
Published as a conference paper at ICLR 2023

APPENDIX

A MISSING PROOFS

Lemma A.1. Assume that h : R|S| → R|Y| can be written as h(ξ) = f(< ξ, s >), for some
s ∈ R|S|, and f : R|Y| → R|Y| with parameter ξ. Then, convexity of f implies the convexity of h.

Proof. Let ξ1, ξ2 ∈ R|S| and τ ∈ [0, 1]. We have

h(τξ1 + (1− τ)ξ2) = f(< τξ1 + (1− τ)ξ2, s >)

= f(< τξ1, s > + < (1− τ)ξ2, s >) = f(τ < ξ1, s > +(1− τ) < ξ2, s >)

≤ τf(< ξ1, s >) + (1− τ)f(< ξ2, s >) = τh(ξ1) + (1− τ)h(ξ2)

(12)

where the last inequality follows from the convexity of f .

Lemma A.2. Given the updating dynamics: ξ̄t = (1− τm)ξ̄t−1 + τmξt. By Lemma 4.1, fξ = fξ̄
holds after convergence. As a result, the problem of minEx[∥fξ ◦ gξ(x′)− fξ̄ ◦ gξ̄(x)∥] is equivalent
to the problem of minEx[∥gξ(x′)− gξ̄(x)∥].

Proof. Through Lemma A.1, we know the convexity of a designed function f can give rise to the
convexity of the function h with the parameters as the input. Therefore, we design our projections fξ
and fξ̄ as f(< ξ, s >) and f(< ξ̄, s >) respectively. For instance, ReLU and MLP can be adopted
here. Using the dynamic: ξ̄t = (1− τm)ξ̄t−1 + τmξt together with h(ξ) mentioned in Lemma A.1,
we obtain the divergence of hidden representations fξ ◦ gξ(x′) and fξ̄ ◦ gξ̄(x),

Ex[∥fξ ◦ gξ(x′)− fξ̄ ◦ gξ̄(x)∥] = Ex[∥fξ ◦ (gξ(x′)− gξ̄(x))∥
≤ Ex[∥ξf∥∥(gξ(x′)− gξ̄(x))∥]
= Ex[∥(gξ(x′)− gξ̄(x))∥]∥ξf∥

(13)

where ∥ξf∥ is the parameter of the projection ∥fξ∥. The first equality is determined by the approxi-
mation of convergence analysis, which is fξ = fξ̄. We use Cauchy–Schwartz inequality here. Note
that a premise in this lemma is that the momentum updating reached convergence, which means
fξ = fξ̄. Minimizing the right side bound equals optimizing the problem of the left side in Eq.(13).
When the norm of ∥ξf∥ is fixed, the proof completes.

Assumption A.1. (Lf -Lipschitzness). Let the projection function f(s) : R|S| → R|Y| is Lf -
Lipschitz, we have that ∀s, s′, |f (s′)− f(s)| ≤ Lf ∥s′ − s∥.

Assumption A.2. (Lg-Lipschitzness). Let the projection function g(x) : R|X | → R|S| is Lg-
Lipschitz, we have that ∀x,x′, |g (x′)− g(x)| ≤ Lg ∥x′ − x∥.
Theorem A.1. (CoIT.) Suppose that Lipschitzness holds for functions gξ , gξ̄ , fξ and fξ̄ , respectively.
The updating dynamics is: ξ̄t = (1− τm)ξ̄t−1 + τmξt, τm ∈ [0, 1]. For any input x ∼ D̂ and shifted
x′ obtained via the transform operator ν(x, ·), optimizing the conditional divergence in Definition 4.1
means to minimize the upper bound as follows,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(x′))

]
≤ ρEx [∥x− x′∥] (14)

where ρ = Lg (CLf + ∥ξf∥) , C = 1+τ
1−τ , τ = 1 − τm are constants. Lf and Lg are Lipschitz

constants of the functions f(s) and g(x) respectively.

