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A ARCHITECTURE DETAILS AND VARIANTS

A.1 SETTINGS AND VARIANTS

SeaFormer backbone contains 6 stages, corresponding to the shared STEM and context branch in
Figure 2 in the main paper. When conducting the image classification experiments, a pooling layer
and a linear layer are added at the end of the context branch.

Table 1 details the family of our SeaFormer configurations with varying capacities. We construct
SeaFormer-Tiny, SeaFormer-Small, SeaFormer-Base and SeaFormer-Large models with different
scales via varying the number of SeaFormer layers and the feature dimensions. We use input image
size of 512 × 512 by default. For variants except SeaFormer-Large, SeaFormer layers are applied
in the last two stages for superior trade-off between accuracy and efficiency. For SeaFormer-Large,
we apply the proposed SeaFormer layers in each stage of the context branch.

A.2 EFFECTIVE AND EFFICIENCY OF SEA ATTENTION

To verify the effectiveness and efficiency of SEA attention based on our designed pipeline, we ex-
periment with convolution, Global attention, Local attention, Axial attention and three convolution
enhanced attention methods including our SEA attention, ACmix and MixFormer. The ablation
experiments are organized in seven groups. Since the resolution of computing attention is rela-
tively small, the window size in Local attention, ACmix, and MixFormer is set to 4. We adjust the
channels when applying different attention modules to keep the FLOPs aligned and compare their
performance and latency. The results are illustrated in Table 2.

As demonstrated in the table, SEA attention outperforms the counterpart built on other efficient
attentions. Compared with global attention, SEA attention outperforms it by +1.2% Top1 accuracy
on ImageNet-1K and +1.6 mIoU on ADE20K with less FLOPs and lower latency. Compared with
similar convolution enhanced attention works, ACmix and MixFormer, our SEA attention obtains
better results on ImageNet-1K and ADE20K with similar FLOPs but lower latency. The results
indicate the effectiveness and efficiency of SEA attention module.

B PASCAL CONTEXT PERFORMANCE

We evaluate performance on Pascal Context val set over 59 categories and 60 categories. PAS-
CAL Context dataset has 4998/5105 images for train and test, covering 59 semantic labels and 1
background.

Following TopFormer Zhang et al. (2022), we train the models for 80,000 iterations on PASCAL
Context dataset. The same data augmentation strategy and batch size are adopted for a fair compari-
son. The initial learning rate is 0.0002 and the weight decay is 0.01. A poly learning rare scheduled
with factor 1.0 is used.

Table 3 demonstrates that SeaFormer-S is +1.4% mIoU higher (45.08% vs.43.68%) than TopFormer-
S with lower latency.
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Resolution SeaFormer-Tiny SeaFormer-Small SeaFormer-Base SeaFormer-Large

Stage1 H/2 × W/2 [Conv, 3, 16, 2] [Conv, 3, 16, 2] [Conv, 3, 16, 2] [Conv, 3, 32, 2]
[MB, 3, 1, 16, 1] [MB, 3, 1, 16, 1] [MB, 3, 1, 16, 1] [MB, 3, 3, 32, 1]

Stage2 H/4 × W/4 [MB, 3, 4, 16, 2] [MB, 3, 4, 24, 2] [MB, 3, 4, 32, 2] [MB, 3, 4, 64, 2]
[MB, 3, 3, 16, 1] [MB, 3, 3, 24, 1] [MB, 3, 3, 32, 1] [MB, 3, 4, 64, 1]

Stage3 H/8 × W/8 [MB, 5, 3, 32, 2] [MB, 5, 3, 48, 2] [MB, 5, 3, 64, 2] [MB, 5, 4, 128, 2]
[MB, 5, 3, 32, 1] [MB, 5, 3, 48, 1] [MB, 5, 3, 64, 1] [MB, 5, 4, 128, 1]

Stage4 H/16 × W/16
[MB, 3, 3, 64, 2] [MB, 3, 3, 96, 2] [MB, 3, 3, 128, 2] [MB, 3, 4, 192, 2]
[MB, 3, 3, 64, 1] [MB, 3, 3, 96, 1] [MB, 3, 3, 128, 1] [MB, 3, 4, 192, 1]

[Sea, 3, 8]

Stage5 H/32 × W/32 [MB, 5, 3, 128, 2] [MB, 5, 4, 160, 2] [MB, 5, 4, 192, 2] [MB, 5, 4, 256, 2]
[Sea, 2, 4] [Sea, 3, 6] [Sea, 4, 8] [Sea, 3, 8]

Stage6 H/64 × W/64 [MB, 3, 6, 160, 2] [MB, 3, 6, 192, 2] [MB, 3, 6, 256, 2] [MB, 3, 6, 320, 2]
[Sea, 2, 4] [Sea, 3, 6] [Sea, 4, 8] [Sea, 3, 8]

Table 1: Architectures for semantic segmentation. [Conv, 3 ,16, 2] denotes regular convolution layer
with kernel of 3, output channel of 16 and stride of 2. [MB, 3, 4, 16, 2] means MobileNetV2 Sandler
et al. (2018) block with kernel of 3, expansion ratio of 4, output channel of 16 and stride of 2. [Sea,
2, 4] refers to SeaFormer layers with number of layers of 2 and heads of 4.

