
A Some Tensor Definitions and Properties

We present in this section fairly standard notation and definitions regarding tensors, e.g., see [18] and
Chapter 3 of [30], that we use throughout the paper. Let A P Rd1ˆ¨¨¨ˆdk denote a tensor of order k.

• slices of A along its i-th dimension: for i “ 1, ..., k and j “ 1, ..., di, the j-th slice of A
along its i-th dimension, Aij denotes the d1 ˆ ¨ ¨ ¨ ˆ di´1 ˆ di`1 ˆ ¨ ¨ ¨ ˆ dk tensor of order
k ´ 1, composed from all of the entries of A whose ith index is j.

• vectorization of A: denoted as vecpAq, is defined recursively as

vecpAq “

¨

˚

˝

vecpA1
1q

...
vecpA1

d1
q

˛

‹

‚

,

where for the base case, in which A is one-dimensional tensor (i.e., a vector), vecpAq “ A.
Note that when A is a matrix, this corresponds to the row-major vectorization of A.

• matricization of A: denoted as matipAq, for i “ 1, ..., k, is defined as

matipAq “

¨

˚

˝

vecpAi1q
J

...
vecpAidiq

J

˛

‹

‚

.

Note that vecpAq “ vecpmat1pAqq.

• contraction of A with itself along all but the ith dimension: denoted as Apiq, is defined as
matipAqmatipAqJ.

• mode-i product of A by a matrix U P Rd
1
iˆdi : the operation is denoted as ˆi. Let B “

AˆiU P Rd1ˆ¨¨¨ˆdi´1ˆd
1
iˆdi`1ˆ¨¨¨ˆdk denote the resulting tensor. Bj1,...,ji´1,j1i,ji`1,...,jk “

ř

ji
Aj1,...,jkUj1i,ji . Note that in the matrix case (k “ 2), Aˆ1 U “ UA, Aˆ2 U “ AUJ.

Lemma 3. Let X P Rmˆn, A P Rmˆm, B P Rnˆn. Then, we have

pAbBJqvecpXq “ vecpAXBq.

Note that the above lemma is slightly different from the most common version of it, which uses a
column-major vectorization of the matrix X .

Proposition 1. Let G P Rd1ˆ¨¨¨ˆdk and Ui P Rdiˆdi for i “ 1, ..., k. Then, we have
`

bki“1Ui
˘

vecpGq “ vecpGˆ1 U1 ˆ2 U2 ¨ ¨ ¨ ˆk Ukq. (6)

Proof of Proposition 1:

Proof. Our proof, which is largely inspired by the one in [18], is by induction on k. When k “ 1, it
is easy to see that (6) holds by the definition of the mode-i product. When k “ 2, (6) follows from
Lemma 3.

Now assume that (6) holds for 1, 2, ..., k ´ 1. For k, we let H “ bki“2Ui

By the induction hypothesis,

mat1pGqHJ “
`

Hmat1pGqJ
˘J
“
`

H
`

vecpG1
1q ¨ ¨ ¨ vecpG1

d1
q
˘˘J

(7)

“
`

HvecpG1
1q ¨ ¨ ¨ HvecpG1

d1
q
˘J

(8)

“
`

vecpG1
1 ˆ1 U2 ¨ ¨ ¨ ˆk´1 Ukq ¨ ¨ ¨ vecpG1

d1
ˆ1 U2 ¨ ¨ ¨ ˆk´1 Ukq

˘J
(9)

“

¨

˚

˝

vecpG1
1 ˆ1 U2 ¨ ¨ ¨ ˆk´1 Ukq

J

...
vecpG1

d1
ˆ1 U2 ¨ ¨ ¨ ˆk´1 Ukq

J

˛

‹

‚

“ mat1pGˆ2 U2 ¨ ¨ ¨ ˆk Ukq (10)
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By Lemma 3 and (10),
`

bki“1Ui
˘

vecpGq “ pU1 bHq vecpmat1pGqq “ vecpU1mat1pGqHJq

“ vecpU1mat1pGˆ2 U2 ¨ ¨ ¨ ˆk Ukqq

“ vecpmat1pGˆ2 U2 ¨ ¨ ¨ ˆk Uk ˆ1 U1qq

“ vecpGˆ2 U2 ¨ ¨ ¨ ˆk Uk ˆ1 U1q

“ vecpGˆ1 U1 ˆ2 U2 ¨ ¨ ¨ ˆk Ukq,

where the third from last equality comes from the fact that BmatipAq “ matipAˆi Bq, and the last
equality comes from the fact that mode-i products are commutative.

