
Under review as a conference paper at ICLR 2021

Algorithm 1 The Algorithm for Optimal Separable Convolution

Input: Input channel C1 = Cin, output channel CN+1 = Cout, kernel size (KH ,KW ), number of sepa-
rated convolutions N
Optional Input: internal kernel sizes (optional, preset), internal number of groups (optional, masked values),
spatial separable (True or False)
Output: internal channel sizes C2, · · · , CN , internal kernel sizes KH|W

1 , · · · ,KH|W
N , internal number of

groups g1, · · · , gN
Calculate internal channel sizes C2, · · · , CN as min(Cin, Cout), max(Cin, Cout)/4, or 4min(Cin, Cout),
etc. according to a preset policy.
if internal kernel sizes KH|W

1 , · · · ,KH|W
N are not given then

if spatial separable then
Set KH

bN/2c = KH , KW
bN/2+1c = KW and all other internal kernel sizes to 1.

else
Set KH|W

bN/2c = KH|W and all other internal kernel sizes to 1.
end if

end if

Calculate internal channels per group nl according to nl =
N
√

ΠN+1
i=1 CiΠ

N
i=1K

H
i ΠN

i=1K
W
i

Cl+1K
H
l

KW
l

.

Let gl = min(dCl/nle, Cl, Cl+1). If Cl/nl < 1 or Cl/nl > min(Cl, Cl+1) for certain l, re-optimize gl
with a masked number of groups by pre-setting gl = 1 for l ∈ {l : Cl/nl < 1}, gl = min(Cl, Cl+1) for
l ∈ {l : Cl/nl > min(Cl, Cl+1)}.

. Because nl ∼ N
√
C, for large channel sizes, we rarely need to re-optimize.

Return C2, · · · , CN ; KH|W
1 , · · · ,KH|W

N ; g1, · · · , gN

A ALGORITHMIC DETAILS OF THE PROPOSED OPTIMAL SEPARABLE
CONVOLUTION

For the proposed optimal separable convolution, oneof the internal kernel sizes can take KH|W ,
while the rest takes 1. In this research, we simply select the middle kernel size as (KH ,KW ). In
a spatial separable configuration, we select the middle two to have their kernel sizes as (KH , 1)
and (1,KW ). It is worth noting that all these configurations have the same FLOPs. Unlike the
spatial separable convolution where the spatial separable configuration is able to reduce the com-
plexity from K2 to 2K. This is because the complexity has already been reduced to O(K) for
the proposed optimal separable convolution. Another interesting property of the proposed optimal
separable convolution is that it prefers large kernel sizes over small ones.

For the proposed optimal separable convolution, we are able to preset the internal convolutional
kernel sizes according to a custom policy, and optimize the internal number of groups only. Further-
more, we are able to preset a portion of the internal number of groups to certain values, and optimize
only the remaining internal number of groups. Suppose that the internal channel and kernel sizes are
given. Without loss of generality, we assume that gM+1, · · · , gN are preset. The proposed optimal
separable problem will be an M -separable convolution sub-problem (M < N ):

f({n∗}, {KH|W
∗ }) = C2n1K

H
1 K

W
1 HW + · · ·+ CM+1nMK

H
MK

W
MHW + const (20)

satisfying the volumetric RF condition
KH

1 + · · ·+KH
M = KH + const (Receptive F ield Condition)

(21)

KW
1 + · · ·+KW

M = KW + const (22)

n1 · · ·nM ≥
C1

nM+1 · · ·nN
⇔ g1 · · · gM ≤

C2 · · ·CN
gM+1 · · · gN

(Channel Condition)

(23)

nl ≥ max(1,
Cl+1

Cl
)⇔ gl ≤ min(Cl, Cl+1) (Group Convolution Condition)

(24)
This M -separable sub-problem can be solved by the same algorithm. A detailed implementation of
the proposed optimal separable convolution is described by Algorithm 1.

11



Under review as a conference paper at ICLR 2021

Table 5: Experimental results on CIFAR10 for the ResNet architecture with ablation studies of internal BN and
non-linearity and spatial separable configuration.

Net Arch Channel FLOPs #Params Accuracy Internal BN and Spatial
Multiplier (billion) (million) (%) Non-linearity (%) Separable (%)

ResNet20 - 0.04055 0.270 91.25 - -

o-ResNet20 3.875 0.04054 0.206 92.89 92.74 92.32

ResNet32 - 0.06886 0.464 92.49 - -

o-ResNet32 3.875 0.06760 0.352 93.18 93.22 92.88

ResNet56 - 0.12548 0.853 93.03 - -

o-ResNet56 3.875 0.12180 0.643 93.32 93.42 92.93

ResNet110 - 0.25289 1.728 93.39 - -

o-ResNet110 3.875 0.24370 1.298 94.35 94.21 93.96

B TRAINING SETTINGS

Experiments on CIFAR10 for the ResNet architecture The images are padded with 4 pixels and
randomly cropped into 32×32 to feed into the network. A random horizontal flip with a probability
of 0.5 is also applied. All the networks are trained with a standard SGD optimizer for 200 epochs.
The initial learning rate is set to 0.1, with a decay of 0.1 at the 100 and 150 epochs. The batch size
is 128. A weight decay of 0.0001 and a momentum of 0.9 are used.

Experiments on CIFAR10 for the DARTS architecture We follow the same training settings in
(Liu et al., 2018): the network is trained with a standard SGD optimizer for 600 epochs with a batch
size of 96. The initial learning rate is set to 0.025 with a cosine learning rate scheduler. A weight
decay of 0.0003 and a momentum of 0.9 are used. Additional enhancements include cutout, path
dropout of probability 0.2, and auxiliary towers with weight 0.4.

