
A PT-suitable reference family

Assumption A.1 (PT-suitable reference). We say π0 is PT-suitable for the target π1 if:

1. (Full support): supp(π0) = supp(π1).

2. (Regularity): The log-likelihood ratio between π1 and π0, ℓ(x) = log π1(x)
π0(x)

satisfies,

max{E0[|ℓ|3], E1[|ℓ|3]} <∞.

where we denote E0, and E1 as the expectation with respect to π0 and π1 respectively.

We say that a family Q = {qϕ : ϕ ∈ Φ} is PT-suitable for the target π1 if for all ϕ the conditions
above hold with qϕ in place of π0.

Assumption A.2 (Efficient local exploration). Suppose π0 is a PT-suitable reference for π1, with
log-likelihood ℓ(x) = log π1(x)− log π0(x) and schedule BN . Let Xt = (X0

t , . . . , X
N
t ) be the PT

chain stationary with respect to

π(x) =
N∏

n=0

πβn
(xn)

and Kβn
be the πβn

-stationary Markov kernel for the local exploration step. We will say Xt efficiently
explores locally if [36, Section 3.3],

1. Stationarity: X0 ∼ π.

2. Efficient local exploration (ELE) : For all n and t, if X̄n
t ∼ Kβn

(Xn
t ,dx̄), then ℓ(Xn

t ) is
independent of ℓ(X̄n

t ).

B Large-data Asymptotics

B.1 Conditional convergence in distribution

Suppose (X , dX ) is a metric space and let X,X1, X2, . . . be random variables taking values in X .
Define a sequence of σ-algebras (Fm)∞m=1 such that Fm ⊂ Fm+1. As m → ∞, we say Xm|Fm

converges in distribution to X , denoted Xm|Fm
d−→ X , if for all bounded and continuous f : X → R,

E[f(Xm)|Fm]
a.s.−−−−→

m→∞
E[f(X)].

Similarly, we define conditional convergence in probability, denoted Xm|Fm
p−→ X , if for all ϵ > 0,

P(dX (Xm, X) > ϵ|Fm)
a.s.−−−−→

m→∞
0.

Lemma B.1 (Conditional portmanteau lemma). The following are equivalent:

1. Xm|Fm
d−→ X as m→∞.

2. E[f(Xm)|Fm]
a.s.−−→ E[f(X)] as m→∞, for all bounded Lipschitz functions f : X → R.

3. P[Xm ∈ A|Fm]
a.s−−→ P[X ∈ A] as m→∞ for all A ⊂ X such that P[X ∈ ∂A] = 0.

The proof of this Lemma is identical to the portmanteau lemma for weak convergence by replacing
probabilities/expectations with conditional probabilities/expectations (for example, see [38, Section
2.1]).
Lemma B.2. Suppose X,X1, X2, . . . and X ′, X1, X2, . . . are X -valued random variables. Then,
the following hold:

1. If Xm|Fm
d−→ X as m→∞ then Xm

d−→ X .
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2. If Xm|Fm
p−→ X as m→∞ then Xm

p−→ X .

3. If Xm|Fm
p−→ X as m→∞ then Xm|Fm

d−→ X .

4. If Xm|Fm
d−→ X as m→∞, and X is a constant a.s., then Xm|Fm

p−→ X .

5. Fatou’s lemma: If Xm|Fm
d−→ X as m→∞, then for all f : X → [0,∞),

lim inf
m→∞

E[f(Xm)|Fm] ≥ E[f(X)], a.s.

6. Continuous mapping theorem: If X ′ is a metric space and g : X → X ′ is a continuous
function, then

Xm|Fm
d−−−−→

m→∞
X =⇒ g(Xm)|Fm

d−−−−→
m→∞

g(X).

7. Slutsky’s theorem: If Xm|Fm
d−→ X and dX (X ′

m, Xm)|Fm
p−→ 0, then X ′

m|Fm
d−→ X .

8. Suppose X = Rd, with Xm|Fm
d−→ X . Suppose A,A1, · · · ∈ Rd×d such that A,Am ∈ Fm

and as m→∞ Am
a.s.−−→ A, where A is a constant. Then,

AmXm|Fm
d−−−−→

m→∞
AX.

Proof of Lemma B.2. 1. For any bounded and continuous f ,

lim
m→∞

E[f(Xm)] = E
[
lim

m→∞
E[f(Xm)|Fm]

]
= E[f(X)],

We can exchange the expectation and limit by the dominated convergence theorem.

2. For ϵ > 0,

P(dX (Xm, X) > ϵ) = E[P(dX (Xm, X) > ϵ|Fm)]

Since P(dX (Xm, X) > ϵ|Fm)
a.s.−−→ 0 as m→∞, the result follows from the dominated

convergence theorem.

3. Let f be a κ-Lipschitz function bounded by M . Let ϵ > 0,

|E[f(Xm)− f(X)|Fm]| ≤ E[|f(Xm)− f(X)|1(dX (Xm, X) ≤ ϵ)|Fm]

+ E[|f(Xm)− f(X)|1(dX (Xm, X) > ϵ)|Fm]

= κϵ+ 2MP(dX (Xm, X) > ϵ|Fm).

Since Xm
p−→ X as m→∞, we have P(dX (Xm, X) > ϵ|Fm)

a.s.−−→ 0, therefore

lim
m→∞

|E[f(Xm)− f(X)|Fm]| ≤ κϵ, a.s.

The result follows by taking ϵ→ 0.

4. Since X is a.s. constant there exits x0 such that P(X = x0) = 1. Then for all ϵ > 0, if
Aϵ = {x : dX (x, x0) > ϵ}, we have P(X ∈ Aϵ) = 0. Since Xm|F d−→ X , we have

P(dX (Xm, X) > ϵ|Fm) = P(Xm ∈ Aϵ|Fm)
a.s.−−−−→

m→∞
P(X ∈ Aϵ) = 0.

5. We adapt the proof of Fatou’s lemma that holds for random variables that converge in
distribution instead of almost surely adapted from [19, Lemma 5.11].

For any K > 0, we have x → x ∧ K is a bounded and continuous function. Since
Xm|Ym

d−→ X , this implies that, almost surely,

lim inf
m→∞

E[Xm|Fm] ≥ lim
m→∞

E[Xm ∧K|Fm] = E[X ∧K].
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Since this is true for any K, and X ∧K a.s.−−→ X as K →∞, by the monotone convergence
theorem,

lim inf
m→∞

E[Xm|Fm] ≥ lim
K→∞

E[X ∧K] = E[X].

6. Fix any bounded and continuous f : X ′ → R. Because f ◦ g : X → is a bounded and
continuous function, and Xm|Fm

d−→ X , we have,

E[f(g(Xm))|Fm]
a.s.−−−−→

m→∞
E[f(g(X))].

7. Let f be a κ-Lipschitz function bounded by M . By triangle inequality,

|E[f(X ′
m)− f(X)|Fm]| ≤ E[|f(X ′

m)− f(Xm)||Fm]|+ |E[f(Xm)− f(X)|Fm]|.

Since Xm
d−→ X , we have E[f(Xm) − f(X)|Fm]

a.s.−−→ 0. Also for all ϵ > 0, let Aϵ,m =
{dX (Xm, X ′

m) ≤ ϵ}. Note that

E[|f(Xm)− f(X ′
m)||Fm] = κE[|f(Xm)− f(X ′

m)|1(Aϵ,m)|Fm]

+ E[|f(Xm)− f(X ′
m)|1(Ac

ϵ,m)|Fm]

≤ κϵ+ 2MP(Ac
ϵ,m|Fm)

Since dX (Xm, X ′
m)|Fm

p−→ 0, we have P(Ac
ϵ,m|Fm)

a.s−−→ 0. Also since Xm|Fm
d−→ X , we

have E[f(Xm)− f(X)|Fm]
a.s.−−→ 0.

8. Fix ϵ > 0. Note that

P (∥Am −A∥ > ϵ|Fm) = E[1(∥Am −A∥ > ϵ)|Fm]

= 1(∥Am −A∥ > ϵ)

→ 0 a.s.

This implies Am|Fm
p−→ A as m→∞.

Note that (Xm, A)|Fm
d−→ (X,A) by the continuous mapping theorem with x → (x,A).

Next, note that ∥(Xm, Am)− (Xm, A)∥ = ∥Am −A∥, where use the matrix element-wise
Euclidean norm. We are given that Am|Fm

p−→ A. We now show that (Xm, Am)|Fm
d−→

(X,A). To this end, note that

(Xm, A)|Fm
d−→ (X,A), (0, Am)|Fm

p−→ (0, A).

Because ∥(Xm, Am)− (Xm, A)∥ = ∥(0, Am −A)∥ = ∥Am −A∥ and Am|Fm
p−→ A, we

have by Slutsky’s theorem (Xm, Am)|Fm
d−→ (X,A). The result follows by an application

of the continuous mapping theorem with the function (x,A)→ Ax.

B.2 Model assumptions

The following sets of assumptions are only used to prove the large-data limit results of Proposition 3.1,
Proposition 3.2, and Proposition 3.3. We suppose the data is Ym = {Yi}mi=1 drawn i.i.d. from
distribution L(y;x0)dy, where L(y;x) defines a statistical model parametrized by x ∈ X where X
is an open subset of Rd. We denote the log-likelihood function ℓ and ℓm for the model and data
respectively as,

ℓ(y;x) = logL(y;x), ℓm(x) =

m∑

i=1

ℓ(Yi;x)

We denote xMLE,m to be the maximum likelihood estimator

xMLE,m ∈ argmax
x

ℓm(x).
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We will use ℓ′ and ℓ′′ to denote the gradient and Hessian of ℓ with respect to x, and use I(x) to denote
the Fisher information matrix,

I(x) = −E[ℓ′′(Y ;x)] = −
∫

ℓ′′(y;x)L(y;x)dy,

and Im(x) for the observed information,

Im(x) = −ℓ′′m(x) = −
m∑

i=1

ℓ′′(Yi;x).

We will always use a subscript m to indicate that the quantity is dependent on the data.

Given a prior π0 distribution over X , we define the posterior, π1,m with density conditional on Ym,

π1,m(x) ∝ π0(x)

m∏

i=1

L(Yi;x) = π0(x) exp(ℓm(x)).

We will use πβ,m to denote the power posterior

πβ,m ∝ π0(x) exp(βℓm(x)).

For the remainder of this section we will assume the following regularity conditions.

Assumption B.3.

1. Euclidean state space: X ⊂ Rd has an open set containing x0.

2. Continuity of prior density: The prior density π0 is continuous and positive in a neighbour-
hood of x0.

3. Regularity of log-likelihood: There is K > 0, such that for ∥x − x0∥ ≤ K, ℓ(y;x)
continuously 3 times differentiable, and there is a M(y) such that,

|ℓ′′′(y;x)| ≤M(y),

∫
M(y)L(y;x0)dy <∞.

4. Score at the MLE: For all m, xMLE,m exists, is unique, and ℓ′m(xMLE,m) = 0 almost surely.

5. Strong consistency of MLE: xMLE,m
a.s.−−→ x0 as m→∞.

6. Fisher information: I(x) is positive definite and continuous on a neighbourhood of x0.

7. PT-Suitable: For all m, both π0 and Q are almost surely PT-suitable for the posterior π1,m

(see Assumption A.1).