Proof. By incorporating Lemma A.2 for the problem of minEx[∥fξ ◦ gξ(x′)− fξ̄ ◦ gξ̄(x)∥], it leads
to a divergence with projections where a triangular inequality holds,

d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(x′)) ≤ d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(x))︸ ︷︷ ︸
state ϵ-approximation

+ d(fξ ◦ gξ(x), fξ ◦ gξ(x′))︸ ︷︷ ︸
L-Lipschitzness

(15)

Set s′ = gξ(x) and s = gξ̄(x). Now we use Lemma A.1 and the updating dynamics for the designed
projection fξ and fξ̄, τm ∈ [0, 1], we can obtain,

h(ξ̄t) = h((1− τm)ξ̄t−1 + τmξt) ≤ (1− τm)h(ξ̄t−1) + τmh(ξt) (16)

14

Published as a conference paper at ICLR 2023

By designing a projection that satisfies h(ξ̄t) = f t
ξ̄
(s) and h(ξt) = f t

ξ(s), we have

f t
ξ̄(s) ≤ (1− τm)f t−1

ξ̄
(s) + τmf t

ξ(s) (17)

The goal is to minimize ϵ-approximation on latent distance d(fξ̄(s), fξ(s
′)) such that the left side of

Eq.(15) is minimized. Particularly, given lp-norm as distance d(·, ·) at the timestep t, and a ReLU
network as function f , it leads to,

∥f t
ξ̄(s)− f t

ξ(s
′)∥ ≤ ∥τf t−1

ξ̄
(s) + (1− τ)f t

ξ(s)− f t
ξ(s

′)∥

= ∥τf t−1
ξ̄

(s)− τf t
ξ(s) + f t

ξ(s)− f t
ξ(s

′)∥

≤ τ∥f t−1
ξ̄

(s)− f t
ξ(s)∥+ ∥f t

ξ(s)− f t
ξ(s

′)∥

≤ τ∥f t−1
ξ̄

(s)− f t−1
ξ (s′)∥+ τ∥f t−1

ξ (s′)− f t
ξ(s)∥+ ∥f t

ξ(s)− f t
ξ(s

′)∥

(18)

where τ = 1 − τm. Lf -Lipschitzness and Lg-Lipschitzness assumptions are employed as stated
in Assumption A.1 and A.2. Suppose the updating has achieved convergence, Eq.(18) turns to the
following inequality,

∥fξ̄(s)− fξ(s
′)∥ ≤ 1 + τ

1− τ
∥fξ(s)− fξ(s

′)∥ ≤ (1 + τ)Lf

1− τ
∥gξ(x)− gξ(x

′)∥ ≤ (1 + τ)LfLg

1− τ
∥x− x′∥

(19)
On the other hand, the second term on the right side of Eq.(15) can be rewritten as,

∥fξ ◦ gξ(x)− fξ ◦ gξ(x′)∥ ≤ ∥ξf∥∥gξ(x)− gξ(x
′)∥ ≤ Lg∥ξf∥∥x− x′∥ (20)

Altogether, we substitute Eq.(19) and Eq.(20) in Eq.(15), we finally obtain,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(x′))

]
≤

(
Lg∥ξf∥+

(1 + τ)LfLg

1− τ

)
Ex [∥x− x′∥] (21)

The proof is finished.

Theorem A.2. (Mixed CoIT.) Suppose that Lipschitzness holds for functions gξ, gξ̄, fξ and fξ̄,
respectively. The updating dynamics is: ξ̄t = (1− τm)ξ̄t−1+ τmξt. For any input x ∼ D̂ and shifted
x′ ∼ G, the divergence with mixed augmented states can be bound by,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(Ex′ [x′]))

]
≤ ρExEx′ [||x− x′||] (22)

where ρ = Lg (CLf + ∥ξf∥) , C = 1+τ
1−τ , τ = 1 − τm. Lf and Lg are Lipschitz constants of the

functions f(s) and g(x) respectively

Proof. Based on Theorem A.1, we can view the mixup Ex′ [x′] as a sort of transformed data, and
thereby we have,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(Ex′ [x′]))

