
Appendix for "Fine-Tuning Pre-Trained Language
Models Effectively by Optimizing Subnetworks

Adaptively"

Haojie Zhang1, Ge Li1∗, Jia Li1, Zhongjin Zhang1, Yuqi Zhu1, Zhi Jin1

1Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education; Institute of Software, EECS, Peking University, Beijing, China

zhanghaojie@stu.pku.edu.cn, lige@pku.edu.cn
lijia@stu.pku.edu.cn, zjz123@stu.pku.edu.cn, zhuyuqi97@gmail.com, zhijin@pku.edu.cn

A Appendix A. Case Study

In Sec.3.3, we have experimentally verified that DPS outperforms various fine-tuning methods. To
understand what type of cases DPS predicts more accurately and justify the effectiveness of DPS
from another perspective, we conduct case study. Specifically, we fine-tune BERTLARGE on RTE
with 10 random restarts and count the overall proportion of easy cases (cases with more than 5
accurate predictions out of 10) and hard cases (cases with more than 5 predictions incorrect out
of 10). Figure 1 summarizes the statistics. Compared with various baselines, DPS has the largest
proportion of easy cases and the smallest proportion of hard cases. This demonstrates that compared
with vanilla fine-tuning, Mixout, and CHILD-TUNING, DPS can better maintain general contextual
representation, explore the potential value of data and models, and thus solve difficult cases without
affecting the ability to identify easy cases, which is ultimately reflected in the improvement of metrics.
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Figure 1: Subfigure.(a) summarizes the percentage of easy cases on various methods; Subfigure.(b)
summarizes the percentage of hard cases on various methods.

B Appendix B. GLUE Benchmark Datasets

we conduct experiments on 8 datasets in GLUE benchmark Wang et al. [2019], the dataset statistics
for each task are illustrated in Table 1. we also provide a brief description for each dataset:

•RTE: Binary entailment classification task Bentivogli et al. [2009]

•MRPC: Semantic similarity Dolan and Brockett [2005]
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•STS-B: Semantic textual similarity Cer et al. [2017]

•CoLA: Acceptability classification Warstadt et al. [2019]

•SST-2: Binary sentiment classification Socher et al. [2013]

•QNLI: Binary question inference classification Rajpurkar et al. [2016]

•QQP: Binary semantically equivalent classification Shankar Iyer and Csernai. [2017]

•MNLI: Textual entailment classification Williams et al. [2018]

Dataset RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI
Train Examples 2.5k 3.7k 5.7k 8.5k 67k 105k 364k 393k
Dev Examples 277 408 1.5k 1.0k 872 5.5k 40k 4.8k
Metrics Acc F1 SCC MCC Acc Acc Acc Acc

Table 1: Eight datasets used in this paper form GLUE benchmark. Acc stands for Accuracy, SCC
stands for Spearman Correlation Coefficient and MCC stands for Matthews Correlation Coefficient.

C Appendix C. Hyper-parameters and Experimental Details of Different
Pre-trained Language Models

In this paper, we investigate the performance of DPS on five distinctive and widely used large-
scale pre-trained language models, namely BERT Devlin et al. [2018], RoBERTa Liu et al. [2019],
ELECTRA Clark et al. [2020], BART Lewis et al. [2019], and DeBERTa He et al. [2021]. BERT
is the first Transformer Vaswani et al. [2017] encoder based pre-trained language model with Mask
Language Modeling and Next Sentence Prediction pre-training tasks. RoBERTa is similar to BERT
in terms of model architecture but is only pre-trained on the Mask Language Modeling task only,
but for longer and on more data. ELECTRA is a BERT-like model trained to distinguish tokens
generated by masked language model from tokens drawn from the natural distribution. BART is a
sequence-to-sequence model trained as a denoising autoencoder. DeBERTa improves Transforme-
based pre-trained model with disentangled attention mechanism and enhanced mask decoder. Table 2
summarizes the hyper-parameters of each model for each dataset. We use AdamWLoshchilov and
Hutter [2019] optimizer, clip the gradients with a maximum norm of 1, and the maximum sequence
length is set as 128. We use mixed precision training to speed up the experimental process. We
conduct all the experiments on a single Tesla-V100 GPU (32G).

