
Under review as a conference paper at ICLR 2021

A NOTATIONS

initial state

terminal state

(a)
explored state at timestep t

initial state

terminal state

terminal state

(c)initial state

goal stateexplored state

transition

neighborhood state

graph at timestep t graph at timestep t+1

boundary of graph graph increment

(b)

3 2 2

20

denote

t

t+1 t

Figure 7: An illustrated example of notations in Graph Structured Reinforcement Learning (GSRL).

In this paper, we construct a state-transition graph on top of the replay buffer. As Figure 7(a) shows,
we build the graph G

e
t based on historical explored trajectories at timestep t in episode e. For any

not fully explored state-transition graph, there exist many not well explored states. We measure the
exploration (i.e., certainty in Defintion 1) of these states according to the number of their untaken
candidate actions. As illustrated in Figure 7(b), we define the boundary of G

e
t as a set of states,

at least one of whose candidate actions is not ready been taken. Each untaken action may lead to
unvisited states (denoted as ? icon). We denote the boundary as @G

e
t . As illustrated in Figure 7(c),

after each timestep t+1, the agent explored a new state denoted as �G
e
t . Then, Ge

t and �G
e
t together

make up the dynamic graph at timestep t + 1 denoted as G
e
t+1.

B ALGORITHM

Algorithm 1 Graph Structured Reinforcement Learning (GSRL)

1: Initialize replay buffer D = {s0} and state-trainsition graph G = {s0}

2: for epsiode number e = 1, 2, . . . , E do
3: Select an appropriate group for exploration according to Eq. (2)
4: Generate goal ge according to Eq. (3)
5: for iteraction t = 0, 1, 2, . . . , T � 1 do
6: Receive observation st from environment
7: at ✏-greedy policy based on Q(st, a, g)
8: Take action at, receive reward rt and next state st+1

9: Append (st, at, rt, st+1, ge) to D

10: Relabel rewards rg with ge

11: Append (st, at, st+1) to G if (st, at, st+1) /2 G

12: if t mod update interval == 0 then
13: Sample related experience (st, at, st+1, rt, ge) to Drelated
14: Update parameter ✓ using Eq. (6)
15: end if
16: end for
17: Compute optimal goal g⇤

e according to Definition 2
18: Update parameter � using Eq. (4)
19: end for

We provide the overall algorithm in Algorithm 1. The key contribution of our paper is to leverage
structured information in the state-transition graph for efficient goal generation and value estimation,
which is represented in line 4 and 13, respectively. We then describe the overall procedure of GSRL
according to Algorithm 1 as follows:
There is no graph structure for agent to support when the task starts. Hence, the agent initializes the
replay buffer D and the state-transition graph G in line 1. At the beginning timestep of each episode

12

Under review as a conference paper at ICLR 2021

e, we divide the boundary of the state-transition graph @G
e
0 into N groups and adopt attention mech-

anism to select an appropriate one for exploration in line 3. Within selected group, we choose the
state with the highest value as the generated goal ge in line 4. The agent try to reach the goal state
through current policy based Q value in line 7 and record interaction history in the replay rebuffer
in line 9. As goal-oriented RL provides the agent intrinsic reward conditioned on current goal, the
agent is required to relabel reward with rg conditioned on ge in line 10. Then the agent updates
the state-transition graph in line 11. In order to efficiently update policy, the agent sample related
trajectories that contains at least one neighbor states of current state in line 13. In line 14, the policy
is updated with DDPG (Lillicrap et al., 2015). At the end of each episode e, the state-transition
graph is actually built for episode e + 1 denoted as G

e+1
0 . The agent is able to find optimal goal g⇤

e

through planning algorithm on G
e+1
0 in line 17. The attention mechanism is updated by supervised

learning in line 18.

C PROOFS

C.1 PROOF OF PROPOSITION 1

Proposition 1. Given the full state-transition graph Gfull, we assume that the probability of degree of
an arbitrary state being less than or equal to d is larger than p (i.e., P (deg(s) d) > p, 8s 2 SG).
Considering a sequence of consecutively expanding sub-graphs (G0

0 , G0
1 , . . . , GE�1

T�1), starting with

G
0
0 = {s0}, for all t � 1, e � 0, we can ensure that P

�
|SGe

t
| ✏

�
> p✏, where ✏ = d·(d�1)T ·e+t�2

d�2
when d > 2 and ✏ = 1, 3 when d = 1, 2 respectively.

