
This supplementary material presents additional results and descriptions of our approach that are
not included in the main paper due to the page limit. Section A shows the classification accuracy
on Corrupted CIFAR-10 Type 0 and Type 1, the same datasets used in LfF [1]. Section B shows
the reconstructed images of BFFHQ [2] by using the latent vectors of the intrinsic and the bias
attributes. Section C explains how our method guarantees the disentangled representation between
latent vectors of intrinsic and bias attributes. Afterwards, we illustrate the implementation details
including architecture designs and hyper-parameters for training in Section D. Lastly, Section E
briefly discusses broader impacts and limitations of our work in the related field.

A Corruption types in Corrupted CIFAR10

While we randomly sample the 10 corruption types among 20 types for constructing the Corrupted
CIFAR10, Nam et al. [1] build two sets of Corrupted CIFAR10 with 10 corruption types each, which
were termed as ‘Type 0’ and ‘Type1’. In order to maintain the consistency of experimental setup with
Nam et al, we also demonstrate the classification accuracy using the Corrupted CIFAR10 Type 0 and
Type 1 in Table 1. We again observe the superiority of our method regardless of the corruption types.

Dataset Ratio (%) LfF [1] Ours

Corrupted CIFAR-10
Type 0

0.5 33.95±3.97 36.89±0.83

1.0 41.54±3.26 44.43±1.29

2.0 50.45±0.39 52.01±0.44

5.0 58.99±0.23 60.18±1.05

Corrupted CIFAR-10
Type 1

0.5 35.07±0.63 36.52±1.05

1.0 42.32±2.58 43.64±1.10

2.0 49.05±1.96 52.23±1.51

5.0 58.77±0.99 59.3±0.85

Table 1: Image classification accuracy evaluated on unbiased test sets of Corrupted CIFAR-10 Type 0
and Type 1 with varying ratio of bias-conflicting samples. Best performing results are marked in bold.

B Reconstruction of Disentangled Representation on BFFHQ

Fig. 1 supplements Fig. 4 of the main paper by showing the reconstructed images of disentangled
latent vectors zi and zb on BFFHQ. Similar to Fig. 4 of the main paper, columns and rows correspond
to those images where the bias attribute (i.e., gender) and the intrinsic attribute (i.e., age) are extracted,
respectively. As mentioned in Section 5 of the main paper, we define ‘age’ as either ‘young’ or ‘old’
in our work. The latent vectors extracted from images of each column and row are concatenated to
reconstruct their corresponding images, as shown in the middle. While we only utilize a decoder for
the Colored MNIST trained with the reconstruction loss in Fig. 4 of the main paper, we also use a
discriminator with an adversarial loss [3] to improve the quality of reconstructed images on BFFHQ.

(a) (b) (c) (d)

Figure 1: Reconstructed images from disentangled representations on BFFHQ. Columns and rows
indicate those samples where the bias attribute (gender) and the intrinsic attribute (age) are extracted,
respectively. By swapping the bias features with a given intrinsic feature, we observe that the gender
changes while maintaining the age. In addition, by swapping the intrinsic features with a given bias
feature, we change the ages while maintaining the gender. The reconstructed images in the highlighted
red boxes indicate those samples with obvious age gaps, indicating that the latent vectors are properly
disentangled.
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The first row and the column of Fig. 1(a), (b), (c), and (d) indicate the images used to extract the latent
vectors of the bias attribute (i.e., gender) and the intrinsic attribute (i.e., age), respectively. Genders of
facial images on the leftmost column of Fig. 1(a), (b), (c), and (d) change according to the genders of
faces on the top row. For example, in the first column of Fig. 1(a), the male in the second row changes
to female in the second column while the female in the third row changes to male in the fifth column.
In addition, we observe that the ages of reconstructed images change as the row changes. Note that
the highlighted red boxes indicate the representative samples with clear age transitions as the row
changes. In the first row of Fig. 1(a), the young female in the second column becomes old in the third
row, while the old male in the fifth column becomes young in the second row. These examples verify
that both zi and zb successfully contain the disentangled attributes for ‘age’ and ‘gender’ extracted
from each image in the first columns and rows, respectively.

Similar to the decoder used in Colored MNIST, the decoder for BFFHQ is trained independently from
our classification models. Due to this fact, the reconstructed samples may seem blurry or include
images with less diversity. Table 3 illustrates the architecture we used to reconstruct the images of
BFFHQ. We also provide training details of the decoder for BFFHQ in Section D.4.