B Proofs of Lemmas and Theorem 1

Algorithm 2 Idealized Version of TNT
Require: Given θ1 P Rn, batch sizes tmtutě1, step sizes tαtutě1, and damping value ε ą 0

1: for t “ 1, 2, . . . do
2: Sample mini-batch of size mt: Mt “ tξt,i, i “ 1, . . . ,mtu

3: Calculate y∇Lt “ 1
mt

ř

ξt,iPMt
∇lpθt, ξt,iq

4: Compute Ũi (i “ 1, ..., k) by formula (5), using the true values of Ex„Qx,y„prGpiqs (i “
1, ..., k) at the current parameter θt.

5: Compute pt “ vec
´

y∇Lt ˆ1 pŨ1 ` εIq
´1 ˆ2 ¨ ¨ ¨ ˆk pŨk ` εIq

´1
¯

6: Calculate θt`1 “ θt ´ αtpt
7: end for

Algorithm 2 describes an idealized version of TNT, whose convergence is verified by the proofs of
Lemmas 1 and 2, and Theorem 1 below.

Lemma 1. }Ex„Qx,y„prGpiqs} ď
´

1
di

śk
i1“1 di1

¯

}Ex„Qx,y„prvecpGqvecpGqJs}, @ i “ 1, . . . , k.

Proof of Lemma 1:

Proof. Let X P Rmˆn be a random matrix, and xi P Rm denote its ith column (i “ 1, ..., n).
Because vecpXq is a vector containing all the elements of all the xi’s, xixJi is a square submatrix of
vecpXqvecpXqJ. Hence, }ErxixJi s} ď }ErvecpXqvecpXqJs}, and we have that

}ErXXJs} “ }Er
n
ÿ

i“1

xix
J
i s} “ }

n
ÿ

i“1

ErxixJi s} ď
n
ÿ

i“1

}ErxixJi s} ď n}ErvecpXqvecpXqJs}.

Letting X “ matipGq P Rdiˆpd1¨¨¨di´1di`1¨¨¨dkq, it then follows that

}Ex„Qx,y„prGpiqs} ď pd1 ¨ ¨ ¨ di´1di`1 ¨ ¨ ¨ dkq}ErvecpmatipGqqvecpmatipGqqJs}

“ p
1

di

k
ź

i1“1

d1iq}ErvecpGqvecpGqJs}.

Lemma 2. Suppose Assumption 3 holds. Let FTNT :“ pŨ1 ` εIq b ¨ ¨ ¨ b pŨk ` εIq, where the Ũi’s
are defined in (5). Then, the norm of FTNT is bounded both above and below.

Proof of Lemma 2:
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Proof. It is clear that ||FTNT|| “
śk
i“1 ||Ũi ` εI|| ě εk. On the other hand, for i “ 1, ..., k, if we

denote the eigenvalues of ErGpiqs by λ1 ď ¨ ¨ ¨ ď λdi , we have from (5) that

}Ũi} “
}ErGpiqs}

´

trpErGpiqsq
ś

j dj

¯pk´1q{k
ś

j‰i dj

“
λdi

´

λ1`¨¨¨`λdi
ś

j dj

¯pk´1q{k
ś

j‰i dj

ď
λdi

´

λdi
ś

j dj

¯pk´1q{k
ś

j‰i dj

“
diλ

1{k
di

p
ś

j djq
1{k

“
di}ErGpiqs}1{k

p
ś

j djq
1{k

.