Proof. We consider the extreme case of greedy consecutive expansion at each timestep t in any
episode e, where G

e
t+1 = G

e
t [�G

e
t = G

e
t [@G

e
t , since if this case satisfies the inequality, any case

of consecutive expansion can also satisfy it. By definition, all the subgraphs G
e
t are a connected

graph. Here, we use �St to denote S�Gt for short. In each episode, we can ensure that the newly
added nodes �Se

t at timestep t only belong to the neighborhood of the last added nodes �Se
t�1.

Within each episode e, we study the sequence {�G
e
0 , �G

e
1 , . . . , �G

e
T�1}, where T is the episode

length. In this case, each node in �Se
t already has at least one edge within �G

e
t�1 due to the

definition of connected graphs, we can have

P
�
|�Se

t | |�Se
t�1| · (d� 1)

�
> p|�Se

t�1|. (7)

For e = 1 and t = 0, we have P (|�S1
1 | d) > p and thus

P (|SG1
0
| 1 + d) > p. (8)

For e � 1 and t � 1, we analyze the conseutive expansion of the state-transition graph G as

G
1
! G

2
! · · ·! G

E

)G
1
0 ! G

1
1 ! · · ·! G

1
T�1| {z }

G1

! G
2
0 ! G

2
1 ! · · ·! G

2
T�1| {z }

G2

! · · ·! G
E
0 ! G

E
1 ! · · ·! G

E
T�1| {z }

GE

.

(9)
Given that |�SGe

t
| � 1, 8t 2 [0, T � 1], we consider the extreme case that |�SGe

t
| = 1, 8t 2

[0, T � 1], which means that every exploration will result in a new explored state and should be
respondes to the upper bound of the explosion. Based on |�SGe

t
| = 1 + |�SG1

0
| + |�SG1

1
| + · · · +

|�SG1
T�1

| + |�SG2
0
| + |�SG2

1
| + · · · + |�SG2

T�1
| + · · · + |�SGe

0
| + · · · + |�SGe

t
|, we have

P
�
|SGe | 1+d+d · (d�1)+ · · ·+d · (d�1)e·T+t�1

�
> p1+d+d·(d�1)+···+d·(d�1)e·T+t�2

. (10)

When d = 1, there can be only one node, so in this case, ✏ = 1. When d = 2, we follow Eq. (10)
and derive that in this case, ✏ = 3. When d > 2, it holds that

P
�
|SGt |

d · (d� 1)e·T+t
� 2

d� 2

�
> p

d·(d�1)e·T+t�1�2
d�2 . (11)

We can find that t = 0 also satisfies this inequality.

Notice that here we share some mathematical derivations with Xu et al. (2020).

13

Under review as a conference paper at ICLR 2021

initial state

terminal state

(c)initial state

terminal state

(a)

s0

s1

s3 s6

s2

s4

s5

s7

s8

s9

s0

s1

s3 s6

s2

s4

s5

s7

s8

s9

s10

(b)initial state

terminal states0

s1

s3 s6

s2

s4

s5

s7

e+1

e

s0 s1 s3 s6 s9

highest
value

optimal solution path
at e+1 episode

generate optimal
goal at e episode

unexploredoptimal
goal

s6 s6

Update goal generation at e episode with optimal goal at e+1 episode (d)

boundary of graph optimal solution path optimal goal generated goal

Figure 8: An illustrated example for relationship between optimal goal and boundary. In the
fully explored graph Gfull, the red circled states together show the optimal solution path (Pfull =<
s0, s1, s3, s6, s9, s10 >) with terminal one (s10) for the optimal goal in (a). In any other not fully
explored state-transition graph G

e
0 at the beginning timestep of any episode e in (b), we regard the

reachable state in the dashed line circle (s6) through planning in the next episode G
e+1
0 in (c) as the

optimal goal in (d).

C.2 PROOF OF PROPOSITION 2

Proposition 2. Assume that Q-value of each state is well estimated (i.e., Q = Q⇤), then optimal
goal g⇤

e at the beginning timestep of any episode e is always included in the boundary of the state-
transition graph G

e
0 (i.e., @G

e
0).

