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1 Dataset & Code

Our codebase for the MLP, Mixer, and Transformer architectures can be found at the following remote
repository: https://github.com/ydeng-MLM/ML_MM_Benchmark

1.1 All-dielectric metasurface 2

This dataset has a total of nearly 60,000 pairs of g, s[1]. The geometry input g has 14 dimensions,
and the scattering output s has 2001 dimensions, which are 2001 frequency points from 100-500 THz.
The geometry is randomly selected from the grid points defined in table 1.

We generated the 60,000 ADMs datasets on CEMS utilizing CST Microwave Studio distributed
computing for two months. The all-dielectric metasurface geometry dataset in our benchmark tasks
consists of four SiC elliptical resonators in one supercell as illustrated in Fig.2. The 14 dimensional-
geometry parameters make our all-dielectric metasurface rather complex with exotic scattering
responses. The difficulty of the problem requires the use of computational electromagnetic simulation
(CEMS). We use CST Microwave Studio to carry out the simulations for our all-dielectric metasurface
supercells. Each simulation roughly takes 5-10 minutes to compute, and the total data collection time
is around two months. To the best of our knowledge, there is currently no ethical problem in our
physics simulations.

1.2 Nanophotonics particles 2

This dataset has a total of 50,000 pairs of g, s. The geometry input g has 8 dimensions, and the
scattering output s has 201 dimensions, which are 201 frequency points from 400-800 nm. The
multi-layer nanophotonics particle has alternating layers of TiO2 and silica with a silica core. Each
layer’s thickness of the nanophotonic particle range from 30 to 70 nm. The geometry parameters
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for the nanophotonic particle dataset are randomly sampled within the defined geometry boundary,
following a uniform distribution.

The nanophotonics particle is the first few geometries that were used to demonstrate the capability
of neural networks in accelerating the simulation of AEMs. The original work used the MLP
architecture and established the nanophotonics particle problem as one of the most popular MLP-
based AEM problems. The complexity of the problem increases as the number of layers increases in
the nanophotonics particle. To generate an adequate difficulty level for the neural network, we set the
number of layers at eight for our benchmark tasks. We simulate the scattering responses from the
nanophotonics geometry parameter using the transfer matrix method included in Peurifoy et al. [2].
We have not identified ethical issues during the data collection process.

Table 1: Grid definition for the 14-dimensional input geometry parameters. h, p, and r are in units of
microns. θ is in unit of degrees.

Step h p rxn /ryn θn
1 0.49 1 0.1 -45
2 0.4975 1.125 0.1125 -22.5
3 0.45 1.25 0.125 0
4 0.525 1.375 0.1375 22.5
5 0.6 1.5 0.15 45
6 - - 0.1625 -
7 - - 0.175 -
8 - - 0.1875 -
9 - - 0.25 -

1.3 Color filter 3

This dataset consists of multiple collections of color filter data. We chose to use the 100,000 pairs of
g, s dataset. The geometry input g has 3 dimensions, and the scattering output s has 3 dimensions,
which are 3 values defining CIE XYZ color space. The geometry of the color filter consists of three
layers: One layer of SiO2 sandwiched by two Ag layers. The center SiO2 layers have a thickness
range from 0-1000nm, and the two silver layers have thickness range from 0-50nm. The geometry
parameters are sampled randomly from a uniform distribution within the geometry boundaries.

The design iteration in the color filter is a lot faster than the ADMs and nanophotonic particles without
requiring full-wave simulation or long computational time[3]. Nonetheless, the color filter dataset
brings a unique perspective. In Fig 2, the three-dimensional geometry input of the color filter has
three-dimensional color space output instead of scattering responses. The color space is derived from
the scattering response. Thus, the problem expanded from s

′
= f

′
(g) to c

′
= θ(s

′
) = f

′
(g). Then

the model f
′

in the color filter forward problem needs to cover an extra step of deriving color space
from scattering responses. The geometry follows a uniform distribution within the defined geometry
space. We adopted the dataset from the data repository provided by the work from [3].

2 Transformers

When Vaswani et al. [4] introduced transformer, it was a brand new structure specifically aiming
to replace the previous state-of-the-art sequence to sequence [5] architectures (like long short-term
memory network [6] and gated recurrent neural network [7]) in Natural Language Processing (NLP).
By introducing the attention mechanism, applying a learned weighted sum of the meaning of each
word in the sequence, and a couple of new changes to the original sequenced idea, transformers
architectures dominate the field of natural language processing in the past few years [8].

Transformers did not stop at natural language processing. Shortly after Parmar et al. [9] and
Ramachandran et al. [10] applied the self-attention mechanism on computer vision (CV) task, which
was heavily dominated by convolution neural networks [11, 12, 13, 14] and got similar performance
with significantly fewer trainable parameters. Dosovitskiy et al [15] later demonstrated that using
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visual transformers (ViT) they achieved state-of-the-art performance in multiple image recognition
benchmarks with much fewer parameters.

Apart from NLP and CV, transformers are also being applied to other application fields biological
structure [16] and protein prediction [17]. Currently, there exists little exploration using transformer
architecture in AEM design and we aim to provide our first attempt at applying vanilla transformer
modules to the AEM design task.

Here we use the original architecture of the transformer [4] implemented built-in in the Pytorch
framework [18], with as little modification as possible. Below we list some of the discrepencies about
the assumption of the original transformer model with our problem and the way we circumvent these
problems:

Figure 1: Architecture of the transformer used in the work and the tweaks we made. The input of all
our AEM benchmarks are Dg x1 dimension and output are DS x 1 dimension, where we use fully
connected layers to connect with the input and output of the transformer structure. The structure is
copied n2 times and there are n1 and n3 layers of fully connected layers, all being hyper-parameters
that we grid search on validation set.