Thus, since ||FTNT|| “
śk
i“1 ||Ũi ` εI|| “

śk
i“1p||Ũi|| ` εq, by the above and Lemma 1,

||FTNT|| ď

k
ź

i“1

˜

di}ErGpiqs}1{k

p
ś

j djq
1{k

` ε

¸

ď

k
ź

i“1

´

d
1´1{k
i ||ErvecpGqvecpGqJs||1{k ` ε

¯

.

Then, by Assumption 3, we have that ||FTNT|| is bounded above.

Proof of Theorem 1:

Proof. The proof of Theorem 1 follows from Theorem 2.8 in [44]. Clearly, Algorithm 2 falls under
the scope of the stochastic quasi-Newton (SQN) method in [44]. In particular, by Proposition 1, the
pre-conditioning matrix H “ F´1

TNT. Moreover, to apply Theorem 2.8 in [44], we need to show that
AS.1 - AS.4 in [44] hold. First, AS.1 and AS.2 in [44] are the same as Assumption 1 and Assumption
2, respectively in Section 4 in our paper. Second, by Lemma 2, since ||FTNT|| is both upper and lower
bounded, so is ||F´1

TNT||. Hence, AS.3 in [44] is ensured. Finally, Algorithm 2 itself ensures AS.4 in
[44] holds. Hence, by Theorem 2.8 of [44], the result is guaranteed.

C Pseudo-code for TNT

In Algorithm 3, we present a detailed pseudo-code for our actual implementation of TNT. The
highlighted parts, i.e., Lines 7, 15 and 16, indicate where TNT differs significantly from Shampoo.

D Details of the Experiments

In our implementations of the algorithms that we compared to TNT, we included in all of the
techniques like weight decay and momentum, so that our numerical experiments would provide
a FAIR comparison. Consequently, we did not include some special techniques that have been
incorporated in some of the algorithms as described in previously published papers, since to keep
the comparisons fair, we would have had to incorporate such techniques in all of the algorithms (see
Section D.1.1 for more details).

D.1 Competing Algorithms

In SGD with momentum, we updated the momentum of the gradient m “ µ ¨m` g at every iteration,
where g denotes the minibatch gradient at current iteration. The gradient momentum is also used in
the second-order methods, in our implementations.

For Adam, we follow exactly the algorithm in [23] with β1 “ 0.9 and β2 “ 0.999. In particular, we
follow the approach in [23] in estimating the momentum of gradient by m “ β1 ¨m` p1´ β1q ¨ g.
The role of β1 and β2 is similar to that of µ and β in Algorithm 3 and Algorithm 4, as we will describe
below.

In the experiments on CNNs, we use weight decay (same as in Algorithms 3 and 4) on SGD and
Adam, similar to SGDW and AdamW in [29] (for further details, see Section D.3).
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Algorithm 3 Tensor-Normal Training
Require: Given batch size m, learning rate tαtutě1, weight decay factor γ, damping value ε,

statistics update frequency T1, inverse update frequency T2

1: µ “ 0.9, β “ 0.9

2: Initialize
y

G
piq
l “ ErGpiql s (l “ 1, .., k, i “ 1, ..., kl) by iterating through the whole dataset,

{∇Wl
L “ 0 (l “ 1, ..., L)

3: for t “ 1, 2, . . . do
4: Sample mini-batch Mt of size m
5: Perform a forward-backward pass over Mt to compute the mini-batch gradient ∇L
6: if t ” 0 pmod T1q then
7: Perform another backward pass over Mt with y sampled from the predictive distribution to

compute Gl “ DWl averaged across Mt (l “ 1, ..., L)
8: end if
9: for l “ 1, ...L do

10: {∇Wl
L “ µ{∇Wl

L`∇Wl
L

11: if t ” 0 pmod T1q then

12: Update
y

G
piq
l “ β

y

G
piq
l ` p1´ βqGl

piq
for i “ 1, ..., kl

13: end if
14: if t ” 0 pmod T2q then

15: Determine Ũ plq1 , ..., Ũ
plq
kl

from
y

G
p1q
l , ...,

z

G
pklq
l by (5)