]
≤ Lg (CLf + ∥ξf∥)Ex [∥x− Ex′ [x′]∥] (23)

Since Ex [∥x− Ex′ [x′]∥] = Ex [∥Ex′ [x− x′]∥] ≤ ExEx′ [∥x− x′∥], we can finally obtain,

Ex

[
d(fξ̄ ◦ gξ̄(x), fξ ◦ gξ(Ex′ [x′]))

]
≤ Lg (CLf + ∥ξf∥)ExEx′ [∥x− x′∥] (24)

which completes the proof.

15

Published as a conference paper at ICLR 2023

B PSEUDOCODE

Algorithm 2 CoIT. Similarity metric. Learnable data transformation.
1: Inputs:
2: STATE encoder gξ, policy πϕ, Q-functions Qθ1 , Qθ2 , OBSERVATION encoder gξ̄, PROJECTION fξ, fξ̄
3: µ, σ ∼ G for TRANSFORM.
4: Scheduled standard deviation σ̃(t) for the exploration noise
5: Training steps T , mini-batch size N , learning rate δ, target update rate τ , clip value c, TRANSFORM learning

rate δaug, MOMENTUM update rate τm
6: Training:
7: for each timestep t in 1..T do
8: σ̃t ← σ̃(t)
9: x′

t← TRANSFORM(xt,Gt) and σt ← 0
10: at ← πϕ(gξ(x

′
t)) + ϵ̃ and ϵ̃ ∼ G(0, σ̃t)

11: xt+1 ∼ P (·|xt,at)
12: D ← D ∪ (xt,at,R(xt,at),xt+1)
13: UPDATECRITIC(D, σ̃t)
14: UPDATEACTOR(D, σ̃t)
15: end for
16: procedure UpdateCritic(D, σ̃)
17: {(xt,at, rt:t+n−1,xt+n)}Ni=1 ∼ D
18: x′

t,x
′
t+n ← TRANSFORM(xt,Gt), TRANSFORM(xt+n,Gt)

19: st, st+n ← gξ(x
′
t), gξ(x

′
t+n)

20: sξ̄ ← gξ̄(xt)
21: Measure similarity by Lξ,ξ̄,ω

22: at+n ← πϕ(st+n) + ϵ̃ and ϵ̃ ∼ G(0, σ̃t)
23: Compute Jθ,ω(D) for Qθ and TRANSFORM updating
24: µ← µ− δaug∇µ(Jθ,ω,ξ(D)) # Learning µt, Line 6 in Algorithm 1.
25: σ ← σ − δaug∇σ(Jθ,ω,ξ(D)) # Learning σt, Line 6 in Algorithm 1.
26: ξ ← ξ − δ∇ξJθ,ω,ξ(D)
27: θ ← θ − δ∇θJθ,ω,ξ(D)
28: θ̂ ← (1− τ)θ̂ + τθ
29: ξ̄ ← (1− τm)ξ̄ + τmξ
30: end procedure
31: procedure UpdateActor(D, σ̃)
32: {xt}Ni=1 ∼ D
33: st ← gξ(TRANSFORM(xt,Gt))
34: at ← πϕ(st) + ϵ̃ and ϵ̃ ∼ clip(G(0, σ̃))
35: Update the actor using the sampled policy gradient
36: ∇ϕJ ≈ 1

N

∑
i∇aQ(s,a)|s=st,a=at∇ϕπ(s)|st

37: ϕ← ϕ− δ∇ϕJ
38: end procedure

16

Published as a conference paper at ICLR 2023

Table 2: We evaluate CoIT on the DMControl at 500k and 100k steps, compared with 4 baselines.
CoIT outperfoms on 8 of 7 tasks both in 500k and 100k steps.