Proof. According to Definition 2, as shown in Figure 8(a), in the fully explored graph Gfull, the
optimal goal g⇤

full is the terminal state in the optimal solution Pfull, which is also the terminal state
in the environment, i.e., s10. The intuitive explanation behind this is very natural, where the envi-
ronment in this case is fully explored, thus the agent is ready to target at the terminal state. In the
other cases, we generate the optimal goal g⇤

e of episode e at the episode e + 1. Specially, we find
the shortest path to the highest value state in G

e+1
0 as the optimal solution path Pe+1. As Figure 8

illustrates, in the episode e + 1, the highest value is s9 and the optimal solution path in this case is
Pe+1 =< s0, s1, s3, s6, s9 >. We then compare the explored states in G

e
0 with the states in P

inverse
e+1 ,

where P
inverse
e+1 =< s9, s6, s3, s1, s0 > is the inverse order of Pe+1. As Figure 8(d) shows, finally

we obtain s6 as the optimal goal g⇤
e . As stated above, it’s easy to find that there are two cases in

the optimal goal generation. One is the last node of solution path Pe+1. The other is one of the rest
nodes in Pe+1 except the last one. We then prove that in the both of these cases, optimal goal g⇤

e is
always included in the boundary of the state-transition graph @G

e
0 .

Case I: Node at Last. If Q-value of each state is well estimated, i.e., Q = Q⇤, then the optimal
solution path Pe+1 at episode e+1 should be close to the optimal solution path Pfull in the full graph
Gfull, and the last state of the path Pe+1 should be closest to the terminal state. Hence, if g⇤

e is not
in the boundary, there must be one neighbor node closer to the terminal state. Otherwise, g⇤

e is the
dead end, thus should not be regarded as the optimal goal. And if there is one neighbor node closer
to the terminal state, then this state should be regarded as the optimal goal. Therefore, we obtain the
contradiction.
Case II: Node Not at Last. If the optimal goal is not the last state, then there must exist the state
unexplored at episode e. Take Figure 8 as an example, if we take s6 as the optimal goal g⇤

e in (d),
state s9 must be unexplored in G

e
0 in (c) and explored in G

e+1
0 in (b). If g⇤

e is not included in @G
e
0 ,

then there should not exist any unexplored state that is included in its neighborhood. According to
the definition of the boundary of graph, we have proved the proposition by contradiction.
In summary, we have proved the proposition in both two cases by the contradiction.

C.3 PROOF OF PROPOSITION 3

Proposition 3. Denote the Bellman backup operator in Eq. (5) as B : R|S|⇥|A|⇥|G|
! R|S|⇥|A|⇥|G|

and a mapping Q : S ⇥A⇥G! R|S|⇥|A|⇥|G| with |S| <1 and |A| <1. Repeated application
of the operator B for our graph-based state-action value estimate Q̂G converges to a unique optimal
value Q̂⇤

G⇤ with well explored graph G
⇤ including optimal solution path.

14

Under review as a conference paper at ICLR 2021

Proof. The proof of Proposition 3 is done in two main steps. The first step is to show that our state-
transition graph G can converge to well explored graph G

⇤. Here, we define G
⇤ as the graph that

includes the optimal path (i.e. Pfull in Definition 2). In the second step, we prove that given graph
G, our graph-based method can converge to unique optimal value Q⇤

G .
Step I. Since |S| < 1 and |A| < 1, we can obtain that VG < 1 and EG < 1. Note that the
state-transition graph G is a dynamic graph and goals g generated on G are updated at the beginning
timestep of each episode. Hence, there is a sequence of goals denoted as (g1, g2, · · · , gE) and
corresponding sequence of graphs denoted as (G1

0 , G2
0 , · · · , GE

0), where E here is the number of
episodes. Given that |S| <1 and |A| <1, the number of nodes and edges in the full graph Gfull is
also bounded. Based on the explore strategy introduced in Section 4, we know that goal-oriented RL
will first search for a path leading to the terminal state. After that, the terminal state will be included
in G. Then the agent will seek for the shortest path to the terminal state, because the agent is given
with a negative reward at each timestep. Hence, the optimal solution path Pfull will be involved.
Hence, we can obtain that

G
1
0 ✓ G

2
0 ✓ · · · ✓ G

⇤
) G ! G

⇤. (12)
Assume that E is large enough, our state-transition graph G can finally converge to well explored
graph G