16: Recompute pŨ plq1 ` εIq´1, ..., pŨ
plq
kl
` εIq´1

17: end if
18: pl “ {∇Wl

Lˆ1 pŨ
plq
1 ` εIq´1 ˆ2 ¨ ¨ ¨ ˆk pŨ

plq
k ` εIq´1

19: pl “ pl ` γWl

20: Wl “Wl ´ αt ¨ pl.
21: end for
22: end for
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D.1.1 Shampoo

Algorithm 4 Shampoo
Require: Given batch size m, learning rate tαtutě1, weight decay factor γ, damping value ε,

statistics update frequency T1, inverse update frequency T2

1: µ “ 0.9, β “ 0.9

2: Initialize
y

G
piq
l “ ErGpiql s (l “ 1, .., k, i “ 1, ..., kl) by iterating through the whole dataset,

{∇Wl
L “ 0 (l “ 1, ..., L)

3: for t “ 1, 2, . . . do
4: Sample mini-batch Mt of size m
5: Perform a forward-backward pass over the current mini-batch Mt to compute the minibatch

gradient ∇L
6: for l “ 1, ...L do
7: {∇Wl

L “ µ{∇Wl
L`∇Wl

L
8: if t ” 0 pmod T1q then

9: Update
y

G
piq
l “ β

y

G
piq
l ` p1´ βqGl

piq
for i “ 1, ..., kl where Gl “ ∇Wl

L
10: end if
11: if t ” 0 pmod T2q then

12: Recompute
ˆ

y

G
p1q
l ` εI

˙´1{2kl

, ...,

ˆ

z

G
pklq
l ` εI

˙´1{2kl

with the coupled Newton

method
13: end if

14: pl “ {∇Wl
Lˆ1

ˆ

y

G
p1q
l ` εI

˙´1{2kl

ˆ2 ¨ ¨ ¨ ˆk

ˆ

z

G
pklq
l ` εI

˙´1{2kl

15: pl “ pl ` γWl

16: Wl “Wl ´ αt ¨ pl
17: end for
18: end for

In Algorithm 4, we present our implementation of Shampoo, which mostly follows the description
of it given in [18]. Several major improvements are also included, following the suggestions in [3],
including:

1. In Line 9 of Algorithm 4, a moving average is used to update the estimates
y

G
piq
l , as is done

in our implementations of TNT and KFAC. This approach is also used in Adam, whereas
summing the Gpiql ’s over all iterations, as in [18], is analogous to what is done in AdaGrad,
upon which Shampoo is based.

2. In Line 12 of Algorithm 4, we use a coupled Newton method to compute inverse roots of
the matrices (as proposed in [3]), rather than using SVD. The coupled Newton approach
has been shown to be much faster than SVD, and also preserves relatively good accuracy in
terms of computing inverse roots. The coupled Newton method performs reasonably well
(without tuning) using a max iteration number of 100 and an error tolerance of 1e-6.

Some other modifications proposed in [3] are not included in our implementation of Shampoo, mainly
because these modifications can also be applied to TNT, and including them only in Shampoo would
introduce other confounding factors.

(i) We did not explore multiplying the damping term in the pre-conditioner by the maximum
eigenvalue λmax of the contraction matrix. Moreover, this modification is somewhat
problematic, since, if the model contains any variables that always have a zero gradient
(e.g. the bias in a convolutional layer that is followed by a BN layer), the optimizer would
become unstable because the pre-conditioner of the zero-gradient variables would be the
zero matrix, (note that in this case λmax “ 0).

(ii) We did not explore the diagonal variant of Shampoo, as we mainly focused on the comparison
between different pre-conditioning matrices, and TNT can also be extended to a diagonal
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version; similarly, we did not explore the variant proposed in [3] that divides large tensors
into small blocks.

D.1.2 KFAC

In this subsection, we briefly describe our implementation of KFAC. The preconditioning matrices
that we used for linear layers and convolutional layers are precisely as those described in [34] and
[17], respectively. For the parameters in the BN layers, we used the gradient direction, exactly as in
https://github.com/alecwangcq/KFAC-Pytorch.