Model Datasets Batch Size Learning Rate Training Epochs/Steps Warmup Ratio/Steps LLRD
BERT all 16 2e-5 3 epochs 10% -

RoBERTa

RTE 16 2e-5 2036 steps 122 steps -
MRPC 16 1e-5 2296 steps 137 steps -
STS-B 16 2e-5 3598 steps 214 steps -
CoLA 16 1e-5 5336 steps 320 steps -

ELECTRA

RTE 32 5e-5 10 epochs 10% 0.9
MRPC 32 5e-5 3 epochs 10% 0.9
STS-B 32 5e-5 10 epochs 10% 0.9
CoLA 32 5e-5 3 epochs 10% 0.9

BART

RTE 32 1e-5 3 epochs 10% -
MRPC 64 2e-5 3 epochs 10% -
STS-B 32 2e-5 3 epochs 10% -
CoLA 64 2e-5 3 epochs 10% -

BEBERTA

RTE 32 1e-5 6 epochs 50 steps -
MRPC 32 1e-5 6 epochs 50 steps -
STS-B 32 7e-6 4 epochs 100 steps -
CoLA 32 7e-6 6 epochs 100 steps -

Table 2: Fine-tuning hyper-parameters of BERT and its variants as reported in the official repository
of each model for best practice. Note that Layer-wise Learning Rate Decay (LLRD)Howard and
Ruder [2018] is a method that applies higher learning rates for top layers and lower learning rates for
bottom layers. This method is applied by ELECTRA when fine-tuning downstream tasks.
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D Appendix D. Experimental Details for Different Fine-tuning Methods

The following is our hyperparameter search space for different fine-tuning regularization methods:

•Mixout We grid search Mixout probability p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.

•R3F: We grid search Noise Types ∈ {N , U}, σ ∈ {1e-5}, λ ∈ {0.1, 0.5, 1.0, 5.0}.

•Re-init: We grid search L ∈ {1, 2, 3, 4, 5, 6, 7}.

•CHILD-TUNINGD: We grid search CHILD-TUNINGD pD ∈ {0.1, 0.2, 0.3}, and learning rate lr
∈{2e-5, 4e-5, 6e-5 ,8e-5, 1e-4}.

•R-Dropout: We grid search Dropout probability p ∈ {0.1} and α ∈ {0.1, 0.5, 1, 3, 5}.

•DPS Dense: We grid search reserved probability p ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and update ratio ur ∈
{0.05, 0.1, 0.2}.

•DPS Mix: We grid search reserved probability p ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, and update ratio ur ∈
{0.05, 0.1, 0.2}.

E Appendix E. Mapping Strategy

We train DPS on SNLI and MNLI datasets respectively and evaluate several different target NLI
datasets. The SNLI and MNLI datasets contain three labels: entailment, neutral, and contradiction,
however, some datasets have only two labels (SciTial, RTE). The SciTail dataset contains two labels:
entailment, neutral, and we map the predicted labels neutral and contradiction to neutral, following
Mahabadi et al. [2021]. We conduct the same process for RTE.

F Appendix F. Memory Consumption

In addition to time usage, we further analyze memory consumption of various approaches when
fine-tuning BERTLARGE . The table below shows the results. DPS Dense requires extra memory
because it needs to store Gradient Accumulation Matrix (GAM ), DPS Mix requires more memory
than DPS Dense because it needs to store Frequency Accumulation Matrix (FAM ) and GAM . It is
worth noting that since the size of GAM and FAM is fixed, the additional memory consumption
introduced by DPS does not increase as the batch size increases. Therefore, as the batch size
increases, the percentage of additional memory consumption decreases for DPS compared to vanilla
fine-tuning. Overall, DPS does introduce additional memory overhead, but we believe that the
memory consumption for DPS is acceptable compared to other regularization methods.

Batch Size Vanilla Mixout R3F R-Dropout CHILD-TUNINGD DPS Dense DPS Mix
16 10.6G 12.9G 17.7G 17.7G 10.9G 16.3G 21.1G
32 14.3G 16.3G 28.3G 28.3G 14.7G 20.0G 24.7G

Table 3: Memory consumption for DPS and multiple fine-tuning regularization methods.
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