Experiments on ImageNet40 for the ResNet architecture Each network is trained with a stan-
dard SGD optimizer for 20 epochs with the initial learning rate set to 0.1, and a decay of 0.1 at the
10 and 15 epochs. The batch size is 256, the weight decay is 0.0001 and the momentum is 0.9.

Experiments on full ImageNet for the DARTS architecture We follow the training setting in
(Chen et al., 2019): the images are random resized crop into 224× 224 patches with a random scale
in [0.08, 1.0] and a random aspect ratio in [0.75, 1.33]. Random horizontal flip and color jitter are
also applied. The network is trained from scratch for 250 epochs with batch size 1024 on 8 GPUs.
An SGD optimizer with an initial learning rate of 0.5, a momentum of 0.9, and a weight decay of
3e-5. The learning rate is decayed linearly after each epoch. Additional enhancements include label
smoothing with weight 0.1 and auxiliary towers with weight 0.4.

C ABLATION STUDIES

Internal BatchNorm and Non-linearity For a DCNN, it is generally a good practice to add a
BatchNorm (BN) (Ioffe, 2017) and a non-linearity after each convolution. For the proposed optimal
separable convolution, we wonder if it is still necessary to add such a BN and a non-linearity after
each of the internal separated convolutions. Experimental results are illustrated in Table 5. Com-
paring the “Internal BN and Non-linearity” column against the “Accuracy” column, we are able
to conclude that with or without internal BN and non-linearity, similar results with only statistical
variances can be generated. This is reasonable because the network has already been regularized by
outer BN and non-linearity layers from the macro architecture. Internal ones shall offer little to no
additional improvements. Because internal BN and non-linearity could introduce extra computation
and parameters, in the proposed research, we shall not use internal BN and non-linearity.

Spatial Separable Another variation of the proposed optimal separable convolution scheme is the
spatial separable configuration. For Equation (16), the optimal solution is achieved when one of

12



Under review as a conference paper at ICLR 2021

the internal kernel sizes takes KH|W and all the rest takes 1. It does not matter which one of the
internal kernel sizes takes KH|W . Hence, we have this spatial separable variant: a single kernel
takes (KH ,KW ) or two kernels take (KH , 1) and (1,KW ). The detailed implementation is illus-
trated in Algorithm 1. While spatial separable or not affects neither the FLOPs nor the number of
parameters for the proposed optimal separable convolution, the results could be slightly different.
As illustrated by the column “Spatial Separable” in Table 5, the spatial separable configuration leads
to slightly worse performances. The reason might be that spatial separation fuses horizontal and
vertical features separately, which could be less efficient than fusing them simultaneously.

D RELATED WORK

There have been many previous works aiming at reducing the amount of computation in convolution.
Historically, researchers apply Fast Fourier Transform (FFT) (Nussbaumer, 1981; Quarteroni et al.,
2010) to implement convolution. For 1D convolution, FFT reduces the number of computations
for H points from O(H2) to O(H logH). For 2D convolution, FFT-2D reduces the computational
complexity fromO(HW ·K2) toO(HW ·(logH+logW )) (Podlozhnyuk, 2007). Hence, it can be
easily concluded that FFT gains great speed up for large convolutional kernels. For small convolu-
tional kernels (K << H or W ), a direct application is often still cheaper. Researchers also explore
low rank approximation (Jaderberg et al., 2014; Ioannou et al., 2015) to implement convolutions.
However, most of the existing methods obtain moderate efficiency improvements, and they usu-
ally require a pre-trained model and mainly focus on network pruning and compression. In recent
state-of-the-art deep CNN models, several heuristics are adopted to reduce the heavy computation in
convolution. For example, in (He et al., 2016), the authors use a bottleneck structure. Yet in (Sandler
et al., 2018), the authors adopt an inverted bottleneck structure. Such heuristics may require further
ad hoc design to work in practice, however, they are not solid and shall become less convincing.

Among various implementations of convolution, separable convolution has been proven to be more
efficient in reducing the computational demand. Depth separable convolution is explored exten-
sively in modern DCNNs (Howard et al., 2017; Sandler et al., 2018; Howard et al., 2019; Liu
et al., 2018; Tan & Le, 2019). It reduces the computational cost of a conventional convolution from
O(C2K2HW ) to O(CHW · (C +K2)). However, the proposed optimal separable convolution is
even more efficient than depth separable convolution. It can be calculated at O(C

3
2KHW ) and has

the full potential to replace the usage of depth separable convolutions. A second advantage of the
proposed optimal separable convolution over depth separable convolution is that it can be applied to
fully connect layers if we view them as 1× 1 convolutional layers, whereas depth separable convo-
lution cannot. Spatial separable convolution was originally developed to speed up image processing
operations. For example, a Sobel kernel is a 3×3 kernel and can be written as (1, 2, 1)T · (−1, 0, 1).
Spatial separable will require 6 instead of 9 parameters while doing the same operation. Spatial sep-
arable convolution is also adopted in the design of modern DCNNs. For example, in (Szegedy et al.,
2016), the authors introduce spatial separation to the GoogLeNet (Szegedy et al., 2015) architecture.
For the proposed optimal separable convolution, there is also a spatial separable configuration.

In the body of literature, separable convolution is also referred to factorized convolution or convo-
lution decomposition. In this research, the proposed scheme is called optimal separable convolution
following the naming conventions of depth and spatial separable convolutions.

13