As in our implementations of TNT and Shampoo, and as suggested in [17], we did a warm start to
estimate the pre-conditioning KFAC matrices in an initialization step that iterated through the whole
data set, and adopted a moving average scheme to update them with β “ 0.9 afterwards.

In inverting the KFAC matrices and computing the updating direction,

• for the autoencoder experiments, we inverted the damped KFAC matrices and used them to
compute the updating direction, where the damping factors for both A and G were set to be?
λ, where λ is the overall damping value;6

• for the CNN experiments, we followed the SVD (i.e. eigenvalue decomposition) implemen-
tation suggested in https://github.com/alecwangcq/KFAC-Pytorch, which, as we
verified, performs better than splitting the damping value and inverting the damped KFAC
matrices (as suggested in [34, 17]).

Further, we implemented weight decay exactly as in TNT (Algorithm 3) and Shampoo (Algorithm 4).

D.2 Experiment Settings for the Autoencoder Problems

Table 2: Hyper-parameters (learning rate, damping) used to produce Figure 2

Name MNIST FACES

TNT (1e-4, 0.1) (1e-6, 0.003)
KFAC (0.003, 0.3) (0.1, 10)
Shampoo (3e-4, 3e-4) (3e-4, 3e-4)
Adam (1e-4, 1e-4) (1e-4, 1e-4)
SGD-m (0.003, -) (0.001, -)

MNIST has 60,000 training data, whereas FACES7 has 103,500 training data. For all algorithms, we
used a batch size of 1,000 at every iteration.

The autoencoder model used for MNIST has layer widths 784-1000-500-250-30-250-500-1000-784
with ReLU activation functions, except for the middle layer which uses a linear function and the
last layer which uses a sigmoid function. The autoencoder model used for FACES has layer widths
625-2000-1000-500-30-500-1000-2000-625 with ReLU activation functions, except for the middle
and last layers which use linear functions. We used binary entropy loss for MNIST and squared error
loss for FACES. The above settings largely mimic the settings in [32, 34, 5, 15]. Since we primarily
focused on optimization rather than generalization in these tasks, we did not include L2 regularization
or weight decay.

In order to obtain Figure 2, we first conducted a grid search on the learning rate (lr) and damping
value based on the criteria of minimizing the training loss. The ranges of the grid searches used for
the algorithms in our tests were:

• SGD-m:
– lr: 1e-4, 3e-4, 0.001, 0.003, 0.01, 0.03

6Note that there are more sophisticated ways of splitting the damping value, such as one that makes use of
the norms of the undamped matrices, to enforce that the two matrices have the same norm. See [34] and [17] for
more on this.

7Downloadable at www.cs.toronto.edu/~jmartens/newfaces_rot_single.mat.
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– damping: not applicable
• Adam:

– lr: 1e-5, 3e-5, 1e-4, 3e-4, 0.001, 0.003, 0.01
– damping (i.e. the ε hyperparameter of Adam): 1e-8, 1e-4, 1e-2

• Shampoo:
– lr: 1e-5, 3e-5, 1e-4, 3e-4, 0.001, 0.003
– damping (i.e. ε in Algorithm 4): 1e-4, 3e-4, 0.001, 0.003, 0.01

• TNT:
– lr: 1e-7, 3e-7, 1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 0.001
– damping (i.e. ε in Algorithm 3): 0.001, 0.003, 0.01, 0.03, 0.1, 0.3

• KFAC:
– lr: 1e-4, 3e-4, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3
– damping: 0.01, 0.03, 0.1, 0.3, 1, 3, 10

The best hyper-parameter values determined by our grid searches are listed in Table 2.

