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We report further evaluations of MOVE that could not be included in the main paper. An important
component of MOVE is the Masked Autoencoder. We perform additional analysis to show how
MAE encodes image tiles and also how this changes between a GAN or MSE trained MAE. We also
examine the mask losses when they are used at multiple scales. In other methods, the bilateral solver
is used to refine the predicted masks. We show that our segmenter produces already accurate masks
even without the bilateral filter. Finally, we show additional quantitative and qualitative results on
other training and test datasets.

Table A.1: Inpainting error for a pre-trained MAE on 5000 images from the ImageNet validation set:
Feeding a subset of tokens to the encoder (Default) vs soft-masking before the decoder (Modified). ∆
is the mean squared error between the inpainted regions for two methods

MAE Model Default Modified ∆

w/ GAN 0.0683± 0.0427 0.0647± 0.0398 0.0070± 0.0059
w/ MSE 0.0639± 0.0411 0.0617± 0.0390 0.0055± 0.0056

A MAE as a differentiable inpainter

Masked Autoencoders (MAE) consist of a Transformer Encoder, which takes as input only a subset
of unmasked patches during training, and a Transformer Decoder, which takes as input the encoded
patches and, in addition, a learnable MSK token replicated at all the locations where the (masked)
patches were not fed to the encoder. The decoder is trained to reconstruct the masked patches.

In MOVE, we need the pre-trained MAE to work as a differentiable inpainter. To that end, we feed all
the patches to the encoder. Then, we only do a soft-masking between the MSK token and the encoded
patches via a convex combination, before feeding the embeddings to the decoder (see section 2 and
Figure 3). This is different from how MAE was trained: During training the encoder had no way to
encode the information about the missing patches. Since in MOVE we feed all the patches to the
encoder, it is possible that the encoded embeddings contain information about their neighbors. In
particular, there is the risk that the unmasked encoded patches would contain information about the
masked patches. If that were the case, the decoder would be able to inpaint the masked object even
when the entire object is masked at the decoder input. We show empirically and quantitatively that
this is not the case. Using the same pre-trained MAE, we compare the reconstruction error for the
original inference vs. our modified soft-masking inference. We run the evaluation on a subset of
5000 images from the ImageNet validation set [1], randomly masking between 80% and 95% of the
tokens. We show the mean squared error of the intensity for intensity range [0; 1] in Table A.1 and
comparison of reconstructed images in Figure A.1 for both MAE trained with a GAN loss or with
an MSE loss. We find that the difference in the inpainting error is not significant. Moreover, we
observe visually that the reconstructions through the Modified soft-masking (MOVE) do not show a
better reconstruction of the masked patches than in the Default case where the masked patches are
not provided to MAE.
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Input Masked input MAE w/ GAN - orig. MAE w/ GAN - mod. MAE w/ MSE - orig. MAE w/ MSE - mod.

Figure A.1: Comparison of MAE sparse input vs differentiable mask inpainting. We show the input
and masked input image in the two first columns. For MAE trained with a GAN loss or with an
MSE loss we show the reconstructed image when we feed a sparse subset of tokens to the encoder
(orig.) and when we feed all the tokens to the encoder and mask only before feeding the embeddings
to the decoder (mod.). No significant difference can be observed between these two reconstruction
modalities or when we change the MAE training.
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Figure B.1: Obtaining an inpainting mask from a predicted mask via max pooling downsampling.
Due to small artifacts in the mask, all patches might be selected as masked and thus, the entire
background might get inpainted. The grid on the right is just for reference purposes.