8. Efficient local exploration: For all m, the PT chain with target π1,m and references in
{π0} ∪ Q, efficiently explore locally almost surely (see Assumption A.2).

9. Bernstein-von Mises: For 0 < β ≤ 1 and Xβ,m ∼ πβ,m and Ym
iid∼ L(·;x0),

m1/2(Xβ,m − xMLE,m)|Ym
d−→ Z,

where Z = N(0, β−1I(x0)
−1).

Note that Assumption B.3.9 at β = 1 can be satisfied by introducing appropriate regularity conditions.
See the paper “Asymptotic Normality, Concentration, and Coverage of Generalized Posteriors” by
Miller (2021) for some possible conditions. For 0 < β < 1, the result for the power posterior holds
by noting that the tempered log-likelihood is β · ℓ and by invoking Bernstein-von Mises results on the
tempered log-likelihood under model misspecification (where the true data generating mechanism is
based on the non-tempered likelihood). Such results for model misspecification are also available in
the mentioned paper.
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B.3 Preliminary results

We start off with an expansion of the log-likelihood, ℓ, about the MLE, xMLE,m. Define

Qm(x) = −1

2
· (x− xMLE,m)⊤Im(xMLE,m)(x− xMLE,m).

We bound the difference between the log-likelihood at the MLE and the second-order term in the
expansion of the log-likelihood.

Lemma B.4. Suppose Assumption B.3 holds. Then,

1. m−1Im(xMLE,m)
a.s.−−→ I(x0) as m→∞.

2. For all ∥x− x0∥ < K/2, we have a.s. there is an m̄ large enough such that for m ≥ m̄

ℓm(x) = ℓm(xMLE,m) +Qm(x) + ϵm(x)

for some ϵm(x) satisfying

|ϵm(x)| ≤ Mm

3
· ∥x− xMLE,m∥3,

and M =
∫
M(y)L(y;x0)dy <∞.

3. For any sequence of random variables, Xm, such that m1/2(Xm − xMLE,m)|Ym
d−→ X for

some random variable X , we have

ϵm(Xm)|Ym
p−→ 0,

π0(Xm)|Ym
p−→ π0(x0).

Proof of Lemma B.4. 1. By the triangle inequality,

∥m−1Im(xMLE,m)− I(x0)∥ ≤ ∥m−1Im(xMLE,m)−m−1Im(x0)∥
+ ∥m−1Im(x0)− I(x0)∥.

We will now show that each term converges to 0 a.s.

Since xMLE,m
a.s.−−→ x0, we have a.s., for m large enough ∥x0 − xMLE,m∥ < K. Therefore

by the mean-value theorem,

∥m−1Im(xMLE,m)−m−1Im(x0)∥ =
1

m

m∑

i=1

∥ℓ′′(Yi;xMLE,m)− ℓ′′(Yi;x0)∥

≤ 1

m

m∑

i=1

M(Yi)∥xMLE,m − x0∥.

Since xMLE,m
a.s.−−→ x0, and 1

m

∑m
i=1 M(Yi)

a.s.−−→
∫
M(Y )L(y;x0)dy <∞, we have

∥m−1Im(xMLE,m)−m−1Im(x0)∥ a.s.−−−−→
m→∞

0.

By the strong law of large numbers we have

m−1Im(x0) =
1

m

m∑

i=1

ℓ′′(Yi;x0)
a.s.−−−−→

m→∞

∫
ℓ′′(y;x0)L(y;x0)dy = I(x0).

This implies

∥m−1Im(x0)− I(x0)∥ a.s.−−−−→
m→∞

0.
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2. We use a second-order expansion around xMLE,m and Assumption B.3.4 to get,

ℓm(x) = ℓm(xMLE,m) + (x− xMLE,m)⊤ℓ′m(xMLE,m) +Qm(x) + ϵm(x)

= ℓm(xMLE,m) +Qm(x) + ϵm(x),

for some ϵm(x) satisfying,

|ϵm(x)| ≤ Mm

6
∥x− xMLE,m∥3.

where Mm = sup{|ℓ′′′m(ξ)| : ∥ξ − xMLE,m∥ < ∥x − xMLE,m∥}. We are done if we can
show that Mm ≤ 2Mm.

Suppose ∥ξ − xMLE,m∥ < ∥x− xMLE,m∥. Then, by triangle inequality,

∥ξ − x0∥ ≤ ∥ξ − xMLE,m∥+ ∥xMLE,m − x0∥
≤ ∥x− xMLE,m∥+ ∥xMLE,m − x0∥
≤ ∥x− x0∥+ ∥x0 − xMLE,m∥+ ∥xMLE,m − x0∥

<
K

2
+ 2∥x0 − xMLE,m∥

By the strong consistency of the MLE Assumption B.3.5, we have a.s. there is an m0 large
enough such that for m ≥ m0, ∥xMLE,m − x0∥ < K/4 and thus ∥ξ − x0∥ < K. This
means that Assumption B.3.3 implies,

|ℓ′′′m(ξ)| ≤
M∑

i=1

|ℓ′′′(Yi; ξ)| ≤
m∑

i=1

M(Yi).

Since Yi ∼ L(y;x0)dy, the law of large numbers implies m−1
∑m

i=1 M(Yi) converges a.s.
to M as m→∞. Almost surely, there is an m̄ ≥ m0 such that for m ≥ m̄,

1

m

m∑

i=1

M(Yi) < 2M <∞.

Therefore, Mm ≤ 2mM , which completes the proof.

3. Note that ϵm(Xm) satisfies almost surely for m large enough,

|ϵm(Xm)| ≤ M

3m1/2
∥m1/2(Xm − xMLE,m)∥3.

By the conditional continuous mapping theorem, Lemma B.2.6,

∥m1/2(Xm − xMLE,m)∥3|Ym
d−→ ∥X∥3,

and ϵm(Xm)|Ym
d−→ 0 and hence also ϵm(Xm)|Ym

p−→ 0 and ϵm(Xm)
p−→ 0 by

Lemma B.2.4.

Also note that m1/2(Xm−xMLE,m)|Ym
d−→ X implies Xm−xMLE,m|Ym

p−→ 0, and hence
by the continuous mapping theorem, π0(Xm)|Ym

p−→ π0(x0).

Next, we claim that the second-order term in the expansion of the log-likelihood around the MLE eval-
uated at an appropriate random variable converges to a transformed chi-squared random variable. This
result will be used repeatedly in the proofs of Proposition 3.1, Proposition 3.2, and Proposition 3.3.
Lemma B.5. Suppose Assumption B.3 holds. If Xβ,m, X ′

β,m ∼ πβ,m, are independent conditioned
on Ym, then for all 0 < β ≤ 1 we have as m→∞:

1. ϵm(Xβ,m)|Ym
p−→ 0.

2. Qm(Xβ,m)|Ym
d−→ −Q/(2β), where Q ∼ χ2

d.
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3. Qm(Xβ,m)−Qm(X ′
β,m)|Ym

d−→ 1

2β
(Q−Q′), where Q,Q′ iid∼ χ2

d.

4. ℓm(Xβ,m)− ℓm(X ′
β,m)|Ym

d−→ 1

2β
(Q−Q′),, where Q,Q′ iid∼ χ2

d.

Proof of Lemma B.5. 1. This follows immediately Assumption B.3.9. and Lemma B.4.3.

2. Note that we can decompose Qm as

Qm(Xβ,m) = −1

2
[m1/2(Xβ,m − xMLE,m)]⊤

[
1

m
Im(xMLE,m)

]
[m1/2(Xβ,m − xMLE,m)].

By Assumption B.3.9 we have,

m1/2(Xβ,m − xMLE,m)|Ym
d−−−−→

m→∞
N(0, β−1I−1(x0)),

and m−1Im(xMLE,m)
a.s.−−→ I(x0) by Assumption B.3.6. By Lemma B.2.7 and B.2.6 we

get,

Qm(Xβ,m)|Ym
d−−−−→

m→∞
−Q/(2β),

where Q ∼ χ2
d.

3. Note that for any 0 < β ≤ 1, by using the arguments as above,

Qm(Xβ,m)|Ym
d−→ −Q/(2β)

Qm(X ′
β,m)|Ym

d−→ −Q/(2β),

where Q ∼ χ2
d. Each of the Xβ,m, X ′

β,m are assumed to be conditionally independent given
the data Ym, and therefore

Qm(Xβ,m)−Qm(X ′
β,m)|Ym

d−−−−→
m→∞

(Q−Q′)/(2β),

where Q,Q′ ∼ χ2
d are independent.

4. Finally, we employ Lemma B.4.2 and triangle inequality to get,
∣∣[ℓm(Xβ,m)− ℓm(X ′

β,m)]− [Qm(Xβ,m)−Qm(X ′
β,m)]

∣∣ ≤ |ϵm(Xβ,m)|+ |ϵm(X ′
β,m)|

By part Lemma B.5.1, we have ϵm(Xβ,m)|Ym
p−→ 0 and ϵm(X ′

β,m)|Ym
p−→ 0 so

[
ℓm(Xβ,m)− ℓm(X ′

β,m)
]
−
[
Qm(Xβ,m)−Qm(X ′

β,m)
]
|Ym

p−→ 0.

By Lemma B.5.3 and the conditional Slutsky’s theorem Lemma B.2.7,

ℓm(Xβ,m)− ℓm(X ′
β,m)|Ym

d−−−−→
m→∞

(Q−Q′)/(2β).

B.4 Proof of Proposition 3.1

Proof of Proposition 3.1. The asymptotic restart rate, τm, is related to the GCB by

τm =
1

2 + 2Λ(π0, π1,m)
,

where Λ(π0, π1,m) is the GCB between the prior π0 and the posterior π1,m. This implies that

0 ≤ lim sup
m→∞

τm ≤
1

2 + 2 lim infm→∞ Λ(π0, π1,m)
.

Therefore, we are are done if we can show that lim infm→∞ Λ(π0, π1,m) =∞ almost surely.

20



Suppose Xβ,m, X ′
β,m ∼ πβ,m are independent conditioned on Ym. Then,

Λ(π0, π1,m) =
1

2

∫ 1

0

E[|ℓm(Xβ,m)− ℓ(X ′
β,m)||Ym]dβ.

Since the integrand is positive, for any δ > 0,

Λ(π0, π1,m) ≥ 1

2

∫ 1

δ

E[|ℓm(Xβ,m)− ℓ(X ′
β,m)||Ym]dβ

By taking the limit infimum of both sides, and using Fatou’s lemma,

lim inf
m→∞

Λ(π0, π1,m) ≥ 1

2

∫ 1

δ

lim inf
m→∞

E[|ℓm(Xβ,m)− ℓ(X ′
β,m)||Ym]dβ.

From Lemma B.5.4 and the conditional continuous mapping theorem Lemma B.2.6 applied to
x→ |x|, we have

|ℓm(Xβ,m)− ℓ(X ′
β,m)||Ym

d−−−−→
m→∞

|Q−Q′|
2β

, Q,Q′ ∼ χ2
d.