500K Steps Scores CoIT DrQ-v2 CURL DDPG SAC

Cartpole swingup sparse 731± 95 733± 47 753± 38 584± 328 714± 25
Pendulum swingup 828± 2 814± 12 53± 56 641± 352 488± 445
Hopper stand 907± 29 886± 44 663± 377 370± 340 390± 152
Walker walk 958± 10 758± 410 916± 17 118± 146 107± 74
Quadruped walk 754± 56 657± 133 272± 215 126± 70 32± 12
Finger turn hard 509± 126 271± 240 121± 88 73± 46 60± 42
Hopper hop 386± 81 176± 97 135± 88 79± 72 11± 24
Walker run 585± 47 524± 118 394± 35 28± 3 71± 28

100K Steps Scores

Cartpole swingup sparse 697± 108 277± 380 480± 293 16± 36 21± 18
Pendulum swingup 786± 24 426± 392 3± 1 332± 358 221± 271
Hopper stand 627± 291 305± 339 460± 280 3± 3 252± 41
Walker walk 491± 258 321± 228 72± 93 465± 250 74± 74
Quadruped walk 176± 68 160± 66 147± 122 131± 28 54± 22
Finger turn hard 223± 87 58± 50 179± 135 73± 46 71± 36
Hopper hop 179± 35 34± 41 6± 10 2± 3 0± 0
Walker run 167± 11 201± 125 257± 15 26± 3 66± 24

C EXPERIMENTS

In this section, we explain the implementation details for CoIT in the DMControl setting. We use the
DDPG as the backbone RL algorithm objective and build on top of the implementation from Yarats
et al. (2021). We present in detail the hyperparameters for the architecture and optimization.

C.1 ACTOR AND CRITIC NETWORKS

The clipped double Q-learning (Van Hasselt et al., 2016; Fujimoto et al., 2018) is applied for the
critic, where each Q-function is parametrized as a 3-layer MLP with ReLU activations after each
layer except for the last. The actor is also a 3-layer MLP with ReLUs that outputs mean for the action.
The hidden dimension is set to 1024 for both the critic and the actor.

C.2 ENCODER NETWORK

The architecture of the encoder is based on the work of Yarats et al. (2019), which has four convolu-
tional layers with 3×3 kernels and 32 channels. The ReLU activation is applied after each conv layer.
We also utilize BatchNorm (Ioffe & Szegedy, 2015) after each activation rather than LayerNorm
(Ba et al., 2016) after a single fully-connected layer. The stride for the first conv layer is 2 while 1
for the rest. BatchNorm is also applied to normalize the fully-connected layer where the output
of the convent is fed into. Finally, the use of tanh nonlinearity and the initialization of weight are
consistent with the prior work. The actor and critic share the same encoder, although the encoder
only uses the gradients from the critic for updating.

C.3 PROJECTION NETWORK

To encode the feature map into a latent space for similarity metrics, we introduce a projection network
with its momentum version. The projection network is a 2-layer MLP with ReLU activations after
the first layer. We set the hidden dimension as 1024 for each layer and the output dimension for
contrastive loss is 128.

17

Published as a conference paper at ICLR 2023

C.4 TRANSFORMATION DETAILS

Following prior works, we stack n 84×84 RGB images as observations that involve the temporal
information to present the underlying state, where n is 4 in Atari100K and n is 3 in DMControl. For
transformation, we first expand the images to 92× 92 by padding 4 pixels at each side and then use
grid_sample with the TRANSFORM operator to interpolate them to the original size.

C.5 HYPERPARAMETERS

For fair comparisons, our hyper-parameters are as consistent with Yarats et al. (2021) as possible.
CoIT introduces two new hyperparameters α and λ to scale Kω(x

′
t) and Lξ,ξ̄,ω(D) in magnitude.

The overview of used hyper-parameters in Atari100K and DeepMind Control Suite is shown in Table
4 and Table 5. We also present the learning rate of TRANSFORM and hyper-parameters of Eq. 11 for
Atari100K in Table 3.

Table 3: An overview of used hyper-parameters for TRANSFORM of CoIT in Atari100K.