C How disentanglement is guaranteed

Our proposed method includes three factors to guarantee the disentangled representations. First, (Eb

and Cb) are trained with the GCE loss to learn the ‘easy-to-learn’ attributes (i.e., bias attributes)
from the images. In contrast, given the emphasized losses on the bias-conflicting samples by the
GCE-based re-weighting method descibed in Eq. 2 of the main paper, (Ei and Ci) learn the intrinsic
attributes without being overfitted to the bias attributes. Second, the CE loss obtained from Ci is not
back-propagated into the Eb, and vice versa. This enables Eb to not learn the intrinsic attributes, and
vice versa. Third, for the representation zswap = [zi; z̃b], the classifier Ci learns to predict the target
label of the zi regardless of the z̃b. On the other hand, the classifier Cb is trained to predict the target
label of the zswap regardless of the zi. Again, this enforces zi and zb to be disentangled.

D Implementation Details

D.1 Datasets

Colored MNIST This biased dataset consists of two highly correlated attributes, color and digit,
following the existing literature [1, 4, 5, 6, 7]. We inject certain color into the foreground of each digit,
following Nam et al. [1] and Darlow et al. [7]. We obtain the total images of bias-aligned samples and
bias-conflicting samples for different ratios of bias-conflicting samples: (54,751, 249)-0.5%, (54,509,
491)-1%, (54,014, 986)-2%, and (52,551, 2,449)-5%.

Corrupted CIFAR-10 We set the corruption types for Corrupted CIFAR-10 dataset in our paper as
Snow, Frost, Fog, Brightness, Contrast, Spatter, Elastic, JPEG, Pixelate, and Saturate, among 15
different corruptions introduced in the original dataset [8]. These types of corruptions are highly
correlated with the original classes of CIFAR-10 [9], which are Plane, Car, Bird, Cat, Deer, Dog,
Frog, Horse, Ship, and Truck. Among five different severity of corruptions described in the original
paper [8], we use the most severe level of corruptions for our dataset. Following are the total images of
bias-aligned samples and bias-conflicting samples for each ratio of bias-conflicting samples: (44,832,
228)-0.5%, (44,527, 442)-1%, (44,145, 887)-2%, and (42,820, 2,242)-5%.

BFFHQ We compose the dataset by utilizing Flickr-Faces-HQ (FFHQ) Dataset [2] along with its
various facial information, such as head pose and emotions. Among these features, we choose age and
gender as two attributes with the strong correlation, as mentioned in Section 5 of the main paper. The
dataset consists of 19,200 images for training (19,104 for bias-aligned and 96 for bias-conflicting),
and 1,000 samples for test.

D.2 Image Preprocessing

We train and evaluate our model with a fixed size of 28×28 and 32×32 images for Colored MNIST
and Corrupted CIFAR-10, respectively, and 224×224 for BFFHQ.
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Part Output shape Layer Information
Input vector (B, 32) –

Decoder

(B, 512) Linear(32, 512), ReLU
(B, 1024) Linear(512, 1024), ReLU

(B, 3 ∗ 28 ∗ 28) Linear(1024, 3 ∗ 28 ∗ 28), ReLU
(B, 3 ∗ 28 ∗ 28) Tanh

Table 2: Decoder architecture used for reconstruction of images from disentangled latent vectors on
Colored MNIST. These layers are composed in a reverse order of the MLP encoder used for Colored
MNIST. B denotes the batch size.

Part Output shape Layer Information
Input vector (B, 1024, 1, 1) –

Decoder

(B, 512, 7, 7) ConvTrans(1024, 512,K7, S2), ReLU
(B, 256, 14, 14) ConvTrans(512, 256,K3, S2, P1), ReLU
(B, 128, 28, 28) ConvTrans(256, 128,K3, S2, P1), ReLU
(B, 64, 56, 56) ConvTrans(128, 64,K3, S2, P1), ReLU

(B, 64, 112, 112) Upsampling
(B, 3, 224, 224) ConvTrans(64, 3,K3, S2, P1)

Table 3: Decoder architecture used for reconstruction of images from disentangled latent vectors on
BFFHQ.