By Lemma B.2.5, almost surely we have

lim inf
m→∞

Λ(π0, π1,m) ≥ 1

2

∫ 1

δ

1

2β
E [|Q−Q′|] dβ = −1

4
E [|Q−Q′|] log(δ).

Since this is true for all δ > 0, and since the right hand side increases to infinity at δ → 0, we have
almost surely,

lim inf
m→∞

Λ(π0, π1,m) ≥ lim
δ→0
−1

4
E [|Q−Q′|] log(δ) =∞.

B.5 Proof of Proposition 3.2

Lemma B.6. Assume π0 is a PT-suitable reference for π1, with log-likelihood ℓ.

1. If Lβ = ℓ(Xβ), for Xβ ∼ πβ , then Lβ is stochastically non-decreasing in β, i.e. for all
y ∈ R, P(Lβ > y) is a non-decreasing function of β.

2. Let r(β, β′) be a mean rejection rate for a swap between πβ , πβ′ ,

r(β, β′) = 1− E
[
1 ∧ πβ(Xβ′)πβ′(Xβ)

πβ(Xβ)πβ′(Xβ′)

]
, (Xβ , Xβ′) ∼ πβ × πβ′ .

If [a, b] ⊂ [a′, b′] ⊂ [0, 1], then r(a, b) ≤ r(a′, b′).

Proof of Lemma B.6. 1. Fix y ∈ R, and 0 ≤ β < β′ ≤ 1. We want to show that

0 ≤ P[Lβ′ > y]− P[Lβ > y] = E[f(Lβ , Lβ′)],

where f(l, l′) = 1(l′ > y)− 1(l > y). We have

E[f(Lβ , Lβ′)] =

∫
f(ℓ(x), ℓ(x′))

1

Z(β)
exp(βℓ(x))

1

Z(β′)
exp(β′ℓ(x′))dx dx′

=
Z(β)

Z(β′)
E[f(L,L′) exp(δL′)],

where L,L′ d
= ℓ(Xβ) are independent and δ = β′ − β > 0. Now, notice that

f(l, l′) = 1(l′ > y)− 1(l > y)

= 1(l′ > y)1(l ≤ y)− 1(l > y)1(l′ ≤ y).
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Therefore, we have

E[f(L,L′) exp(δL′)] = E[1(L′ > y)1(L ≤ y) exp(δL′)]

− E[1(L > y)1(L′ ≤ y) exp(δL′)]

= E[1(L′ > y)1(L ≤ y)(exp(δL′)− exp(δL))]

≥ 0,

where the second to last line used the fact that L,L′ are i.i.d.

2. To simplify notation, suppose first a = a′. Denote the cumulative distribution function of Lβ

by Fβ . From (a), we have that Fb ≥ Fb′ . It follows that we can construct a random variable
L′ which is equal in distribution to Lb′ and such that Lb(ω) ≤ L′(ω) for all outcomes ω in
the probability space. This is achieved by setting L′ = F−1

Lb′
◦FLb

◦Lb, where F−1 denotes
the generalized inverse cumulative function. To see why, note that FLb

◦ Lb is uniformly
distributed, being a probability integral transform. Hence F−1

Lb′
applied to that uniform yields

a Lb′ -distributed random variable. The inequality Lb(ω) ≤ L′(ω) follows from Fb ≥ Fb′ .

Next, define f(δ) = 1 − 1 ∧ exp(−δ), which is an increasing function in δ. Hence,
f((b− a)(Lb − La) ≤ f((b− a)(L′ − La) for all outcomes, and so

r(a, b) = E[f((b− a)(Lb − La))] ≤ E[f((b− a)(L′ − La))] = r(a, b′),

where in the last equality we also used that L′ is independent of La, being a deterministic
transformation of the random variable Lb. Finally, if a < a′, use r(a, b) ≤ r(a, b′) ≤
r(a′, b′) where the last inequality is obtained using a very similar argument as above.

Lemma B.7. Suppose Q is almost surely a PT-suitable reference family for all targets π1,m. Also
assume that for all m, the PT chain with target π1,m and references Q, efficiently explore locally
almost surely. Given a (random) sequence qm ∈ Q, if αm is the average acceptance probability
between qm and π1,m, then if αm

p−→ 1, then for any BN , we have τm(BN )
p−→ 1

2 as m→∞.

Proof of Lemma B.7. For any schedule Bn = (βn)
N
n=0, let {rn,m}N−1

n=0 be the average rejection rates
between components n and n+ 1. For any n, we have by Lemma B.6,

0 ≤ rn,m ≤ 1− αm.

Since αm
p−→ 1, we have rn,m

p−→ 0 as m→∞ and

τm(BN ) =
1

2 + 2
∑N−1

n=0
rn,m

1−rn,m

p−−−−→
m→∞

1/2.

Lemma B.8. Suppose Assumption B.3 holds and X0,m ∼ N(xMLE,m, Im(xMLE,m)−1). Then, as
m→∞,

m1/2(X0,m − xMLE,m)|Ym
d−→ N (0, I−1(x0)).

Proof of Lemma B.8. Since X0,m ∼ N(xMLE,m, Im(xMLE,m)−1),

m1/2 · I
1/2
m (xMLE,m)

m1/2
· I−1/2(x0)(X0,m − xMLE,m)|Ym ∼ N (0, I−1(x0)).

By Lemma B.4.1 and Assumption B.3.5, we have

I
1/2
m (xMLE,m)

m1/2
· I−1/2(x0)

a.s.−−−−→
m→∞

Id.

By Lemma B.2.7 it follows,

m1/2(X0,m − xMLE,m)|Ym
d−→ N (0, I−1(x0)).
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Proof of Proposition 3.2. Let qm = N(xMLE,m, I−1
m (xMLE,m)) ∈ Q. The acceptance probability

αm is

αm = E [1 ∧Am(X0,m, X1,m)|Ym] ,

where Am(X0,m, X1,m) is the acceptance ratio,

Am(X0,m, X1,m) =
qm(X1,m) · π1,m(X0,m)

qm(X0,m) · π1,m(X1,m)

=
qm(X1,m)

qm(X0,m)
· π0(X0,m)

π0(X1,m)
· exp(ℓm(X0,m))

exp(ℓm(X1,m))
.

Note that up to an additive constant log qm(x) = Qm(x), and so

log qm(X1,m)− log qm(X0,m) = Qm(X1,m)−Qm(X0,m).

Therefore the log-acceptance ratio satisfies

logAm(X0,m, X1,m) = log π0(X0,m)− log π0(X1,m) + ϵm(X0,m)− ϵm(X1,m),

where ϵm was defined in Lemma B.4.

Since we have the asymptotic normality of X0,m and X1,m conditioned on Ym by Lemma B.5.9, and
Lemma B.8, we can invoke Lemma B.4.3,

ϵm(X0,m), ϵm(X1,m)|Ym
p−−−−→

m→∞
0, (6)

log π0(X0,m), log π0(X1,m)|Ym
p−−−−→

m→∞
log π0(x0).

Combining (6) we have the acceptance ratio satisfies,

Am(X0,m, X1,m)|Ym
p−→ 1.

To conclude, note that 1 ∧Am(X0,m, X1,m) ≤ 1, so by the dominated convergence theorem,

αm = E[1 ∧Am(X0,m, X1,m)|Ym]
a.s.−−−−→

m→∞
1,

and hence αm
a.s.−−→ 1. The result follows from Lemma B.7.

B.6 Proof of Proposition 3.3

Suppose µm and Σm are posterior mean and variance conditional to Ym,

µm = E[X1,m|Ym], Σm = Var[X1,m|Ym],

where X1,m ∼ π1,m. We introduce a final set of assumptions that are required for the proof of
Proposition 3.3.

Assumption B.9. 1. Posterior mean and MLE: As m→∞, m1/2(µm − xMLE,m)
a.s.−−→ 0.

2. Posterior variance and Fisher information: For all m, Σm is almost surely positive definite
and mΣm

a.s.−−→ I−1(x0) as m→∞.

For such results in the univariate case with convergence in probability, see [35] and [18].

Given q′m = N(µm,Σm), define,

Q′
m(x) = −1

2
(x− µm)⊤Σ−1

m (x− µm).

Lemma B.10. Suppose Assumption B.3 and Assumption B.9 hold. If X ′
0,m ∼ q′m and X1,m ∼ π1,m,

then as m→∞,

1. m1/2(X ′
0,m − xMLE,m)|Ym

d−→ N (0, I−1(x0)),
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2. Q′
m(X1,m)−Qm(X1,m)

p−→ 0,

3. Q′
m(X ′

0,m)−Qm(X ′
0,m)

p−→ 0.

Proof of Lemma B.10. 1. Note that since X ′
0,m ∼ N (µm,Σm),

Σ
−1/2
m

m1/2
· I−1/2(x0) ·m1/2(X0,m − µm)|Ym ∼ N (0, I−1(x0)).

By Assumption B.9,

Σ
−1/2
m

m1/2
· I−1/2(x0)

a.s.−−−−→
m→∞

Id.

Therefore using Slutsky’s theorem, Lemma B.2.7, it follows that

m1/2(X ′
0,m − µm)|Ym

d−−−−→
m→∞

N (0, I−1(x0)).

Finally, the result follows from Slutsky’s theorem using Assumption B.9.1.

2. Using the definition of Q(x) and Q′(x) we obtain the following decomposition,

Q′
m(x)−Qm(x) = ϵ0m + ϵ1m(x) + ϵ2m(x)

where,

ϵ0m = −(µm − xMLE,m)⊤Σ−1
m (µm − xMLE,m)

ϵ1m(x) = −2(x− xMLE,m)⊤Σ−1
m (xMLE,m − µm)

ϵ2m(x) = −[m1/2(x− xMLE,m)]⊤ · [m−1(Σ−1
m − Im(xMLE,m))] · [m1/2(x− xMLE,m)]

Now, using Assumption B.9, it follows that ϵ0m
p−→ 0 as m→∞,

ϵ0m = −[m1/2(µm − xMLE,m)]⊤[mΣm]−1[m1/2(µm − xMLE,m)]

= op(1) ·Op(1) · op(1)
= op(1).

Therefore we are done if we can show (1) ϵ1m(X1,m)
p−→ 0 and (2) ϵ2m(X1,m)

p−→ 0 as
m→∞.

(1) follows from Assumption B.9 and Lemma B.5.9 since as m→∞,

ϵ1m(X1,m) = −2[m1/2(X1,m − xMLE,m)]⊤[mΣm]−1[m1/2(xMLE,m − µm)]

= Op(1) ·Op(1) · op(1)
= op(1).

Finally for (2) notice that by Assumption B.9, and m−1(Σ−1
m − Im(xMLE,m))

p−→ 0. Using
Lemma B.5.9 as m→∞,

ϵ2m(X1,m)

= −[m1/2(X1,m − xMLE,m)]⊤[m−1(Σ−1
m − Im(xMLE,m))][m1/2(X1,m − xMLE,m)]

= Op(1) · op(1) ·Op(1)

= op(1)

3. Similar to the proof of Lemma B.10.2, we are done if we can show (3) ϵ1m(X ′
0,m)

p−→ 0 and
(4) ϵ2m(X ′

0,m)
p−→ 0 as m→∞.