Method Params FLOPs Latency Top1 mIoU
Conv 1.6M 0.59G 38ms 66.3 32.8
Local 1.3M 0.60G 48ms 65.9 32.8
Axial 1.6M 0.63G 44ms 66.9 33.7
Global 1.3M 0.61G 43ms 66.7 34.2
ACmix 1.3M 0.60G 54ms 66.0 33.1
MixFormer 1.3M 0.60G 50ms 66.8 33.8
SeaFormer 1.7M 0.60G 40ms 67.9 35.8

Table 2: Performance of different self-attention modules on our designed pipeline on ImageNet-1K
and ADE20K datasets.

Backbone Decoder F(G) mIoU(60/59)
MBV2-s16 DeepLabV3+ 22.24 38.59/42.34
ENet-s16 DeepLabV3+ 23.00 39.19/43.07
MBV3-s16 LR-ASPP 2.04 35.05/38.02
TopFormer-T Simple Head 0.53 36.41/40.39
SeaFormer-T Light Head 0.51 37.27/41.49
TopFormer-S Simple Head 0.98 39.06/43.68
SeaFormer-S Light Head 0.98 40.20/45.08
TopFormer-B Simple Head 1.54 41.01/45.28
SeaFormer-B Light Head 1.57 41.77/45.92

Table 3: Results on Pascal Context val set. F means FLOPs. We omit the latency as the input
resolution is almost the same as that in table 1.
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Backbone Decoder F(G) mIoU
MBV2-s8 PSPNet 52.94 30.14
ENet-s16 DeepLabV3+ 27.10 31.45
MBV3-s16 LR-ASPP 2.37 25.16
TopFormer-T Simple Head 0.64 28.34
SeaFormer-T Light Head 0.62 29.24
TopFormer-S Simple Head 1.18 30.83
SeaFormer-S Light Head 1.15 32.82
TopFormer-B Simple Head 1.83 33.43
SeaFormer-B Light Head 1.81 34.07

Table 4: Results on COCO-Stuff test set. F means FLOPs. We omit the latency in this table as the
input resolution is the same as that in table 1.

C COCO-STUFF PERFORMANCE

We compare SeaFormer with the previous approaches on COCO-Stuff val set. COCO-Stuff dataset
augments COCO dataset with pixel-level stuff annotations. 10K complex images are selected from
COCO. The train and test set contain 9K/1K images.

Following TopFormer Zhang et al. (2022), we train the models for 80,000 iterations on COCO-Stuff
dataset. The same data augmentation strategy and batch size are adopted for a fair comparison. The
initial learning rate is 0.0002 and the weight decay is 0.01. A poly learning rare scheduled with
factor 1.0 is used.

Table 4 reveals that SeaFormer-S is +2.0% mIoU higher (32.82% vs.30.83%) than TopFormer-S
with less computation cost and lower latency.

D OBJECT DETECTION PERFORMANCE

To further demonstrate the generalization ability of our proposed SeaFormer backbone on other
downstream tasks, we conduct object detection task on COCO dataset.

D.1 SETUP

We use RetinaNet Lin et al. (2017) (one-stage) as the detection framework and follow the standard
settings to use SeaFormer as backbone to generate e feature pyramid at multiple scales. All models
are trained on train2017 split for 12 epochs (1×) from ImageNet pretrained weights.

D.2 RESULTS

From the table 5 We can observe that our SeaFormer achieves superior results on detection task
which further demonstrates the strong generalization ability of our method.

E ADDITIONAL ABLATION STUDY

In addition to the ablation study in the submission paper, we investigate the effect of fusion method
in fusion block.

