The adaptation weight is 1 × 10−8 selected from 1 × 10{−2,−4,−6} ∪ {1, 3} × 10{−7,−8,−9,−10}

for both CSGz-DA and CSG-DA, 1× 10−2 selected from 1× 10{−1,−2,−4,−6} for MDD, and 1.0
selected from 1× 10{1,0,−1,−2,−4} for BNM. Results of other domain adaptation baselines DANN,
DAN and CDAN and the results of CE are taken from [74] under the same setting. For CNBB, we
use regularization coefficients 1× 10−6 and 3× 10−6 to regularize the sample weight and learned
representation, and run 4 inner gradient descent iterations with learning rate 1× 10−4 to optimize
the sample weight. These four parameters are selected from a grid search where the range of the
parameters are: 1×10{−4,−5,−6,−7}∪{3×10−6}, {1, 3}×10{−5,−6,−7}, {4}, 1×10{−2,−3,−4,−5}.

G.3 PACS

Dataset. The PACS dataset [69] has 7 classes. It is named after its four domains: Photo, Art,
Cartoon, Sketch; each contains images of a certain style. It contains 9,991 images in total. We use
the dataset via the open-source domainbed repository27 [39].

Setup and implementation details. We adopt the same setup as in Gulrajani and Lopez-Paz [39]
for a common practice and fair comparison with existing results. This means for each domain
as the test domain, the single training domain is constructed by merging/pooling the other three
domains. This is done by merging the three mini-batches of size 32 from each of the three domains for
optimization. The Adam optimizer [60] with learning rate 5× 10−5 is adopted. Data augmentation

24https://github.com/thuml/CDAN
25https://github.com/facebookresearch/pytorch_GAN_zoo
26The coefficient α here is amortized onto each datum, so its value is different from that in Long et al. [74]

and a batch size nB is multiplied to the iteration number i.
27https://github.com/facebookresearch/DomainBed

43

https://github.com/thuml/CDAN
https://github.com/facebookresearch/pytorch_GAN_zoo
https://github.com/facebookresearch/DomainBed

Table 4: Test accuracy (%) for OOD generalization (middle 4 columns) and domain adaptation
(right 3 columns) by various methods (ours in bold and line separated) on PACS with single training
domains. Averaged over 10 runs.

task CE CSGz CSG CSG-ind DAN CSGz-DA CSG-DA

PACS

C→A 78.9±1.1 78.2±1.8 78.4±1.2 78.9±1.3 80.9±1.2 79.1±0.7 79.1±0.8

P→A 73.1±1.9 73.4±1.9 73.5±0.9 73.4±1.5 76.6±2.6 73.8±0.7 75.0±0.7

S→A 64.2±2.8 63.4±1.6 63.7±1.7 65.4±2.1 62.4±1.8 64.7±2.2 65.7±2.0

others→A 88.1±0.1 87.3±0.8 88.5±0.6 88.6±0.6 84.5±1.2 88.0±0.8 88.8±0.7

is conducted by random flip and crop, gray-scaling and color-jitter (i.e., randomly changing bright-
ness, contrast, saturation and hue). Other setups are basically the same as in the ImageCLEF-DA
experiment, except that the layer for variable s has 512 nodes, and that the backbone components use
the same learning rate (i.e., not multiplied by 0.1).

Hyperparameter configurations. For all methods we train for 40 epochs (average runtime 30
minutes) when they all converge in terms of loss and validation accuracy. For all generative methods
(i.e., CSGz(-DA) and our methods CSG(-ind/-DA)), the Gaussian variance of p(x|s, v) is taken as
0.3. The ELBO weight is 1× 10−7 for CSGz, CSG and CSG-ind, and is 1× 10−8 for CSGz-DA and
CSG-DA, both selected from 1× 10{0,−2,−4,−5,−6,−7,−8,−9}. The adaptation weight is 1× 10−8

selected from 1 × 10{0,−2,−4,−6,−7,−8,−9} for CSGz-DA and CSG-DA, 1 × 10−2 selected from
1× 10{0,−1,−2,−3,−4,−6} for DAN, and is the same as in the ImageCLEF-DA experiment for MDD
and BNM. Results of other domain adaptation baselines DANN and CDAN and the results of CE
are taken from [39] under the same setting. For CNBB, the hyperparameters are the same as in the
ImageCLEF-DA experiment, except the regularization coefficients for sample weights is 1× 10−4.
These hyperparameters are selected from the same range as used in the ImageCLEF-DA experiment.

Results using single training domains. We also conducted an experiment on PACS with single
training domains, similar to the setup on ImageCLEF-DA. The results are presented in Table 4. We see
that the advantage of our methods is not as significant as in the standard pooled training domain case.
This agrees with the discussion in the “dataset analysis” in the main paper: our methods are more
powerful in handling a misleading spurious s-v correlation but which needs to be diverse/stochastic
enough to allow identification, following the intuition on the identifiability (Thm. 5 Remark (1)).

G.4 VLCS

The VLCS dataset [30] has 5 classes. It is also named after its four domains: VOC2007, LabelMe,
Caltech101, SUN09; each is an image dataset collected in a certain way. It contains 10,729 images
in total. We use the dataset also via the domainbed repository. Setup, implementation details and
hyperparameters are the same as in the PACS experiment. Results are shown at the last four rows in
Table 2 for OOD generalization and in Table 3 for domain adaptation.

G.5 Visualization of the Learned Representation

To better understand how our methods work, we compare the visualization of the learned model by
our methods with that by the corresponding baselines. Visualization is done by the Local Interpretable
Model-agnostic Explanation (LIME) method [91]28, which uses an interpretable model, e.g. a linear
model, to approximate the target model locally at the query image. The learned weight of the linear
model then reflects the importance of the components/dimensions of the input, i.e. pixels in the
image, which can be visualized after binarization as focused regions on the image. This gives a hint
on the learned representation by the model for making prediction.

The visualization results are shown in Fig. 5. We see that in each case, the focused regions of our
methods (CSG-ind and CSG-DA) are more relevant to the semantic of the image, and the boundary
of the region reflects the characterizing shape of the object. In contrast, the baselines also involve
much background regions. This result shows our CSG methods indeed better learn a causal semantic
factor for prediction, which supports the motivation to introduce the CSG model, verifies the theory,
and explains the better robustness for OOD prediction.

28We use the official codebase at https://github.com/marcotcr/lime-experiments.

44

https://github.com/marcotcr/lime-experiments

Figure 5: Vi-
sualization (via
LIME [91]) of
the learned rep-
resentation by
various meth-
ods (ours in
bold). The top
two rows are
for OOD gen-
eralization and
the bottom two
rows are for
domain adapta-
tion.

CE

CSG-ind

MDD

CSG-DA

45

	Proofs
	Proof of the Equivalence Relation
	Proof of the Semantic-Identifiability Thm. 5
	Proof of the OOD Generalization Error Bound Thm. 6
	Proof of the Domain Adaptation Error Thm. 7

	Alternative Identifiability Theory for CSG
	More Explanations on the Model
	More Related Work
	Relation to Existing Domain Adaptation Theory
	Methodology Details
	Derivation of Learning Objectives
	The Evidence Lower BOund (ELBO).
	Variational EM for learning CSG.
	Variational EM for learning CSG with test-domain inference model (Learning CSG-ind and CSG-DA on the training domain).
	Methods for CSGz for ablation study.

	Instantiating the Inference Model
	Model Selection Details

	Experiment Details
	Shifted-MNIST
	ImageCLEF-DA
	PACS
	VLCS
	Visualization of the Learned Representation