To show (3) we use Lemma B.10.1 and Assumption B.9,

ϵ1m(X ′
0,m) = −2[m1/2(X ′

0,m − xMLE,m)]⊤[mΣm]−1[m1/2(xMLE,m − µm)]

= Op(1) ·Op(1) · op(1)
= op(1).
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Finally, to obtain (4) follows from Lemma B.10.1 and m−1(Σ−1
m − Im(xMLE,m))

p−→ 0,

ϵ2m(X ′
0,m) = [m1/2(X ′

0,m − xMLE,m)]⊤[m−1(Σ−1
m − Im)][m1/2(X ′

0,m − xMLE,m)]

= Op(1) · op(1) ·Op(1)

= op(1).

Proof of Proposition 3.3. Suppose X1,m ∼ π1,m and X ′
0,m ∼ q′m = N(µm,Σm) ∈ Q are indepen-

dent conditioned on Ym. Let α′
m = E[1 ∧A′

m(X ′
0,m, X1,m)] be the average acceptance probability,

where A′
m(X ′

0,m, X1,m) is the acceptance ratio,

A′
m(X ′

0,m, X1,m) =
q′m(X1,m) · π1,m(X ′

0,m)

q′m(X ′
0,m) · π1,m(X1,m)

=
q′m(X1,m)

q′m(X ′
0,m)

· π0(X
′
0,m)

π0(X1,m)
· exp(ℓm(X ′

0,m))

exp(ℓm(X1,m))
.

Note that up to an additive constant log q′m(x) = Q′
m(x), and by Lemma B.10, we have as m→∞,

log q′m(X1,m)− log q′m(X ′
0,m) = Q′

m(X1,m)−Q′
m(X0,m),

= Qm(X1,m)−Qm(X0,m) + op(1).

Therefore we have the log-acceptance ratio satisfies,

logA′
m(X ′

0,m, X1,m) = log π0(X
′
0,m)− log π0(X1,m) + ϵm(X ′

0,m)− ϵm(X1,m) + op(1).

where ϵm was defined in Lemma B.4. By Lemma B.5.9, and Lemma B.10.1 we have m1/2(X1,m −
xMLE,m) and m1/2(X ′

0,m − xMLE,m) are asymptotically normal conditioned on Ym. Therefore by
Lemma B.4.3,

ϵm(X ′
0,m), ϵm(X1,m)

p−−−−→
m→∞

0

log π0(X
′
0,m), log π0(X1,m)

p−−−−→
m→∞

log π0(x0),

and the acceptance ratio A′
m(X ′

0,m, X1,m)
p−→ 1.

To conclude, note that 1 ∧A′
m(X ′

0,m, X1,m) ≤ 1, so by dominated convergence theorem,

lim
m→∞

E[αm] = lim
m→∞

E[1 ∧Am(X0,m, X1,m)] = 1,

and hence α′
m

p−→ 1.
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C Proof of Theorem 3.4

Proof of Theorem 3.4. Since η is bounded there is a K > 0 such that η(x) = (η1(x), . . . , ηd(x))

where ηi : X → [−K,K]. Fix 0 < ϵ < 1
2 . Suppose (Xt,r)

Tr
t=1 are the draws from the chain

parameterized by ϕ̂r at round r. Define for each i = 1, . . . , d,

Ar,i =

{∣∣∣∣∣
1

Tr

Tr∑

t=1

ηi(X
N
t,r)− E1[ηi]

∣∣∣∣∣ > δr

}
,

where δr is a sequence to be determined. By assumption, we have |ηi(x)| ≤ K for some K > 0. We
can therefore apply Theorem 1 of [11] (Hoeffding’s inequality for Markov chains) to get that

P
(
Ar,i|ϕ̂r

)
≤ 2 exp

(
− Gap(ϕ̂r)

2−Gap(ϕ̂r)
· δ

2
rTr

2K2

)

≤ 2 exp

(
− κ

2− κ
· δ

2
rTr

2K2

)
.

The last inequality used the assumption that Gap(ϕ) is bounded below by κ on Φ. By taking
expectations over ϕ̂r and by setting δr = d−1T

−1/2+ϵ
r , we obtain

P (Ar,i) ≤ 2 exp

(
− κ

2− κ
· T ϵ

r

2d2K2

)
.

Since Tr = Ω(2r), we have by the ratio test,

∞∑

r=1

P (Ar,i) <∞.

From the Borel-Cantelli lemma it follows that for each i, P (Ar,i i.o.) = 0, and thus a.s. there exists
Ri(ϵ) and such that for all r ≥ Ri(ϵ),

∥∥∥∥∥
1

Tr

Tr∑

t=1

ηi(X
N
t,r)− E1[ηi]

∥∥∥∥∥ ≤
1

d
T

− 1
2+ϵ

r .

Since ϕ̂r+1 is chosen to satisfy,

Eϕ̂r+1
[η] =

1

Tr

Tr∑

t=1

η(XN
t,r),

by the triangle inequality, we have for all r > max{R1(ϵ), . . . , Rd(ϵ)} = R(ϵ),

∥Eϕ̂r+1
[η]− E1[η]∥ ≤ T

− 1
2+ϵ

r

In particular, since E1[η] = EϕKL [η], we have a.s.

lim
r→∞

Eϕ̂r
[η] = EϕKL [η].

Since Q is an exponential family of full-rank, convergence in the mean of the sufficient statistic is
equivalent to the convergence of the the natural parameters. That is,

ϕ̂r
a.s.−−−→

r→∞
ϕKL.
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D Upper bounds on the GCB

D.1 Proof of Theorem 3.5

Suppose Xϕ,β , X
′
ϕ,β ∼ πϕ,β are indepdendent. By Jensen’s inequality and Result 4 in [8],

Λ(qϕ, π1) =
1

2

∫ 1

0

E[|ℓϕ(Xϕ,β)− ℓϕ(Xϕ,β)|] dβ

≤ 1

2

(∫ 1

0

E[(ℓϕ(Xϕ,β)− ℓϕ(X
′
ϕ,β))

2] dβ

)1/2

=

√
1

2
SKL(qϕ, π1) . (7)

Also, because ϕKL minimizes the forward KL divergence, it follows that

EϕKL [η] = Eπ1 [η].

In particular, by taking a dot product with ϕ for any ϕ ∈ Φ it holds that

EϕKL [log qϕ]− Eπ1
[log qϕ] = EϕKL [log h]− Eπ1

[log h]. (8)

From Eq. (8),

|SKL(qϕKL , π1)| =
∣∣∣∣EϕKL

[
log

π1

qϕKL

]
− Eπ1

[
log

π1

qϕKL

]∣∣∣∣

=
∣∣∣EϕKL [log π1]− Eπ1

[log π1] + Eπ1
[log h]− EϕKL [log h]

∣∣∣

=
∣∣∣EϕKL [log π1 − log qϕ0

]− Eπ1
[log π1 − log qϕ0

]
∣∣∣

≤ EϕKL [|log π1 − log qϕ0 |] + Eπ1 [|log π1 − log qϕ0 |]
≤ EϕKL [g] + Eπ1 [g]

≤M1 +M2. (9)

Therefore, combining Eq. (7) and 9,

Λ(qϕ, π1) ≤
√

1

2
(M1 +M2) .

D.2 Example with multivariate normal distributions

We consider here two simple examples to verify that the upper bound given by Theorem 3.5 is small
enough for practical purposes.

To put into perspective the numerical values obtained in the examples below, note that the GCBs
measured by [36] in 17 problems were in the range 0.4–88.
Example D.1. Suppose that π1 ∼ N(0,Σ1) and qϕ ∼ N(0,Σ0(ϕ)) where

Σ1 =

[
1 ρ
ρ 1

]
and Σ0(ϕ) =

[
ϕ1 0
0 ϕ2

]

for some 0 ≤ ρ < 1. By applying Theorem 3.5 we have

Λ(qϕKL , π1) ≤
√
−1

2
log(1− ρ2) +

ρ

1− ρ
.

Substituting ρ = 0.9, 0.95, 0.99 provides GCB upper bounds of approximately 3.14, 4.49, 10.05,
respectively, while we obtained values of Λ(qϕKL , π1) of ≈ 0.8, 1.0 and 1.5 using our stabilized
moment matching algorithm. ◁

Proof. Based on moment-matching, ϕKL = (1, 1)′ and therefore Σ0(ϕKL) = I2 is the 2× 2 identity
matrix.
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We have that

|log π1(x)− log qϕKL(x)| =
∣∣∣∣−

1

2
log(1− ρ2)− 1

2
x⊤Σ−1

1 x+
1

2
x⊤I2x

∣∣∣∣

=

∣∣∣∣−
1

2
log(1− ρ2)− 1

2
x⊤ (Σ−1

1 − I2
)
x

∣∣∣∣

≤ −1

2
log(1− ρ2) +

1

2
∥x∥2 max{|λmax|, |λmin|}

= −1

2
log(1− ρ2) +

1

2
∥x∥2 max

{
ρ

1− ρ
,

ρ

1 + ρ

}

= −1

2
log(1− ρ2) +

1

2
∥x∥2 ρ

1− ρ

=: g(x)

by the min-max eigenvalue theorem. It can then be verified that

M1 = M2 = −1

2
log(1− ρ2) +

ρ

1− ρ
.

Example D.2. Suppose that the target is a mixture of normal distributions so that

π1 ∼ 0.5 ·N(−µ, 1) + 0.5 ·N(µ, 1) and qϕ ∼ N(0, ϕ),

for some µ. We estimate the expectations in the upper bound of the GCB using Monte Carlo draws
from qϕKL and π1. For µ = 5, 10, 100 we find that Λ(qϕKL , π1) is upper bounded by approximately
1.7, 3.2, and 32, respectively (up to Monte Carlo estimation error based on 1,000,000 Monte Carlo
simulation draws for µ = 5, 10, and 100,000,000 Monte Carlo simulations for µ = 100), while
we obtained values of Λ(qϕKL , π1) of ≈ 2.3, 2.8 and 4.2 using our stabilized moment matching
algorithm. ◁

Proof. Based on moment-matching, we obtain that ϕKL = µ2 + 1. Denote the pdf of the standard
normal density by ϕ(·). Then,

|log π1(x)− log qKL(x)| =
∣∣∣∣∣log

(
1

2
ϕ(x+ µ) +

1

2
ϕ(x− µ)

)
− 1√

µ2 + 1
· ϕ
(

x√
µ2 + 1

)∣∣∣∣∣
=: g(x).
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E Proof of Theorem 3.6

The proof of this theorem is almost identical to the proof of Theorem 1 in [36]. The main difference
is that we study two delayed renewal processes simultaneously instead of one.

First, define the index process for the j-th machine for j = 0, 1, . . . , N̄ as (nt(j), ϵt(j)) where
nt(j) ∈ {0, 1, . . . , N̄}, ϵt(j) ∈ {−1, 1}, and N̄ = Nϕ + N . Here, nt(j) denotes the annealing
parameter index for the j-th machine at iteration t and ϵt(j) = 1 if after iteration t the annealing
parameter on machine j will be proposed to increase to index nt(j) + 1. Otherwise, ϵjt = −1. In
particular, machine j is storing annealing parameter β̄nt(j), and therefore nt(j) = 0, Nϕ, N̄ means
the machine j is at the annealing parameter corresponding to qϕ, π1, π0, respectively.