The images of Corrupted CIFAR-10 and BFFHQ are preprocessed with random crop and hori-
zontal flip transformations, and also normalized along each channel (3,H,W) with the mean of
(0.4914, 0.4822, 0.4465) and standard deviation of (0.2023, 0.1994, 0.2010). For Colored MNIST,
we do not use any augmentation techniques to preprocess the images.

D.3 Training Details

For training, we utilize Adam [10] optimizer with default parameters (i.e., betas = (0.9, 0.999) and
weight decay = 0.0) provided in PyTorch library. Learning rates of 0.01 and 0.0001 are used for
training Colored MNIST and BFFHQ, respectively, and 0.0005 for 0.5% ratio of Corrupted CIFAR10
and 0.001 for the remaining ratios of Corrupted CIFAR10. For each dataset, we use StepLR for
learning rate scheduling. The decaying step is set to 10K for all datasets, and the decay ratio is set to 0.5
for both Colored MNIST and Corrupted CIFAR10 and 0.1 for BFFHQ. With the proposed scheduled
feature augmentation, we start to schedule the learning rate after the feature augmentation was
performed. For the proposed objective functions, we use a set of hyper-parameters (λdis, λswapb , λswap)
as (10.0, 10.0, 1.0) for Colored MNIST and (2.0, 2.0, 0.1) for BFFHQ, respectively. For Corrupted
CIFAR10, we used (5.0, 5.0, 1.0) for the ratio of 1% and 2%, and (1.0, 1.0, 1.0) for the ratio of 0.5%
and 5%. We conduct our experiments mainly using a single RTX 3090 gpu.

D.4 Decoder for image reconstruction

This section provides a detailed explanation of the decoder used for reconstructing images from our
disentangled latent vectors, described in Section 5.3 in the main paper and Section B. The architectures
of the decoder for Colored MNIST and BFFHQ are shown in Tables 2 and 3, respectively. For Colored
MNIST, we use the mean squared error for the reconstruction loss between the original and generated
images, and Adam [10] optimizer with its learning rate of 0.001. For BFFHQ, in addition to the
reconstruction loss, we utilize adversarial loss, as proposed in LSGAN [11]. In this respect, we train
a discriminator which has the same architecture as our encoder, i.e., ResNet18 [12]. We use Adam
optimizer with the learning rate of 0.001 for training the decoder and the same optimizer with 0.0001
for the discriminator, respectively. For every iteration, the decoder takes latent vectors extracted
from our encoders as inputs and generates the reconstructed images as outputs. Since we utilize the
decoder for the purpose of visualization, the losses of the decoder and the classification models are
not backpropagated to each other.
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E Broader Impacts and Limitations

As machine learning becomes a crucial part of our daily life in various forms of applications, it is
crucial to validate the robustness and reliability of machine learning models. The dataset bias [13]
causes the model to be susceptible to the peripheral features, rather than capturing the intrinsic features
that humans usually rely on in image classification. This could raise a distrust issue of machine
learning in various tasks sensitive to the safety concern [14, 15] or social equality [16, 17, 18]. Thus,
as previous literature has pointed out [1, 4, 5, 6, 19, 20, 21, 22], it becomes important to build
classification models that do not rely on bias attributes but rather learn the intrinsic attributes of a
particular class.

Existing approaches address this issue by emphasizing bias-conflicting samples or suppressing the
training of bias-aligned images, in order to avoid overfitting to the biased representations. However,
as mentioned before, an extremely scarce number of bias-conflicting samples prevent the model
from learning the generalizable intrinsic attributes of a certain class. In this paper, we propose an
augmentation-based debiasing approach, fully utilizing a large proportion of bias-aligned features
to diversify the visual features of bias-conflicting samples. Thus, we achieve the state-of-the-art
debiasing performance on both synthetic and real-world datasets against existing baselines.

As a limitation, we acknowledge that learning completely disentangled representations by the proposed
method remains challenging. The difficulty derives from the extreme scarcity of bias-conflicting
samples and the highly correlated complex attributes in real-world images such as age and gender.
Obtaining fully disentangled latent vectors for feature augmentations may further require hand-crafted
modules for certain bias types, which is out of scope in this paper since we do not predefine a bias
type in advance. Despite such a limitation, we believe that our approach provides a novel perspective
of augmenting diversified bias-conflicting samples for learning debiased representations.
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