E.1 THE INFLUENCE OF FUSION BLOCK DESIGN

Setup We set four fusion methods, including ”Add directly”, ”Multiply directly”, ”Sigmoid add”
and ”Sigmoid multiply”. X directly means features from context branch and spatial branch X di-
rectly. Sigmoid X means feature from context branch goes through a sigmoid layer and X feature
from spatial branch.
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Backbone AP FLOPs Params
ShuffleNetv2 Ma et al. (2018) 25.9 161G 10.4M
SeaFormer-T 31.5 160G 10.9M
MF151 34.2 161G 14.4M
MV3 27.2 162G 12.3M
SeaFormer-S 34.6 161G 13.3M
MF214 35.8 162G 15.2M
MF294 36.6 164G 16.1M
SeaFormer-B 36.7 164G 18.1M
ResNet50 He et al. (2016) 36.5 239G 37.7M
PVT-Tiny Wang et al. (2021) 36.7 221G 23.0M
ConT-M Yan et al. (2021) 37.9 217G 27.0M
SeaFormer-L 39.8 185G 24.0M

Table 5: Results on COCO object detecion. MF denotes Mobile-Former Chen et al. (2022). MV3
denotes MobileNetV3 Howard et al. (2019).

Fusion method mIoU
Add directly 35.2
Multiply directly 35.2
Sigmoid add 34.8
Sigmoid multiply 35.8

Table 6: Ablation study on fusion method on ADE20K val set.

Results From the Table 6 we can see that replacing sigmoid multiply with other fusion methods
hurts performance. Sigmoid multiply is our optimal fusion block choice.

F PERFORMANCE UNDER DIFFERENT PRECISION OF THE MODELS

Following TopFormer, we measure the latency in the submission papere on a single Qualcomm
Snapdragon 865, and only an ARM CPU core is used for speed testing. No other means of ac-
celeration, e.g., GPU or quantification, is used. We provide a more comprehensive comparison to
demonstrate the necessity of our proposed method. We test the latency under different precision of
the models. From the table 7, it can be seen that whether it is full precision or half precision the
performance of SeaFormer is better than that of TopFormer.

G VISUALIZATION

G.1 ATTENTION HEATMAP

To demonstrate the effectiveness of detail enhancement in our squeeze-enhanced Axial attention
(SEA attention), we ablate our model by removing the detail enhancement. We visualize the atten-
tion heatmaps of the two models in Figure 1. Without detail enhancement, attention heatmaps from

Model mIoU FP32 FP16
TopFormer-T 34.6 43ms 23ms
SeaFormer-T 35.8 40ms 22ms
TopFormer-S 37.0 74ms 41ms
SeaFormer-S 39.4 67ms 36ms
TopFormer-B 39.2 110ms 60ms
SeaFormer-B 41.0 106ms 56ms
SeaFormer-L 43.7 367ms 186ms

Table 7: Performance comparison on ADE20K val set under different precision.
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(a) Squeeze Axial attention heatmaps

(b) Squeeze-enhanced Axial attention heatmaps

Figure 1: The visualization of attention heatmaps from the model consisting of squeeze Axial atten-
tion without detail enhancement (first row) and SeaFormer (second row). Heatmaps are produced
by averaging channels of the features from the last attention block, normalizing to [0, 255] and up-
sampling to the image size.

solely SA attention appears to be axial strips while our proposed SEA attention is able to activate
the semantic local region accurately, which is particularly significant in the dense prediction task.

G.2 PREDICTION RESULTS

We show the qualitative results and compare with the alternatives on the ADE20K validation set
from two different perspectives. First we compare with a mobile-friendly rival TopFormer Zhang
et al. (2022) with similar FLOPs and latency in Figure 2. Besides, we compare with the Transformer-
based counterpart SegFormer-B1 Xie et al. (2021) in Figure 3. In particular, our SeaFormer-L has
lower computation cost than the SegFormer-B1. As shown in both figures, we demonstrate better
segmentation results than both the mobile counterpart and Transformer-based approach.

H LIMITATIONS AND SOCIETAL IMPACT

The mobile-friendly segmentation is deeply related to the industrial application on edge computation
platforms, while few academic attempts are made to meet the requirement of the industry. We
test our method on a Qualcomm Snapdragon 865 processor (Fig.1 main paper) and shows superior
results to the alternatives. We believe our work can lead to expected and unexpected innovations in
both academia and industry.

However, our system is not perfect yet and hence not fully trustworthy in real-world deployment.
Also, the current system is not exhaustively evaluated and tested due to limited resources. We focus
on the mobile semantic segmentation and image classification tasks. New mobile-friendly method
for more downstream tasks and extended to GPU systems will be studied in the future.
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(a) Ground Truth

(b) TopFormer-B Zhang et al. (2022)

(c) SeaFormer-B (Ours)

Figure 2: Visualization of prediction results on ADE20K val set.
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(a) Ground Truth

(b) SegFormer-B1 Xie et al. (2021)

(c) SeaFormer-L (Ours)

Figure 3: Visualization of prediction results on ADE20K val set.
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