Informally, a restart occurs when a sample from either one of the two references reaches the target
distribution chain. Because the target distribution is placed between the two references, we see that
we can count the number of restarts by defining two delayed renewal processes and summing the
number of restarts for each renewal process. We ensure that we are not double-counting any restarts
by introducing two processes instead of one.

Machine j undergoes a restart from qϕ when nt(j) goes from 0 to Nϕ. Similarly, we will say machine
j undergoes a restart from π0 when nt(j) goes from N̄ to Nϕ. We define Tϕ,t(j) and Tt(j) to be the
total number of restarts on machine j from qϕ and π0 respectively by time iteration t. We will denote
the total number of restarts by time t from qϕ and π0 as Tϕ,t and Tt respectively, so that

Tϕ,t =
N̄∑

j=0

Tϕ,t(j), Tt =
N̄∑

j=0

Tt(j)

Formally, define

T−
ϕ,0(j) = inf{t : (nt(j), ϵt(j)) = (0,−1)}

and then recursively define for k ≥ 1

T+
ϕ,k(j) = inf{t > T−

ϕ,k−1(j) : (nt(j), ϵt(j)) = (Nϕ,+1)}
T−
ϕ,k(j) = inf{n > T+

ϕ,k(j) : (nt(j), ϵt(j)) = (0,−1)}.

We note that T+
ϕ,k(j) corresponds to the time of the k-th restart from qϕ on machine j and

Tϕ,t(j) = max{k : T+
ϕ,k(j) ≤ t}.

We have Tϕ,t(j) is a delayed renewal process counting the number of times a sample travels from chain
0 (targeting qϕ) to chain N1 (targeting π1) with inter-arrival times Tϕ,k(j) = T+

ϕ,k(j)− T+
ϕ,k−1(j)

Similarly, define

T+
0 (j) = inf{t : (nt(j), ϵt(j)) = (N̄ ,+1)}

and then recursively define for k ≥ 1

T−
k (j) = inf{t > T+

k−1(j) : (nt(j), ϵt(j)) = (Nϕ,−1)}
T+
k (j) = inf{t > T−

k (j) : (nt(j), ϵt(j)) = (N̄ ,+1)}.

We note that T−
k (j) corresponds to the time of the k-th restart from π0 on machine j and

Tt(j) = max{k : T−
k (j) ≤ t}.

We have Tt(j) is a delayed renewal process counting the number of times a sample travels from chain
N̄ (targeting π0) to chain N1 (targeting π1) with inter-arrival times Tk(j) = T−

k (j)− T−
k−1(j).

Although it is possible for a sample to travel from qϕ to π1 and then to π0 before returning to qϕ,
note that we are not double-counting or missing any restarts by including two renewal processes.
More importantly, by introducing two renewal processes (instead of one), we ensure that the times
between successive restarts from a given reference on each machine are independent and identically
distributed.
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In particular, under Assumption A.2, the inter-arrival times {Tϕ,k(j)}k, and {Tk(j)}k for Tϕ,t(j)
and Tt(j) respectively are i.i.d. for each machine j with distributions Tϕ and T respectively. The
round trip rate is thus,

τ̄ϕ(B̄ϕ,N̄ ) = lim
t→∞

1

t
E[Tϕ,t + Tt]

=

N̄∑

j=0

lim
t→∞

1

t
E[Tϕ,t(j)] +

N̄∑

j=0

lim
t→∞

1

t
E[Tt(j)]

=
N̄ + 1

E[Tϕ]
+

N̄ + 1

E[T ]
, (10)

where the last equality follows from the renewal theorem. We find an expression for E[Tϕ] and
argue the form for E[T ] by symmetry. As in [36], we omit the j index for the machine number and
define Tπ1 and T qϕ as the first time on a machine where the index reaches nt = Nϕ and nt = 0
respectively:

Tπ1 = min{t : (nt, ϵt) = (Nϕ, 1)}
T qϕ = min{t : (nt, ϵt) = (0,−1)}.

We define Aπ1
n,ϵ and A

qϕ
n,ϵ to be the expected time for a machine with index process initialized at

(n0, ϵ0) = (n, ϵ), to reach π1 and qϕ respectively,

Aπ1
n,ϵ = E[Tπ1 |n0 = n, ϵ0 = ϵ]

A
qϕ
n,ϵ = E[T qϕ |n0 = n, ϵ0 = ϵ].

We can decompose the expected inter-arrival time E[Tϕ] as at the expected time for a machine to
travel from qϕ to π1 plus the expected time to travel from π1 to qϕ,

E[Tϕ] = Aπ1
0,−1 +A

qϕ
Nϕ,+1. (11)

Also, for notation convenience, we redefine rn, as the probability of a swap is accepted and respec-
tively rejected between machines with annealing parameter β̄n−1 and β̄n.
Lemma E.1.

Aπ1
0,−1 = Nϕ + 1 + 2 ·

Nϕ∑

n=1

n · rn
1− rn

. (12)

Proof of Lemma E.1. Note that by definition, Aπ1
0,−1 = E[Tπ1 |(n0, ϵ0) = (0,−)]. Because it is

impossible for the index process to reach chains Nϕ+1, Nϕ+2, . . . , N̄ before time Tπ , these chains
do not enter the calculations for Aπ1

0,−1. Therefore (12) is the same expression for “a0,−↑ ” as in [36]
but with N replaced by Nϕ.

Lemma E.2.

A
qϕ
Nϕ,+1 = 2(N̄ + 1)− (Nϕ + 1) + 2 ·

Nϕ∑

n=1

(N̄ + 1− n) · rn
1− rn

.

Proof of Lemma E.2. It follows from the proof of Theorem 1 in [36] that for p ∈ {π1, qϕ}, and
1 ≤ n ≤ N̄ , Ap

n,ϵ satisfies the following recursive relation,

Ap
n,+1 −Ap

n−1,+1 = rn(A
p
n,+1 −Ap

n−1,−1)− 1 (13)

Ap
n,−1 −Ap

n−1,−1 = rn−1(A
p
n,+1 −Ap

n−1,−1) + 1. (14)

If we define Cp
n and Dp

n,

Cp
n = Ap

n,+1 +Ap
n−1,−1 (15)

Dp
n = Ap

n,+1 −Ap
n−1,−1. (16)
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By adding and subtracting (13) and (14), we get the joint recursion in Cp
n and Dp

n, for n = 1, . . . , N̄ :
Cp

n+1 − Cp
n = rn+1D

p
n+1 + rnD

p
n, (17)

(1− rn)D
p
n = (1− rn+1)D

p
n+1 + 2. (18)

If the machine’s index process is initialized at (n0, ϵ0) = (0,−1), then A
qϕ
0,−1 = 0. We can then

substitute in n = 1 into (15) and (16) to get,
C

qϕ
1 = D

qϕ
1 . (19)

Similarly if the machine’s index process is initialized at (n0, ϵ0) = (N̄ ,+1), then A
qϕ
N̄,+1

= 1 +

A
qϕ
N̄,−1

. We can substitute this into (14) for n = N̄ to get,

(1− rN̄ )D
qϕ
N̄

= 2.

Using recursion (18), we find for n = 1, . . . , N̄ ,
(1− rn)D

qϕ
n = 2(N̄ + 1− n).

By adding (15) and (16), that for 1 ≤ n ≤ N̄ ,
2Ap

n,+1 = Cp
n +Dp

n. (20)

We can decompose C
qϕ
n as a telescoping sum, and use (17) within initial condition (19) to get the

following expression for 2Aqϕ
n,+1 in terms of Dqϕ

n

2A
qϕ
Nϕ,+1 = C

qϕ
n +D

qϕ
n

= C
qϕ
1 +D

qϕ
n +

Nϕ−1∑

n=1

(C
qϕ
n+1 − C

qϕ
n )

= D
qϕ
1 +D

qϕ
Nϕ

+

Nϕ−1∑

n=1

(rn+1D
qϕ
n+1 + rNϕ

D
qϕ
Nϕ

)

= (1− r1)D
qϕ
1 + (1− rNϕ

)D
qϕ
Nϕ

+ 2

Nϕ∑

n=1

rnD
qϕ
n

= 2N̄ + 2(N̄ + 1−Nϕ) + 2

Nϕ∑

n=1

2(N̄ + 1− n)
rn

1− rn
.

We arrived at the last line by using (20). Therefore, by dividing by 2 we arrive at our result.

By combining Lemma E.1 and Lemma E.2, and using Eq. (11),
E[Tϕ] = Aπ1

0,−1 +A
qϕ
Nϕ,+1.

= 2(N̄ + 1) + 2(N̄ + 1)

Nϕ∑

n=1

rn
1− rn

. (21)

By symmetry, we can repeat the same calculation to compute E[T ], the expected restart time for π0

to get,

E[T ] = 2(N̄ + 1) + 2(N̄ + 1)

N̄∑

n=Nϕ+1

rn
1− rn

. (22)

Therefore, Eq. (21) and Eq. (22) in Eq. (10) imply that

τ̄ϕ(B̄ϕ,N̄ ) =
N̄ + 1

E[Tϕ]
+

N̄ + 1

E[T ]

=
1

2 + 2
∑Nϕ

n=1
rn

1−rn

+
1

2 + 2
∑N̄

n=Nϕ+1
rn

1−rn

= τϕ(Bϕ,Nϕ
) + τ(BN ).
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Finally, it follows from Theorem 3 in [36], that as ∥BN∥, ∥Bϕ,NΦ∥ → 0 we have

lim
Nϕ→∞

τϕ(Bϕ,Nϕ
) =

1

2 + 2Λ(qϕ, π1)

lim
N→∞

τ(BN ) =
1

2 + 2Λ(π0, π1)
.

Therefore, as ∥B̄ϕ,N̄∥ → 0 chain-asymptotic restart rate satisfies,

lim
N̄→∞

τ̄ϕ(B̄ϕ,N̄ ) =
1

2 + 2Λ(qϕ, π1)
+

1

2 + 2Λ(π0, π1)
.
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Inference problem n d Λ̂(π0, π1)

Synthetic Product 100,000 2 3.7
Simple-Mix (collapsed) 300 5 4.3

Elliptic 100,000 2 4.4
Toy-Mix NA 1 9.3

Real data Transfection 52 5 6.4
Titanic 887 9 7.7

Rockets (collapsed) 5,667 2 3.4
Challenger 23 2 4.2

Change-point 109 7 3.3
Vaccines 77,828 12 7.8

Lip Cancer 536 60 15
Pollution 22,548 275 56.9
8 schools 8 10 0.8

Phylogenetic inference 249 10,395 7.0
Spring failure (improper prior) 10 1 Not defined

Table 1: Summary of the models considered in this paper. The sample size n, number of model
parameters d, and fixed reference GCB Λ̂(π0, π1) (defined for models with a proper prior distribution).
The label “collapsed” is used for the models that are based on [36] but with some latent variables
analytically marginalized.