Table 2: Adaptation of original (ori.) Transformer/Mixer architecture to AEM modeling, dimension
of n and n refers to sentence length and embedding dimension for transformer, number of patches
and patch size for Mixer.

Property Ori. Method Our problem Our Adapation

Ordered input Transformer No Delete positional encoding
(Sentence) (Geometry)

Sequenced output Transformer No Only take the Encoder
(Sentence) (Spectra) (Decode using MLP)

Sequenced input Transformer/Mixer No Append tokenizer
(dim: n ∗ d ) (dim: lend ∗ 1) (Tokenize using MLP)

3 Testset error distribution

We also examined the loss distribution of each problem’s testset for all the architecture. To eliminate
any possible odd geometry inputs that have unreasonable high loss, we plotted the histogram of our
testset loss distribution so that we can visualize any oddity directly as shwon in Fig 2.
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Figure 2: Histograms of the testset loss distribution for each architecture on all-dielectric metasurface
dataset (a)-(c), nanophotonics particle dataset (d)-(f), color filter dataset (g)-(i).

4 Baseline model hyperparameters

We build the baseline models based on the hyperparameters provided by the original papers for each
dataset [19, 2, 3].

All three datasets implemented the MLP architecture except that the all-dielectric metasurface problem
added one-dimensional transpose convolutional and convolutional layers. The baseline model for the
ADM problem consists of twelve fully connected hidden layers, each with 1000 neurons, followed by
four 1D transpose convolutional layers for upsampling and one convolutional layer for smoothing.
The transpose convolutional layers have kernel size [16, 16, 33, 33] and filter size [4, 4, 4, 4]. The
final convolutional layer has kernel size one and strides at 1. Leaky ReLU is the activation function,
and batch normalization is applied at each hidden layer. The learning rate is set at 1e−4, and the L2
regularization is set at 1e−4, and batch size at 1024.

The baseline model consists of four fully connected hidden layers for the nanophotonics particles
dataset, each with 250 neurons. We use ReLU as the activation function, and batch normalization is
also applied in our base model. The learning rate is set at 1e−4, and the L2 regularization is set at
1e−3, and batch size at 1024.

The baseline model consists of seven fully connected hidden layers for the color filter dataset, each
with 250 neurons. We use ReLU as the activation function, and batch normalization is also applied in
our base model. The learning rate is set at 1e−4, and the L2 regularization is set at 1e−4, and batch
size at 1024.

5 Main results summary

We also provide a tabular format of the main results here for easy reference.
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Table 3: Summary of architectures’ testset performance on each dataset

All-dielectric Metasurface Nanophotonics particle Color filter

Baseline 1.20e−3 1.12e−2 5.00e−5

MLP 1.23e−3 4.04e−3 2.22e−5

Mixer 1.87e−3 1.22e−3 1.86e−6

Transformer 1.47e−3 5.47e−3 1.76e−5

6 Non-deep learning models performance

In addition to the three deep learning architectures we benchmarked in our main paper, we also
benchmarked three non deep learning models: Linear Regression(LR), Random Forests (RF), Support
Vector Regressor(SVR). Due to the difficulty of a comparable optimization (the DL models are
optimized using GPU whereas our non-DL models are running on CPUs), we did not do a hyper-
parameter search for these non-DL models. We report the default hyper-parameters that we use
here:

• Linear Regression: Basic linear regression with an intercept. No penalty on the weights
for regularization purposes. For each data point in the spectra, we run one linear regressor
taking all the geometry points as input.

• Random Forests: An ensemble of decision tree regressors. The total number of trees is 100.
The criteria for making the split is MSE. The maximum depth of a tree is 10. The minimal
samples to be split in each split is 2. Bootstrapped samples are used to construct individual
trees.

• Support Vector Regression: Used linear kernel for the support vector construction due to
running time. The regularization term is kept at default 1. The maximum iteration is 1000
iterations, we did discover due to the large size of our dataset, a lot of times the SVR is not
converging.

Figure 3: The MSE performance plot including the non deep learning
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7 Other performance metrics

In addition to the MSE metrics that were reported in our main manuscript, here we also report the
ranking performance of our DL models using Kendall’s Tau and Spearman’s Rho.

Metrics MLP Transformer Mixer Dataset

Spearman’s Rho 0.94654 0.91829 0.90054 ADMKendall’s Tau 0.84606 0.78598 0.75707

Spearman’s Rho 0.99909 0.99914 0.99982 ColorKendall’s Tau 0.97714 0.97732 0.99122

Spearman’s Rho 0.97890 0.97180 0.98646 ParticleKendall’s Tau 0.90674 0.88718 0.92896

We also plot the critical difference plot here. Note that limited by the number of datasets presents here,
the critical distance is fairly large. However, the rank can be seen clearly that the deep learning-based
models outperform the non-DL ones by large margins.

Figure 4: The critical difference plot for benchmarked methods on MSE including the non-DL models

8 Limitations

The optimization for all the datasets and architectures is human-guided grid search. Although an
automatic model-based optimization method may provide a less biased (by eliminating the human
component) comparison between models, techniques such as Bayesian optimization are not as
reliable as human expertise in hyperparameters tuning for varying circumstances. In applying
Bayesian optimization to our benchmark tasks, the different setup values can still introduce unfairness
into our optimization processes. Therefore, we chose to perform the optimization process with manual
searches of the optimal hyperparameters. The manual grid search in our benchmark tasks supplied
clear trends indicating the local optima. The manual search also allows us to receive real-time
feedback and observations of the architecture behaviors under numerous hyperparameters, giving
us intriguing insights into the parallel study of the three architectures of interest. Samples of our
optimization process can be found in the supplementary.
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