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A PROOF

A.1 PROOF OF THEOREM 1

Theorem 1: For a m-layer fully connected neural network with d-dimensional input and Q-

dimensional output, assume the Sigmoid activation functions and square loss are used, and the

training data distribution D = [c1/n, ..., cQ/n]. In the parameter space, if at some point such that

all the model prediction outputs y = D, that point is a critical point by first order optimality.

Proof: To proof the theorem, the key is showing that at such point the gradients are all zero. The
square loss function L is defined as:
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nX
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nX
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where yi and ti are the prediction output and target with respect to ith input sample, respectively.
Given that the neural network is m fully connected hidden layers, we denote zj 2 Rhj as the output
vector from jth hidden layer with hj neurons, and denote Wj as the corresponding weight matrix
and bj as the bias vector, where j = 1, · · · ,m + 1. Note that Wm+1 and bm+1 are the weight
and bias of the output layer. Since the activation function is Sigmoid, take the derivative of L with
respect to model parameters W and b, we have,
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where j = 1, 2, · · · ,m, and � denotes element-wise multiplication. Assume that the inputs of
Sigmoid function are in range [�1, 1], then it can be approximated as a linear function with constant
slope s ⇠ 0.25. Thus,
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Now assume at some point in parameter space such that y = yeq = [c1/n, ..., cQ/n], plugging in
yeq , Eq.(12) becomes
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The matrix multiplication terms are the same, so we can just focus on the terms with yeq . Consider
the first entry of Eq.(16) without constant terms, we have
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This applies for any jth entry of Eq.(16). Therefore, Eq.(12) is equal to zero. With the same
argument, we have Eq.(10) and Eq.(14) equal to zero. Now plug yeq into Eq.(13), we have
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Since zj�1 = Wj�1(Wj�2 · · · (W1x+ b1) + bj�2) + bj�1, terms without x are zero by previous
analysis. Thus, we can focus on terms with x in Eq.(18). Consider the first entry of terms with x,
we have
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Eq.(19) equals to zero when 1
cj

P
cj
xi � 1

c1

P
c1
xi for all j = 1, 2, ..., Q. That is, when The

average of input samples from all classes are the same, the gradient Eq.(13) is zero. With the same
argument, we have Eq.(11) and Eq.(15) are zero. Therefore, all the loss gradient with respect to
model parameters from Eq.(4) to Eq.(9) are zero at such point, and this completes the proof of
Theorem 1.
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A.2 COMMENTS ON THEOREM 1

Theorem 1 shows that under the assumptions, if a point in parameter space makes all the prediction
outputs equal to the class distribution, then such point is a critical point by first order optimality.
There are two important assumptions in the proof. The first one is the linear approximation of
Sigmoid. Since the output from Sigmoid function is in the range [�1, 1], as long as the magnitudes
of model parameters are not too large, the approximation would still hold. The second assumption
is that sample averages from different classes are all the same, which seems to be a much stronger
assumption. Nevertheless, in practical classification problem, the pixel values of input images are
normalized, which makes the average difference between each class bounded. In addition, as we can
see in Eq.(19), s is a constant that is smaller than 1, and following the previous argument that the
magnitudes of model parameters are not too large. Thus, from the theoretical point of view, the error
caused by nonzero average difference can be mitigated by increasing the number of hidden layers.
This conclusion is validated in the experiment as shown in Fig.4. In summary, the assumptions
for the proof of Theorem 1 are reasonable, and the theoretical analysis matches the observations in
practical experiments.

B CONVERGENCE CURVE

Four the convergence curves from experiments shown in Table 2 and 3 are provided in Fig.6 as the
supplementary material. We can observe that the proposed method FedRE has the best performance
among all 4 methods in all different settings.

(a) MNIST, ⇢ = 10, C = 0.3, 1 minority class (b) MNIST, ⇢ = 10, C = 0.3, 2 minority class

(c) CIFAR10, ⇢ = 10, C = 0.3, 1 minority class (d) CIFAR10, ⇢ = 10, C = 0.3, 2 minority class

Figure 6: Four convergence curves of 4 algorithms on MNIST and CIFAR10 with different settings.
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