F Details of experiments

F.1 ODE parameters (mRNA transfection data)

The first data set that we consider (“Transfection”) is a time series data set based on mRNA transfec-
tion data and an ordinary differential equation (ODE) model [5]. The data are observations Ot at times
t = 1, 2, . . . , 52 modelled as Ot|km0

, δ, β, t0, σ ∼ N(µ, σ2) where km0
, δ, β, t0, σ are parameters

and

µ =
km0

δ − β
(1− exp(−(δ − β) · (t− t0)) · exp(−β · (t− t0)).

The priors placed on the parameters are all log-uniform (i.e., distributed according to 10U where
U denotes a random variable with a uniform distribution on [a, b]). Specifically, km0 , δ, β ∼
LogUniform(−5, 5), t0 ∼ LogUniform(−2, 1), and σ ∼ LogUniform(−2, 2), with all parame-
ters a priori independent. We use 50 PT chains, unless stated otherwise. Data is included in the
supplement under bl-vpt/data/m_rna_transfection/processed.csv.

F.2 GLM (Titanic data)

Next, we consider a binary generalized linear model (“Titanic”) with binary response data, Yi,
indicators of survival for the i-th Titanic passenger, along with several covariates, xi. We assume that
Yi|β0, β1,xi ∼ Bernoulli(1/(1+exp(−(β0+β⊤

1 xi)))). Note that this example is similar to the one
used by [36] although our prior differs in that we assume that β0, β1,1, β1,2, . . . , β1,7 ∼ Cauchy(σ)
with scale parameter σ. Further, σ ∼ Exp(1). All parameters are assumed to be independent in
the prior. We use 30 PT chains, unless stated otherwise. Data is included in the supplement under
bl-vpt/data/titanic.

F.3 Unidentifiable product

The unidentifiable product model (“Product”) is an artificial data set of size n = 100, 000. The
number of failures of an experiment, nf , given the number of trials nt and parameters x and y is
modelled as nf |nt, x, y ∼ Bin(nt, x · y). We place priors X,Y ∼ U(0, 1) and set nt = 100, 000.
We observe nf = 50, 000 failures. For this model, d = 2. Due to identifiability, the posterior
concentrates on a thin curve in the square [0, 1]× [0, 1]. We use 15 PT chains, unless stated otherwise.
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F.4 Mixture model

We consider a multi-modal posterior that arises from a normal mixture model (“Simple-Mix”). We
model data X1, X2, . . . , Xm|µ1, µ2, σ1, σ2, π ∼ π · N(µ1, σ

2
1) + (1 − π) · N(µ2, σ

2
2) with priors

µ1, µ2 ∼ N(150, 1002), σ1, σ2 ∼ U(0, 100), and π ∼ U(0, 1). Due to the label-switching problem,
the resulting posterior is multi-modal. In all the experiments we marginalize over the mixture model
indicator variables in contrast to [36]. We use 10 PT chains, unless stated otherwise. Data is included
in the supplement under VariationalPT/data/simple-mix.csv.

F.5 Bayesian hierarchical model

We also consider a Bayesian hierarchical model based on rocket launch failure data (“Rockets”). The
number of rocket launch failures, fr, along with the total number of rocket launches, lr, for R = 367
types of rockets is obtained. Given the probability of rocket launch failure for rocket r, we model
fr|πr, lr ∼ Bin(lr, πr). Given parameters m and s, we model πr|m, s ∼ Beta(ms, (1−m)s) and
use the hyper-prior m ∼ U(0, 1) and s ∼ Exp(0.1) (rate parameter). In this example we perform
inference over each of the πr and m, s so that d = 369 and n = 5, 667. In all the experiments we
marginalize over the random effects in contrast to [36]. We use 10 PT chains, unless stated otherwise.
Data is included in the supplement under bl-vpt/data/failure_counts.csv.

F.6 Weakly identifiable elliptic curve

A weakly identifiable model is also considered (“Elliptic”). This data set is an artificial data set
with the number of failures of an experiment, nf , given the number of trials nt and parameters x, y
modelled as nf |nt, x, y ∼ Bin(nt, p(x, y)) where

p′(x, y) = y2 − x3 + 2x− 0.5

p(x, y) =





0 p′(x, y) < 0

1 p′(x, y) > 1

p′(x, y) otherwise.

We observe nt = 100, 000 trials and nf = 50, 000 failures. We use the prior X,Y ∼ U(−3, 3). We
use 30 PT chains, unless stated otherwise.

F.7 GLM (Challenger data)

Another GLM but applied to Challenger shuttle O-ring data (“Challenger”). The responses consist
of binary indicator variables for incidents, Yi, for 23 shuttle launches at temperatures xi. We model
the responses as Yi|xi, β0, β1 ∼ Bern(1/(1 + exp(−(β0 + β1xi)))) and use the prior β0, β1 ∼
N(0, 100). We use 15 PT chains, unless stated otherwise. Data is included in the supplement under
bl-vpt/data/challenger.

F.8 Additional Blang models

We have implemented the models in Sections F.1–F.7 both procedurally in Julia and declaratively
in the Blang probabilistic programming language (PPL) [6] to ensure agreement of the results. We
then implemented additional models in Blang, briefly described in this section, to illustrate that the
proposed method can be seamlessly incorporated into a PPL. To see more details on these additional
models (as well as those described in Sections F.1–F.7), see their PPL source code in the sub-directory
bl-vpt/src/main/java/ptbm/models/ of the supplement.

Lip Cancer and Pollution: a sparse Conditional Auto Regressive (CAR) Poisson regression spatial
model, constructed as in https://mc-stan.org/users/documentation/case-studies/mbjoseph-CARStan.

html (full model available in bl-vpt/src/main/java/ptbm/models/SparseCAR.bl).
For the Lip Cancer problem, we use the dataset documented in the R package
CARBayesdata, see bl-vpt/data/scotland_lip_cancer in the supplement for more
information on preprocessing. The Pollution problem is based on the same model but with
the bigger dataset documented in bl-vpt/data/pollution_health, also obtained from
the CARBayesdata package on CRAN, which is under a GPL-2 / GPL-3 license. This
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provides some examples of how the global communication barrier can be decreased in a
realistic data analysis scenario: in the first dataset, from 15 to 6, and in the second, from 57
to 7. For the Pollution dataset, we found the GCB to decrease substantially after considering
a larger number of tuning rounds with 4 million PT scans. The GCB with the variational
reference during each of the tuning rounds for this model is presented in Fig. 6.

Vaccines: the data (bl-vpt/data/vaccines/data.csv) consists in the following Phase III
COVID-19 vaccines clinical trials: Pfizer-BioNTech, Moderna-NIH, and two AZ-Oxford
trials (‘South Africa B.1.351’ and ‘Combined’). The number of cases in each arm of
each trial is modelled using a binomial. In each control arm, the probability parameter
is set to a trial-specific incidence parameter. In each ‘treatment’ arm, the probability pa-
rameter is set to the same incidence parameter multiplied by one minus a trial-specific
efficacy parameter. While the incidence and efficacy parameters are trial specific, the
parameters of these distributions are tied across the four trials (full model available in
bl-vpt/src/main/java/ptbm/models/Vaccines.bl).

Change-point: a time series model of discrete counts. We assume one change point uni-
formly distributed on the time series. The observations at each time point is neg-
ative binomial distributed with one set of parameters for the observations before
the change point and one set for after the change point (full model available in
bl-vpt/src/main/java/ptbm/models/Mining.bl). This model is applied to the
dataset of annual numbers of accidents due to disasters in British coal mines for years from
1850 to 1962, considered in Carlin et al. (1992) (bl-vpt/data/mining-disasters.csv).

8 schools: the classical problem from Rubin (1981), see
bl-vpt/src/main/java/ptbm/models/EightSchools.bl and
bl-vpt/data/eight-schools.csv.

Phylogenetics: The same setup as the phylogenetic species tree problem from [36]
(bl-vpt/src/main/java/ptbm/models/PhylogeneticTree.bl). The data consists
in aligned mtDNA sequences (bl-vpt/data/FES_8.g.fasta). We only fit variational
distributions to the real-valued evolutionary parameters—there is work on constructing
variational families for phylogenetic trees [4, 20], but we leave the combination of these
families with our inference method for future work.

Spring failure: The density estimation problem for spring failure data de-
scribed in Davison (2003), example 4.2, with a Cauchy likelihood
(bl-vpt/src/main/java/ptbm/models/ImproperCauchy.bl). We use the Lebesgue
improper prior for the Cauchy likelihood’s location parameter. This illustrates another use
case for our method: when standard PT is applied to a model with an improper prior, one
has to select β0 > 0 such that β > β0 guarantees that πβ is a (normalizable) probability
distribution, moreover it is in general not possible to get i.i.d. samples from πβ0

. In contrast,
our method works with β0 = 0 and allows i.i.d. sampling from the variational chain. In
the stabilized variant, for the non-adaptive “leg” one can use a fixed variational parameter
instead of π0. Results for this model are shown in Fig. 7.

ToyMix: the density f(x) = 0.5ϕ(x;−r, 0.01) + 0.5ϕ(x; r, 0.01) where ϕ(·;µ, σ2) is the normal
density (bl-vpt/src/main/java/ptbm/models/ToyMix.bl). We use r = 10.

F.9 Markovian score climbing

For the Transfection model, we implemented the Markovian score climbing (MSC) algorithm of
[29]. In the MSC algorithm, there are three main tuning parameters: the number of tuning rounds
K, the number of samples used in each tuning round S, and the step size (or step size sequence) ϵ.
The inputs to the algorithm also include the starting values of the variational parameters λ0, and the
starting sample observation z0. For the mean-field normal variational references, we use the marginal
means and log standard deviations as the variational parameters so that all parameters can take on
values in R. We initialize each of the log standard deviation parameters to log(100.0). For the mean
parameters, we initialize them to (1.0, 1.0, 1.0, 0.32, 1.0), which are also the initial values provided
to the MCMC samplers in the PT algorithms. We use K = 100, 000 tuning rounds with S = 100
and a step size of ϵ = 0.0005. The initial sample provided is the vector of initial mean parameters.
The MSC experiments are run 10 times for each selection of simulation settings.
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Figure 6: Global communication barrier for the Pollution model in the variational reference chain
during each of the tuning rounds. The GCB for the fixed reference chain is estimated to be 57.

Initially, we tried larger values of the step size parameters, starting at ϵ = 0.1. However, we observed
that the estimated variational parameters jumped around a large range of values. We therefore
decreased the value of ϵ until there were no convergence issues (i.e., no exceptionally large gradients
and the variational parameter estimates seemed to converge based on plots of the parameter estimates
against the tuning round number). We also ran the experiment with a smaller step size of ϵ = 0.00025.
However, we noticed that the variational parameter estimates displayed a similar behaviour: the
parameter estimate would center on only one of the two modes.

F.10 Additional Details

We use the same number of chains in each leg of variational PT with two reference distributions. For
ESS calculations in Julia, we use all samples from the target distribution, including those obtained
during annealing schedule and variational reference tuning rounds. For the implementation of
variational PT with two references, we employ two separate PT chains: one with a fixed reference
and one with a variational reference. During each tuning round, samples from the target distribution
in each chain are pooled together to estimate the variational parameters for the reference distribution.
In Blang, we implement the topology in which the target distributions between the instances of PT
are connected. More information about these different topologies can be found in Appendix F.11.3.
In the Julia implementation of the variational PT algorithm, the covariance matrices for the Gaussian
reference are estimated using the functions std() and cov(). The estimates of the variance therefore
differ by a factor of n/(n − 1) compared to the MLE estimates where n is the sample size for
parameter estimation.