Game TRANSFORM-lr α λ

Alien 5e− 07 0.01 5e− 03
Amidar 2e− 06 0.01 5e− 03
Assault 2e− 05 2e− 03 5e− 03
Asterix 2e− 05 1e− 03 5e− 03
Bank Heist 2e− 05 0.01 5e− 03
Battle Zone 1e− 05 1e− 03 5e− 03
Boxing 5e− 07 1e− 03 1e− 03
Breakout 1e− 05 0.01 2e− 03
Chopper Command 1e− 05 0.01 5e− 03
Crazy Climber 2e− 05 2e− 03 0.01
Demon Attack 1e− 06 1e− 03 5e− 03
Freeway 5e− 06 0.01 5e− 03
Frostbite 1e− 05 2e− 03 5e− 03
Gopher 5e− 07 0.01 5e− 03
Hero 5e− 05 0.01 5e− 03
Jamesbond 2e− 04 0.01 5e− 03
Kangaroo 5e− 06 0.01 5e− 03
Krull 2e− 06 5e− 04 5e− 03
Kung Fu Master 1e− 04 1e− 03 0.05
Ms Pacman 5e− 07 0.01 5e− 03
Pong 5e− 07 5e− 03 0.02
Private Eye 5e− 07 1e− 03 5e− 03
Qbert 1e− 05 0.02 5e− 03
Road Runner 5e− 06 0.01 5e− 03
Seaquest 1e− 06 5e− 04 0.01
Up N Down 5e− 06 0.01 5e− 03

C.6 MIXED CONTRASTIVE INVARIANT TRANSFORMATION

To demonstrate the effect of stabilizing the reward function by the Theorem 4.2, we present the results
in Figure 5 and Figure 6 for comparisons between two versions of CoIT: (i) w/o mix. CoIT with
single transformed data and (ii) mix=2. We use the transformation to produce 2 transformed data
x1
t ,x

2
t , and mix them after encoding:

x′
t = η · x1

t + (1− η) · x2
t (25)

where η is a parameter randomly sampled from (0, 1) and gξ denotes the online encoder.

In most scenarios, they gain similar performance with excellent stability. However, in the situation
with sparse reward settings like Cartpole Swingup Sparse, CoIT without mixed data becomes
extremely unstable, while CoIT for mixing 2 transformed data still gains outstanding performance.

18

Published as a conference paper at ICLR 2023

Table 4: An overview of used hyper-parameters in Atari100K experiments.

Hyperparameter Setting
Image size (84, 84)
Replay buffer capacity 105

Training frames 4× 105

Training steps 105

Frame skip 4
Stacked frames 4
Action repeat 4
Replay period every 1
Encoder: channels 32, 64
Encoder: filter size 5× 5, 5× 5
Encoder: stride 5, 5
Encoder: hidden dim 256
Momentum (EMA for CoIT) 0.001
Non-linearity ReLU
Reward Clipping [−1, 1]
Multi-step return 20
Minimum replay size for sampling 1600
Max frames per episode 108K
Update Distributional Double Q
Target Network Update Period every 2000 updates
Support-of-Q-distribution 51 bins
Mini-batch size 32
Discount γ 0.99
Optimizer Adam
Optimizer: learning rate 10−4

Optimizer: β1 0.9
Optimizer: β2 0.999
Optimizer ϵ 0.000015
Max gradient norm 10
Exploration Noisy Nets
Noisy nets parameter 0.1
Priority exponent 0.5
Priority correction 0.4 → 1
Critic Q-function soft-update rate τ 0.01
Similarity dim. 128

19

Published as a conference paper at ICLR 2023

Table 5: An overview of used hyper-parameters in DeepMind Control Suite experiments.