D.3 Experiment Settings for the CNN Problems

Table 3: Hyper-parameters (initial learning rate, weight decay factor) used to produce Figure 3 and
the average validation accuracy across 5 runs with different random seeds shown in Figure 3

Name CIFAR-10 + ResNet32 CIFAR-100 + VGG16

TNT (1e-4, 10)Ñ 93.08% (3e-5, 10)Ñ 73.33%
KFAC (0.01, 0.1)Ñ 92.85% (3e-4, 0.1)Ñ 74.33%
Shampoo (0.01, 0.1)Ñ 92.63% (0.003, 0.1)Ñ 72.82%
Adam (0.003, 0.1)Ñ 92.92% (3e-5, 10)Ñ 72.27%
SGD-m (0.03, 0.01)Ñ 93.06% (0.03, 0.01)Ñ 73.44%

Both CIFAR-10 and CIFAR-100 have 50,000 training data and 10,000 testing data (used as the
validation set in our experiments). For all algorithms, we used a batch size of 128 at every iteration.
In training, we applied data augmentation as described in [25], including random horizontal flip and
random crop.

The ResNet32 model refers to the one in Table 6 of [19], whereas the VGG16 model refers to model D
of [42], with the modification that batch normalization layers were added after all of the convolutional
layers in the model.

It is worth noting that, in TNT and Shampoo, for the weight tensor in the convolutional layers,
instead of viewing it as a 4-way tensor, we view it as a 3-way tensor, where the size of its 3 ways
(dimensions) corresponds to the size of the filter, the number of input channel, and the number of the
output channel, respectively. As a result, the preconditioning matrices of TNT and Shampoo will
come from the Kronecker product of three matrices, rather than four matrices.

Weight decay, which is related to, but not the same as L2 regularization added to the loss function,
has been shown to help improve generalization performance across different optimizers [29, 45]. In
our experiments, we adopted weight decay for all algorithms. The use of weight decay for TNT and
Shampoo is described in Algorithm 3 and Algorithm 4, respectively, and is similarly applied to KFAC.
Also note that weight decay is equivalent to L2 regularization for pure SGD (without momentum).
However, the equivalence does not hold for SGD with momentum. For the sake of a fair comparison,
we also applied weight decay for SGD-m.

For TNT and Shampoo, we set ε “ 0.01. We also tried values around 0.01 and the results were
not sensitive to the value of ε; hence, ε can be set to 0.01 as a default value. For KFAC, we set the
overall damping value to be 0.03, as suggested in the implementation in https://github.com/
alecwangcq/KFAC-Pytorch. We also tried values around 0.03 for KFAC and confirmed that 0.03
is a good default value.
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In order to obtain Figure 3, we first conducted a grid search on the initial learning rate (lr) and weight
decay (wd) factor based on the criteria of maximizing the classification accuracy on the validation set.
The range of the grid searches for the algorithms in our tests were:

• SGD-m:

– lr: 3e-5, 1e-4, 3e-4, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1

– wd: 0.001, 0.01, 0.1, 1

• Adam:

– lr: 1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 0.001, 0.003, 0.01, 0.03

– wd: 1e-4, 0.001, 0.01, 0.1, 1, 10, 100

• Shampoo:

– lr: 3e-5, 1e-4, 3e-4, 0.001, 0.003, 0.01, 0.03, 0.1

– wd: 0.01, 0.1, 1, 10

• TNT:

– lr: 1e-6, 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 0.001

– wd: 1, 10, 100

• KFAC:

– lr: 3e-6, 1e-5, 3e-5, 1e-4, 3e-4, 0.001, 0.003, 0.01, 0.03

– wd: 0.01, 0.1, 1

The best hyper-parameter values, and the validation classification accuracy obtained using them, are
listed in Table 3.

D.4 A Comparison between TNT and TNT-EF
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Figure 4: Optimization performance comparison of the TNT and TNT-EF algorithms on two
autoencoder problems.
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Figure 5: Generalization ability comparison of the TNT and TNT-EF algorithms on two CNN models.
The upper row depicts the training loss, whereas the lower row depicts the validation classification
error.