All experiments use the same exploration kernel, namely a slice sampling algorithm with “doubling
and shrinking” [30, Sections 4.1–4.2]. We performed preliminary experiments with HMC. However,
we found that having to tune one HMC sampler for each annealed chain was onerous. We leave the
problem of adapting several annealed exploration kernels to future work. Slice sampling in contrast
does not have sensitive tuning parameters that require tuning. For the initial state in each chain for
the simulations of Section 4.1, the same state is used for all PT initializations for the different seeds.
The initial state was chosen to lie in a region with positive density with respect to the reference and
target distributions.

Unless mentioned otherwise, all PT algorithms use Deterministic Even Odd (DEO) swaps and the
NRPT adaptive schedule algorithm. See [36] for details. Julia simulations were run on an Intel
i9-10900K processor with 32 GB of RAM. We also acknowledge use of the ARC Sockeye computing
platform (Gold and Silver Xeon 2.1 GHz processors) from the University of British Columbia.
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Figure 7: Stabilized variational PT applied to a density estimation problem with a Cauchy likelihood and an
improper prior (Section F.8). First row: post-burn-in approximation of the posterior distribution over the location
parameter θ. Multi-modality is clearly visible. Second row, left: trace plot of the same parameter obtained from
stabilized variational PT. The stabilized variational PT algorithm is able to frequently switch modes. Second
row, right: same trace plot but obtained from a single chain MCMC algorithm with the same exploration kernel.
Third row, left: estimates of two objective functions as a function of the adaptation rounds (“Inef” refers to
the sum of the rejection odds, “Rejection,” to the sum of rejection rates). Third row, center: value of the
variational parameters as a function of the adaptation round. The facet “theta_MEAN” refers to the mean of
the variational normal distribution approximating the posterior on θ, and “theta_SOFTPLUS_VARIANCE”, to
the (reparameterized) variance parameter of the same variational distribution. Third row, right: average swap
acceptance probabilities for the N = 50 chains as a function of the adaptation round. Bottom row, left: each
chain’s βi as a function of the adaptation round. Bottom row, center: estimated local communication barrier.
Even with the relatively large number of chains used in this example, it appears intrinsically less smooth than for
the other examples considered in this paper. This may be due to the heavier likelihood tails used in this example.
Bottom row, right: estimated normalization constant based on the stepping stone method as a function of the
adaptation round.
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F.11 Additional experimental results

F.11.1 Additional plots

Additional plots accompanying the results of Section 4.1 are presented in Fig. 8 and Fig. 9. Additional
plots for the Cauchy example can be found in Fig. 7. For these figures, the local communication
barrier (LCB) between π0 and π1 at β ∈ [0, 1] is

λ(π0, π1, β) =
1

2
E[|ℓ(Xβ)− ℓ(X ′

β)|], ℓ(x) = log
π1(x)

π0(x)
, Xβ , X

′
β

i.i.d.∼ πβ .

The LCB can be viewed as an instantaneous communication barrier for each point along the path
between π0 and π1. The integral of the LCB yields the GCB under appropriate moment conditions.

F.11.2 Additional results comparing stochastic gradient optimization and moment matching

This section provides additional details for the results described in Section 4.2.

For the stochastic gradient experiments, we considered optimizing several surrogate functions in
addition to the global communication barrier (GCB). The first one is the SKL objective, which was
used in [37] as a GCB surrogate for optimizing the path between a fixed reference and the target. An
estimator of the gradient of the SKL is derived in [37]. We also considered a straightforward variant
of this estimator for the forward KL objective. Even when considering a surrogate objective function,
we measure performance using the quantity we are ultimately interested in, the GCB, estimated using
the sum of the communication rejection rates. Methods optimizing the GCB are labelled ‘Rejection’
to emphasize that they are technically optimizing the sum of rejections.

We compared the following optimization algorithms: the moment matching method described in
Section 3, basic stochastic gradient descent (SGD), where we update variational parameters using
the formula ϕ(i+1) ← ϕ(i) − α(i+ 1)−0.6g(i), following [27, Section 4], where g(i) is the stochastic
gradient estimate, and Adam [22]. We found both SGD and Adam to be sensitive to the scale α of the
updates (where α is defined above for SGD, and a similar parameter appears in Adam, also denoted
α in [22]), which we varied in the grid 1/100, 1/10, 1, 10 (this grid was iteratively increased starting
at 1 until the optima laid inside the grid).

We re-parameterized the variance parameters to lie in the real line using a differentiable transformation,
which we set to the soft-plus transformation, log1p(exp(x)). All methods use the same exploration
kernel (Section F.10), which is the expensive inner loop of all optimization methods considered, so
we use the number of exploration kernel applications as a model for computational time (abscissa
for all plots in this subsection). To set the number of chains, we used the heuristic in [36, Section
5.3], N∗ ≈ 2Λ. We estimated Λ ≈ 3.5 and used 8 chains for these experiments. For the stochastic
optimization methods, we based the estimator of the gradient on 20 samples each interspersed with
one scan, where a scan consists in one application of the local exploration kernel to each variable in
each chains, and one set of odd or even swaps.

Simultaneous optimization of the annealing schedule and the variational parameters is straightforward
with our moment matching scheme: this is done using Algorithms 2 and 3 in [36] which, like our
scheme, proceed in rounds and hence can be performed in combination with round-based variational
moment matching. Therefore, for all experiments involving moment matching, we learn an optimal
schedule from scratch (i.e., initialized at an equally spaced schedule). For the stochastic optimization
methods, simultaneous optimization of annealing schedules is more involved. The GCB is not a
suitable objective, as when the number of chains gets larger, the GCB is asymptotically invariant to
the schedule (provided the mesh size goes to zero, see [36, Corollary 2]). It would be possible to use
the scheme of [27], however this would add more tuning parameters. Instead, for these experiments,
we provide all stochastic optimization methods with an optimally tuned schedule and exclude the
cost of creating this optimal schedule from the computational budget calculation. As we shall see
even with this head start, stochastic optimization does not perform as well as moment matching.

Our implementations of SGD and Adam are augmented with a form of error recovery: when a
parameter update leads to a variational parameter where the GCB estimate is not finite (e.g. due to
underflow or overflow), we roll back to the previous parameter value. Our implementation stores
only one previous valid parameter setting to avoid keeping a history in memory. As a result, some of
the stochastic optimization methods move to regions where with high probabilities the proposed next
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Figure 8: Number of round trips, GCB, round trip rate, local communication barrier (LCB), ESS, and
ESS per second. Green/red: Full-covariance/mean-field variational PT. Blue: NRPT.
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Figure 9: Number of round trips, GCB, round trip rate, LCB, ESS, and ESS per second. Green/red:
Full-covariance/mean-field variational PT. Blue: NRPT.

position leads to a rollback—this occurs especially when the step size scale is too large, as shown
in Fig. 11. More precisely, this occurs with Adam+FKL for scales larger than 1, with Adam+GCB
for all scales considered, with SGD+GCB for scales larger than 0.1, and for all SKL methods for
scales larger than 1. We show in Fig. 12 the mean GCB objective, averaged over the finite values
(individual traces shown in Fig. 13).
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Figure 10: Results for the 100-dimensional multivariate normal target distribution.

Among the configurations that did not lead to non-finite values, the following methods eventu-
ally achieved the same optimal GCB loss within the total optimization budget: Adam+FKL+0.01,
Adam+FKL+0.1, SGD+SKL+1, Adam+SKL+0.01, Adam+SKL+0.1, SGD+SKL+1. Among those,
the fastest to reach that value were Adam+SKL+0.1 and Adam+FKL+0.1, with roughly equivalent
performances.

We applied these best performing settings, Adam+SKL+0.1 and Adam+FKL+0.1, to two other
problems to see how well they generalize. The two additional problems are: a Bayesian GLM model
applied to the titanic dataset described in Section F.2 (with the only difference that we use normal
priors here instead of Cauchy priors), and the change point problem described in Section F.8. We
use the same experimental conditions as those described above for the Bayesian hierarchical model,
with the difference that for the logistic regression problem we used a larger number of chains (20) to
take into account the larger GCB (≈8). The results are shown in Section 4.2 and demonstrate that
stochastic optimization tuning does not generalize well from one problem to another, while moment
matching performs well without requiring tuning.

To replicate the results in this subsection, run, from the root of the reposi-
tory bl-vpt-nextflow at https://github.com/UBC-Stat-ML/bl-vpt-nextflow the command
./nextflow run optimization.nf and the results will be produced in the directory
bl-vpt-nextflow/deliverables/optimization.

F.11.3 Additional results comparing different PT topologies across several models

In this section, we perform an exhaustive empirical comparison of different PT algorithms incorpo-
rating a variational distribution. We also include a baseline consisting of PT with a fixed reference.
Based on the results of the previous section, we perform optimization using moment matching.

In all experiments in this subsection, we use a normal variational family with diagonal covariance.
This ensures that the running time is dominated by the local exploration kernels. We also ensure
that the total number of chains is the same for all methods considered. It follows that one scan has
comparable running time for all methods considered in this subsection.

To describe the PT algorithms we use the following notation: we use T to denote the target distribution;
F, to denote a fixed reference distribution; V, to denote a variational distribution. We use a star
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Figure 11: Fraction of the 10 replicates (each provided with a different random seed) that have a
finite objective function at each optimization iteration.
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Figure 12: Aggregated performance of all optimization methods and surrogate functions considered
in this work.
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Figure 14: For each model (column), we selected a key statistic or parameter. We show here
the approximations of the marginal posterior distributions of these key statistics, for the different
algorithms (rows) and 10 random seeds. Those in red have Kolmogorov-Smirnov (KS) distance
greater than 0.1 compared to the “Reference.”

superscript to indicate which chain(s) are used to collect samples for moment matching when updating
the variational distribution. Using this notation, the algorithms considered are:

“F—T F—T”: two independent, non-interacting copies of standard PT. We use two copies in
order to have a comparable running time per MCMC scan.

“V—T⋆ F—T”: a basic variational approximation (V—T⋆), with one independent, non-interacting
standard PT, added to have comparable running time per MCMC scan.

“V—T⋆ F—T⋆”: a first type of stabilized variational approximation PT algorithm. As in the
algorithm above, it consists of two independent PT algorithms, one using a variational
approximation and the other with a fixed reference. In contrast to the one above, the samples
from the two PT algorithms are pooled at each round when performing moment-matching.

“V—T⋆—F”: the same algorithm as above, but where the states of the two target distributions are
swapped at every second scan in order to maintain non-reversibility of the index process
[36, Section 3.4].

“Reference”: the same algorithm as “F—T F—T”, but with ten times the number of MCMC
scans as the other methods.