Hyperparameter Setting
Image size (84, 84)
Replay buffer capacity 106

Stacked frames 3
Action repeat Hopper Hop:4

2
Seed frames 4000
Exploration steps 2000
n-step returns 3
Mini-batch size 256
Discount γ 0.99
Optimizer Adam
Learning rate 10−4

Augmentation learning rate Hopper Hop: 1× 10−6

2× 10−6

Agent update frequency 2
Critic Q-function soft-update rate τ 0.01
Momentum τm 0.0001
α 0.01
λ 0.005
Features dim. 50
Hidden dim. 1024
Similarity dim. 128
Exploration stddev. clip 0.3
Exploration stddev. schedule linear(1.0, 0.1, 100000) for 1M frames

linear(1.0, 0.1, 500000) for 3M frames

Figure 5: Comparisons between CoIT and its variants of without mix on the DMControl.

This appearance demonstrates that our mixed CoIT greatly stabilizes the training process, especially
in sparse reward settings.

20

Published as a conference paper at ICLR 2023

Figure 6: Comparisons between CoIT and its variants of without mix on Atari100K. To show the
improvement of data mixing, we normalized the score of the no-mixed variants and plot the mean
and std. The results are based on 10 runs of the outperformed tasks via CoIT.

Figure 7: Comparisons between CoIT and its variants with different normalization for projection.

C.7 TYPES OF NORMALIZATION FOR PROJECTION

In this section, we compare CoIT to its two variants with different types of normalization in the
projection network for similarity metrics, (i) CoIT with LN which using the LayerNorm after the first
fully-connected layer, (ii) CoIT with BN which utilizing the BatchNorm after every fully-connected
layer. We conduct experiments on 6 pixel-based continuous control tasks in the DMControl and
present the results in Figure 7. Here we see that the original CoIT outperforms on each task and the
performance of CoIT with BN is pretty close to the original CoIT. There is a score gap between the
CoIT with LN and the original CoIT. This indicates that the specifically designed network architecture
is beneficial to the RL performance.

21

Published as a conference paper at ICLR 2023

Figure 8: Comparisons between CoIT and its variants with different contrastive loss.

C.8 TYPES OF SIMILARITY METRIC

We choose different types of contrastive loss for similarity metric and present results in Figure 8.
We utilize the infoNCE loss which is widely used in self-supervised learning (He et al., 2020; Chen
et al., 2020) and conduct a variant called CoIT with infoNCE. As shown in Figure 8, the original
which optimizes the contrastive loss proposed in Grill et al. (2020) outperforms on each task in the
DMControl. This indicates that naively making negative samples dissimilar may not be soundness.

C.9 EFFECTS OF DIFFERENT COMPONENTS IN OBJECT FUNCTION

Here we conduct experiments to study the effects of different components in object function for CoIT
on extra 4 tasks in Figure 9. As mentioned before, we divide CoIT into 4 versions and show the
performance impact of two auxiliary losses in CoIT separately: (i) Critic. Transformation is only
updated with the critic. (ii) X-stats & Critic. Transformation is updated by critic and Kω(x

′
t) together.

(iii) H-dist & Critic. Transformation is updated by critic and Lξ,ξ̄,ω together. (iv) Unified Objective.
The transformation will be updated by all components.

From the curves, we demonstrate that both Kω(x
′
t) and Lξ,ξ̄,ω are sufficient for data-efficiency

improvement and combining them together achieves remarkable performance and stability. We
also find that Critic is facing performance degradation and is hard to improve the asymptotical
performance in some domains. We consider that during the end of training the Gaussian distribution
Gt(µt, σt) converges to a small boundary, thus the produced virtual data is augmented in a slight
amplitude. This makes the CoIT run into a situation similar to vanilla SAC & DDPG: updating by
reward signal purely is quite unfavorable for representation learning as the agent focuses on slight
reward-relevant information. For this reason, we introduce Kω(x

′
t) and Lξ,ξ̄,ω to assist the agent to

learn meaningful representations and stabilize the reward function.

C.10 SALIENCY MAPS

To better present the representations learned by CoIT, we present the saliency maps on the augmented
data (e.g., Random Shift) of the encoder for 6 tasks on the DMControl in Figure 10.