Table 4: Hyper-parameters (learning rate, damping) used to produce Figure 4

Name MNIST FACES

TNT-EF (3e-6, 0.01) (3e-6, 0.01)

Table 5: Hyper-parameters (initial learning rate, weight decay factor) used to produce Figure 5

Name CIFAR-10 + ResNet32 CIFAR-100 + VGG16

TNT-EF (1e-4, 10)Ñ 93.62% (3e-6, 100)Ñ 72.85%

In this subsection, we compare our proposed TNT algorithm against a variant of it, TNT-EF, which
uses an empirical Fisher (EF) preconditioning matrix in place of the true Fisher matrix. In other
words, TNT-EF does everything specified in Algorithm 3, except that it does not perform the extra

backward pass in Line 7 of Algorithm 3. When updating the matrices
y

G
piq
l , TNT-EF uses the empirical

minibatch gradient, rather than the sampling-based minibatch gradient, i.e. the one coming from the
extra backward pass.

We conducted a hyper-parameter grid search for TNT-EF, following the same procedure as the one
that was used for TNT, whose performance was plotted in Figures 2 and 3. The best values for the
TNT-EF hyper-parameters that we obtained are listed in Tables 4 and 5. We then plotted in Figures 4
and 5, the performance of TNT-EF, along with that of TNT, using for it the hyper-parameters given
in Tables 2 and 3. As shown in Figures 4 and 5, TNT performed at least as well as TNT-EF, on the
MNIST and CIFAR-10 problems, and performed somewhat better on the FACES and CIFAR-100
problems, which confirms the widely held opinion that the Fisher matrix usually carries more valuable
curvature information than the empirical Fisher metrix.
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D.5 More on Hyper-parameter Tuning
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a) MNIST autoencoder
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Figure 6: Optimization performance of TNT, KFAC, Shampoo, Adam, and SGD-m on two autoen-
coder problems, with more extensive tuning

Table 6: Hyper-parameter values used to produce Figure 6

Problem Algorithm (learning rate, damping, µ, β)

MNIST TNT (1e-4, 0.1, 0.9, 0.9)
MNIST KFAC (3e-5, 0.01, 0.999, 0.999)
MNIST Shampoo (1e-4, 3e-4, 0.99, 0.99)
MNIST Adam (1e-4, 1e-4, 0.99, 0.99)
MNIST SGD-m (0.001, -, 0.99, -)
FACES TNT (1e-6, 0.003, 0.9, 0.9)
FACES KFAC (0.01, 3, 0.99, 0.99)
FACES Shampoo (1e-4, 3e-4, 0.99, 0.999)
FACES Adam (1e-4, 1e-4, 0.9, 0.9)
FACES SGD-m (0.001, -, 0.9, -)

In this subsection, we expand on the experiments whose results are plotted in Figure 2, by in-
corporating the tuning of more hyper-parameters. To be more specific, we tuned the following
hyper-parameters jointly:

1. SGD-m: learning rate and µ;

2. all other algorithms8: learning rate, damping, µ, and β.

The searching range for learning rate and damping is the same as in Sec D.2, whereas the searching
range for µ and β were set to be t0.9, 0.99, 0.999u. The obtained values for the hyper-parameters are
listed in Table 6.

Figure 6 depicts the performance of different algorithms with hyper-parameters obtained from the
aforementioned more extensive tuning process. Comparing the performance of different algorithms
in Figure 6, we can see that the observations we made from Figure 2 still hold to a large extent.
Moreover, with extensive tuning, second-order methods seem to perform similarly with each other,
and are usually better than well-tuned first order methods on these problems.

As a final point, we would like to mention that one could also replace the constant learning rate for
all of the algorithms tested with a "warm-up, then decay" schedule, which has been shown to result in
good performance on these problems in [3]. Also, one could perform a more extensive tuning for the
CNN problems. In particular, one could tune the initial learning rate, weight decay factor, damping,
µ, and β jointly for the CNN problems.

See more in [8, 40] for the importance and suggestions on hyper-parameter tuning. Moreover, see [2]
for other relevant numerical results, in particular for KFAC and Shampoo. In [2], KFAC is shown
to work extremely well with a higher frequency of inversion, another direction for experiments that
could be explored.

8For Adam, µ and β refer to β1 and β2, respectively.
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