In the main paper, for simplicity, “F—T F—T” is described as “standard PT”; “V—T⋆ F—T”,
as “basic variational PT”; and “V—T⋆—F”, as “stabilized variational PT.” As shown in this section
“V—T⋆—F” and “V—T⋆ F—T⋆” have similar performance in terms of restart rate, however the
former is more natural and easier to analyze (Theorem 3.6).

We consider the following models in this section, with the number of chains indicated in parentheses
(number of chains selected to be approximately 2Λ as recommended in [36, Section 5.3]): the eight
schools model (N = 10), a change point detection model applied on a dataset of mining incidents
(N = 10), Bayesian estimation of ODE parameters for an mRNA transfection dataset (N = 30),
Bayesian logistic regression applied to the titanic dataset (N = 10), two distinct Bayesian hierarchical
models, one for prediction of rocket reliability (N = 10) and another tailored to estimating efficacy
of multiple COVID-19 vaccines (N = 20), one sparse Conditional Auto-Regressive (CAR) spatial
model applied to a lip cancer dataset (N = 20), one synthetic multi-modal example (N = 20), and
one phylogenetic inference problem (N = 20). Refer to Sections F.1–F.8 for more information.

For each model we first identified one key statistic: either the one of scientific interest or one such that
its marginal posterior distribution is multi-modal. We ran each combination of algorithm and model
10 times with different random seeds. The approximations of the marginal posterior distributions
are shown in Fig. 14. Visual inspection shows that there are runs that clearly miss the multi-modal
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Figure 15: Tempered restarts for different PT algorithms (rows) and models (facets). Each algorithm
is executed 10 times with different random seeds. The results are also segregated based on the KS
criterion described in Fig. 14.

structure of the problem. To quantify this, we computed the Kolmogorov-Smirnov (KS) distance
between the marginal posterior of this statistic obtained from the “Reference” run and that obtained
from each algorithm. We mark in red the result from any random seed leading to a KS distance
greater than 1/10.

Next, we looked at tempered restart count statistics for all combinations of models and algorithms,
also splitting the results based on the above mentioned KS threshold. It is important to make this
KS-based split, as runs that missed one of the mode may under-estimate the difficulty of the problem
and hence over-estimate the number of tempered restarts. The results are shown in Fig. 15 and
Table 2.

model algorithm # KS<0.1 Q1 Q2 Q3

8-schools F–T F–T 10 18310 18382 18414
8-schools V–T* F–T 10 13728 13788 13809
8-schools V–T* F–T* 10 13718 13770 13797
8-schools V–T*–F 10 13797 13829 13852
coll-rockets F–T F–T 10 4876 4931 4953
coll-rockets V–T* F–T 10 13048 13105 13160
coll-rockets V–T* F–T* 10 13074 13128 13161
coll-rockets V–T*–F 10 13081 13108 13151
mining F–T F–T 10 4824 4848 4863
mining V–T* F–T 10 10704 10728 10745
mining V–T* F–T* 10 10700 10766 10823
mining V–T*–F 10 10716 10750 10798
mrna-no-transf F–T F–T 9 311 316 320
mrna-no-transf V–T* F–T 7 2366 2381 2384
mrna-no-transf V–T* F–T* 10 2361 2378 2414
mrna-no-transf V–T*–F 10 2366 2376 2385
phylo F–T F–T 10 40 45 51
phylo V–T* F–T 10 65 70 73
phylo V–T* F–T* 10 65 68 72
phylo V–T*–F 10 65 68 71
sparse-car F–T F–T 10 0 0 0
sparse-car V–T* F–T 10 2063 2348 2501
sparse-car V–T* F–T* 10 2556 2714 2878
sparse-car V–T*–F 10 2579 2607 2810
titanic F–T F–T 10 642 650 661
titanic V–T* F–T 9 6615 6662 6691
titanic V–T* F–T* 10 6649 6666 6715
titanic V–T*–F 10 6644 6661 6687
toy-mix F–T F–T 10 2010 2020 2038
toy-mix V–T* F–T 9 5443 5458 5469
toy-mix V–T* F–T* 10 5446 5491 5519
toy-mix V–T*–F 10 5474 5484 5529
vaccines F–T F–T 10 147 154 166
vaccines V–T* F–T 10 6118 6208 6264
vaccines V–T* F–T* 10 6168 6236 6262
vaccines V–T*–F 10 6288 6316 6336

Table 2: Quantiles (0.25, 0.5, 0.75) of the number of restarts for the subset of the runs with KS < 0.1.

44



8−schools coll−rockets mining mrna−no−transf phylo sparse−car titanic toy−mix vaccines

0
50

00
10

00
0

15
00

0
20

00
0 0

10
00

0

20
00

0

30
00

0 0

10
00

0

20
00

0

30
00

0 0

20
00

40
00

60
00 0

10
00

0

20
00

0

30
00

0 0

50
00

10
00

0

15
00

0 0

10
00

0

20
00

0

30
00

0

40
00

0 0

25
00

50
00

75
00 0

10
00

0
20

00
0

30
00

0
40

00
0

F−−T F−−T

V−−T* F−−T

V−−T* F−−T*

V−−T*−−F

ESS

al
go

rit
hm

quality

good

poor

Figure 16: Effective Sample Size (ESS) for each model’s key statistic, for different PT algorithms
(rows) and models (facets). Each algorithm is executed 10 times with different random seeds. The
results are also segregated based on the KS criterion described in Fig. 14.

In most of the models considered, we observed a large increase in the number of tempered restarts
when going from standard PT to variational PT. We observed an increase of a factor ∼2.5 in the
rocket model, ∼2.2 for the mining problem, ∼1.6 for the phylogenetic problem, ∼10.2 for the titanic
problem, ∼40.3 for the vaccine problem (above speed-up estimates computed on the median column
of Table 2). The gains are particularly impressive for the sparse CAR model applied to the lip
cancer dataset, in which standard PT achieves 0 restarts while the median number of restarts for the
variational methods are all higher than 2300 restarts.

For the mRNA and toy mixture problems, only the stabilized algorithms (“V—T⋆—F” and “V—
T⋆ F—T⋆”) succeeded in avoiding catastrophic failures, and compared to standard PT led to an
increase in median restarts of a factor ∼7.5 for the mRNA problem and of a factor ∼2.7 for the toy
mixture problem. In the mRNA example, 3 out of 10 applications of the basic variational method,
“V—T⋆ F—T”, led to a catastrophic failure, and 1 out of 10 in the toy mixture example. Note that
the number of restarts is overestimated in the failed runs, highlighting the importance of using a
stabilized algorithm.

The 8 schools problem provides an example where a variational approach based on a diagonal
covariance matrix underperforms standard PT. In this example, the number of round trips decreased
from a median of 18382 to a median of 13788, 13770, and 13829 for the three variational algorithms
considered. But note that the drop in performance is less than 50%, which agrees with the result in
Theorem 3.6.

Fig. 16 and Table 3 show performance in terms of the effective sample size (ESS) of each model’s
key statistic. The ESS is computed using the mcmcse R package which implements a batch mean
estimator. For the non-interacting variational variants, “V—T⋆ F—T” and “V—T⋆ F—T⋆”, we
observe modest ESS gains compared to standard PT in the rocket, sparse CAR, mRNA and titanic
problems, while the gains are larger for the toy mixture problem (∼1.8 increase). For the interacting
variational variant, “V—T⋆—F”, the gains are substantial in all problems considered. However, in
contrast to the other algorithms where adding the ESS of the two copies is justified by independence,
the ESS estimator may not be reliable in the case of “V—T⋆—F” given the interactions. The restart
rate does not have this limitation so we recommend gauging the performance of the methods primarily
based on their restart rate.

We also show the local and global communication barriers, λ and Λ, for these models and algorithms
in Fig. 17 and Fig. 18. Interestingly, in some of the cases, e.g. the transfection problem, the high
gains in terms of tempered restarts obtained by going from standard PT to variational, are not as large
when measured by Λ. This could be due to the variational λ function being generally smoother and
hence the optimal schedule easier to approximate in a finite number of rounds.

To replicate the results in this subsection, run, from the root of the reposi-
tory bl-vpt-nextflow at https://github.com/UBC-Stat-ML/bl-vpt-nextflow the command
./nextflow run pt_topologies.nf and the results will be produced in the directory
bl-vpt-nextflow/deliverables/pt_topologies.
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model algorithm # KS<0.1 Q1 Q2 Q3

8-schools F–T F–T 10 15011 15316 15506
8-schools V–T* F–T 10 11088 11290 11698
8-schools V–T* F–T* 10 10767 11222 12074
8-schools V–T*–F 10 19047 20811 22046
coll-rockets F–T F–T 10 11323 12013 12700
coll-rockets V–T* F–T 10 12799 13358 14301
coll-rockets V–T* F–T* 10 12315 12829 13350
coll-rockets V–T*–F 10 23473 24712 27128
mining F–T F–T 10 22004 23410 24588
mining V–T* F–T 10 22136 24382 24928
mining V–T* F–T* 10 22111 22799 23663
mining V–T*–F 10 31719 33186 33899
mrna-no-transf F–T F–T 9 2180 2360 2709
mrna-no-transf V–T* F–T 7 2755 2783 3013
mrna-no-transf V–T* F–T* 10 2688 2816 2881
mrna-no-transf V–T*–F 10 4787 5053 5350
phylo F–T F–T 10 13061 14249 16406
phylo V–T* F–T 10 14256 15036 15927
phylo V–T* F–T* 10 13798 14476 15071
phylo V–T*–F 10 21723 24421 25046
sparse-car F–T F–T 10 6945 7071 7372
sparse-car V–T* F–T 10 6234 6777 7817
sparse-car V–T* F–T* 10 6122 6853 7460
sparse-car V–T*–F 10 13244 14351 15011
titanic F–T F–T 10 16942 17567 18469
titanic V–T* F–T 9 20082 20601 21078
titanic V–T* F–T* 10 19982 20406 20871
titanic V–T*–F 10 29952 31216 33741
toy-mix F–T F–T 10 1766 1843 1936
toy-mix V–T* F–T 9 3186 3347 3631
toy-mix V–T* F–T* 10 3093 3195 3307
toy-mix V–T*–F 10 5942 6129 6296
vaccines F–T F–T 10 28148 30611 32884
vaccines V–T* F–T 10 26536 29297 31160
vaccines V–T* F–T* 10 29905 31443 33514
vaccines V–T*–F 10 34517 35911 38177

Table 3: Quantiles (0.25, 0.5, 0.75) of the ESS for the subset of the runs with KS < 0.1.
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Figure 17: The local communication barrier for nine models (row). For the variational methods, the
plot shows the local communication barrier between the variational distribution and the target; for
standard PT, the plot shows the local communication barrier between the fixed reference and the
target. We show the estimated functions for the five algorithms (columns) and ten random seeds. Red
curves indicate “catastrophic failures” as described in Fig. 2.
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Figure 18: The global communication barrier estimates between the reference and target distributions
for nine models (row), each shown as a function of the adaptation round. For the variational methods,
the plot shows the global communication barrier between the variational distribution and the target;
for standard PT, the global communication barrier is computed between the fixed reference and the
target. We show the estimated communication barriers for the five algorithms (columns) and ten
random seeds. Red curves indicate “catastrophic failures” as described in Fig. 2.
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