These saliency maps demonstrate that CoIT is beneficial for the agent to focus on task-relevant
elements like the whole robot body and ignore the task-irrelevant information like the floor and
background. What’s more, the agent trained with CoIT pays high attention to the reward-relevant
signals while still taking note of other components that are useful for the task at hand. In Finger
Turn Hard, for instance, the lightest part in the saliency map is a red ball in the observation, which

22

Published as a conference paper at ICLR 2023

Figure 9: Experiments for studying the effects of different components in object function.

is highly related to the reward. However, the agent also focuses on the robot’s body for reasonable
action taking. This appearance inspires us that excellent representation learning is a trade-off: the
agent needs to figure out which elements are highly related to the reward while still concerned with
as much information as possible.

Figure 10: Saliency maps for CoIT on 6 tasks: (a) Cartpole Swingup Sparse, (b) Hopper Stand, (c)
Walker Run, (d) Cheetah Run, (e) Quadruped Walk, and (f) Finger Turn Hard.

D CONNECTION TO BATCH NORMALIZATION

Batch normalization (BatchNorm) aims to alleviate the shift caused by the randomness of input data
for neural network layers, which is called as internal covariate shift. In particular, the change of
means and variances of the distributions in each layer during mini-batch training creates the problem
that parameters are sensitive to the initialization and required to consistently adapt to the distributions.
Normalization by batch statistics employs the empirical mean and variance on the feature scalar,

µB =
1

m

m∑
i=1

xi, σ2
B =

1

m

m∑
i=1

(xi − µB)
2 (26)

where B denotes a mini-batch of size m in training. Then, the feature dimension of each layer is
normalized by,

x̂
(k)
i =

x
(k)
i − µ

(k)
B√

σ
(k)
B

2
+ ϵ

(27)

where ϵ is a small constant added for numerical stability, k ∈ [1, d] is the index of feature dimensions
d, and i is the index of data points. A counterpart procedure of the inner batch normalization is

23

Published as a conference paper at ICLR 2023

whitening which is non-differential everywhere making the mean of 0 and the variance of 1 for the
distribution. In turn, given the distribution with mean µB and variance σ2

B , it is straightforward that the
deviation given by ∥xi− x̂i∥ is associated with the value of xi and the collection of wB = {µB , σB}.

Different with the goal of whitening procedure with 0-mean and 1-variance, the automatic data
augmentation needs to find an optimal interpolation x′ obey certain distribution with unknown mean
µ and variance σ2. As the given environment is non-stationary, the distribution for data generation
is shifted with respect to the parameter sets wt = {µt, σt}, where t denotes a timestep. To cope
with the assumption of a stationary environment using the replay buffer in off-policy methods, the
automatic data augmentation allows a new dynamic distribution controlling by the model-free RL. In
other words, the dynamics of the normalization derive from the observation distribution conditioned
on the changed environment.

Concretely, the augmented data x′ ∼ D̂′ is parameterized through the Gaussian distribution G(µ, σ),
as the Algorithm 1 shown. Similar to BatchNorm, ∥x−x′∥ is determined by the value of the original
image x and the dynamically changed {µt, σt}. As a consequence, a normalized shift distribution
conditioned on the values of the replay buffer is obtained for the current training round.

24

	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning from Observations
	Q Learning
	State Abstraction

	The CoIT
	Learnable Invariant Transformation
	Optimal State Abstraction
	Parameterizable Observation
	Stabilizing Reward Function
	Learning Contrastive Invariant Transformation

	Experiments
	Environments
	Baselines
	Main Results
	Ablation Studies

	Conclusion
	Missing Proofs
	Pseudocode
	Experiments
	Actor and Critic Networks
	Encoder Network
	Projection Network
	Transformation Details
	Hyperparameters
	Mixed Contrastive Invariant Transformation
	Types of Normalization for Projection
	Types of Similarity Metric
	Effects of Different Components in Object Function
	Saliency Maps

	Connection to Batch Normalization