B Inpainter mask and downsampled mask losses

As specified in section 2, we obtain a low-res inpainting mask m̂ via a maxpoolP with stride P
operation on the union of the predicted mask and its shifted version, where P is the patch size that
MAE tokens embed. We use max pooling for downsampling, because we want to make sure that
we mask all the patches containing even only parts of the object. This is important, otherwise the
inpainter may partly reconstruct the object. However, using max pooling for downsampling might
result in inpainting more than necessary due to the artifacts in the mask. An extreme case of this
is illustrated in Figure B.1, where the entire background would get inpainted due to a single pixel
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Input Ground truth MOVE MOVE + bilateral Input Ground truth MOVE MOVE + bilateral

Figure C.1: A refinement with the bilateral solver might cause the shrinking of valid predicted masks.

within each P × P patch. To avoid such cases we apply our Lmin and Lbin losses (eq. (1),(2)) on
the downsampled mask as well. Having a binarization loss on the mask downsampled with max
pooling has an extra regularizing effect on the original mask. For example, when all mask pixels in a
patch have a value below 0.5, the binarization loss on the max pooling of the mask will push only the
largest value towards 0. This creates an asymmetry when the pixels of the mask must be reduced,
which prioritizes the largest values. Eventually however, the application of this loss over multiple
iterations will result in pushing all pixels within the patch to 0.

C Bilateral solver

While other methods get competitive results by using a bilateral solver to refine the masks predicted
from their methods (see section 4.1), MOVE provides more accurate results wihout any additional
post-processing. The application of a bilateral solver, which highly relies on image texture, could
even decrease the performance in cluttered images. In Figure C.1 we show some examples where the
bilateral solver hurts our predictions.

D Segmenter architecture

Our segmenter is built on top of a ViT-based feature extractor, as specified in section 3. We define a
Blockin_ch

out_ch as a sequence of layers:

3× 3 Convin_ch
out_ch → BatchNorm → LeakyReLU, (1)

where K ×K Convin_ch
out_ch is a padded K ×K convolution with stride = 1, in_ch input channels

and out_ch output channels. Our baseline segmenter takes DINO ViT-S/8 384-dimensional features
arranged in a grid and consists of alternating upsampling layers and blocks:

Upsample2×2
nearest → Block384

192 →
Upsample2×2

nearest → Block192
128 →

Upsample2×2
nearest → Block128

128 →
Block128

128 → 1× 1 Conv1281

(2)

MAE features used as the segmenter inputs in one of the ablations (section 4.3) are 1024-dimensional
come from ViT/16 with 16× 16 patches, therefore the segmenter needs an extra upsampling block
and adapted number of channels. The adapted architecture in this case is

Upsample2×2
nearest → Block1024512 →

Upsample2×2
nearest → Block512256 →

Upsample2×2
nearest → Block256128 →

Upsample2×2
nearest → Block128128 →

Block128128 → 1× 1 Conv128
1

(3)
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For the ImageNet100 experiment we increase the capacity of the segmenter by making each Block
deeper, i.e. Blockin_ch

out_ch is:

3× 3 Convin_ch
out_ch → BatchNorm → LeakyReLU →

3× 3 Convout_chout_ch → BatchNorm → LeakyReLU.
(4)

E Additional results

E.1 Segmentation qualitative results

In Figures E.1,E.2,E.3 we show more segmentation results of MOVE on DUTS-TE, DUT-OMRON
and ECSSD.

E.2 Detection qualitative results

In Figures E.4,E.5,E.6 we show more object detection results of MOVE on VOC07, VOC12 and
COCO20k.
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Figure E.1: Sample segmentation results on ECSSD.
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Input MOVE SelfMask on MOVE Ground truth MOVE SelfMask on MOVE Ground truth

Figure E.2: Sample segmentation results on DUTS-TE.
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Input MOVE SelfMask on MOVE Ground truth MOVE SelfMask on MOVE Ground truth

Figure E.3: Sample segmentation results on DUT-OMRON.
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Input MOVE masks MOVE bbox Ground truth bbox Input MOVE masks MOVE bbox Ground truth bbox

Figure E.4: Sample detection results on VOC07.
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Input MOVE masks MOVE bbox Ground truth bbox Input MOVE masks MOVE bbox Ground truth bbox

Figure E.5: Sample detection results on VOC12.
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Input MOVE masks MOVE bbox Ground truth bbox Input MOVE masks MOVE bbox Ground truth bbox

Figure E.6: Sample detection results on COCO20k.
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