⇤.
Step II. Note that the proof of convergence for our graph-based goal-oriented RL is quite similar to
Q-learning (Bellman, 1966; Bertsekas et al., 1995; Sutton & Barto, 2018). The differences between
our approach and Q-learning are that Q value Q(s, a, g) is also conditioned on goal g, and that the
state-transition probability PG(s0

|s, a) can be reflected by graph G. We provide detailed proof as
follows:
For any state-transition graph G, we can obtain goal g 2 G conditioned on G from Step I. Based on
that, our estimated graph-based action-value function Q̂G can be defined as

BQ̂G(s, a, g) = R(s, a, g) + � · max
a02A

X

s02S

PG(s0
|s, a) · Q̂G(s0, a0, g). (13)

For any action-value function estimates Q̂1
G , Q̂2

G , we study that

|BQ̂1
G(s, a, g)� BQ̂2

G(s, a, g)|

= � · | max
a02A

X

s02S

PG(s0
|s, a) · Q̂1

G(s0, a0, g)�max
a02A

X

s02S

PG(s0
|s, a) · Q̂2

G(s0, a0, g)|

 � · max
a02A

|

X

s02S

PG(s0
|s, a) · Q̂1

G(s0, a0, g)�
X

s02S

PG(s0
|s, a) · Q̂2

G(s0, a0, g)|

= � · max
a02A

X

s02S

PG(s0
|s, a) · |Q̂1

G(s0, a0, g)� Q̂2
G(s0, a0, g)|

 � · max
s2S,a2A

|Q̂1
G(s, a, g)� Q̂2

G(s, a, g)|

(14)

So the contraction property of Bellman operator holds that

max
s2S,a2A

|BQ̂1
G(s, a, g)� BQ̂2

G(s, a, g)| � · max
s2S,a2A

|Q̂1
G(s, a, g)� Q̂2

G(s, a, g)| (15)

For the fixed point Q⇤
G , we have that

max
s2S,a2A

|BQ̂G(s, a, g)� BQ̂⇤
G(s, a, g)| � · max

s2S,a2A
|Q̂G(s, a, g)� Q̂⇤

G(s, a, g)|) Q̂G ! Q⇤
G .

(16)

Combining Step I and II, we can conclude that our graph-based estimated state-action value Q̂G can
converge to unique optimal value Q⇤

G⇤ .

D DISCUSSIONS

D.1 DISCUSSION ON CERTAINTY OF STATE

In this section, we further dicuss the relationship between certainty of state and number of state. In
the previous exploration RL literatures (Ostrovski et al., 2017; Bellemare et al., 2016), the perfor-
mance of exploration often is measured by the number of the visited states. Namely, given fixed

15

Under review as a conference paper at ICLR 2021

initial state

terminal state

(a)

s0

s1

s3 s6

s2

s4

s5

s7

s8

s9

s10

initial state

terminal state

(b)

s0

s1

s3 s6

s2

s4

s5

s7

s8

s9

s10

Figure 9: An illustrated example for relationship between certainty and number of visited states.

number of episodes, more visited states, better performance. In this paper, we propose to utilize a
new measurement, i.e., certainty of state as illustrated in Definition 1. We conclude the relations
between certainty and number of visited states as Proposition 4.
Proposition 4. Given a whole state-trainsition graph Gfull, we can regard the certainty of states as
the local measurement and the number of states as the global measurement for exploration, which
share the similar trend during agent exploration.

Proof. We illustrate and prove the proposition hindsightly. If we have the fully observation for states
as shown in Figure 9(a), we can model the agent finding new states as connecting new states with
visited states. In other words, since the state-transition graph G

e
t must keep to be a fully connected

graph at any timestep t in any episode e. Hence, adding new states into the visited state set can
always be regarded as finding new edge between new states and the visited state set. And each
directed edge in the state-transition graph as shown in Figure 9(b) is determined by action and state-
transition function. If the environment is determined, we can roughly regard the number of edges
as the approximate measurement for exploration. The certainty of states is the local perspective for
this measurement.

D.2 DISCUSSION ON OPTIMAL GOAL

In the previous goal-oriented RL literatures (Andrychowicz et al., 2017; Ren et al., 2019), what
kind of generated goals is helpful for the agent to efficiently learn a well performed policy is one
of the key question to be answered. The basic idea of goal-oriented RL architecture is to generate
goals to decompose the complex task into several goal-oriented tasks. In this paper, we analyze our
generated goals in two prespectives, namely reachability and curriculum.
Reachability. The first property required in the optimal goal is that the generated goal is guaranteed
to be reachable for the agent. To this end, in this paper, the candidate goal set is constrained into the
visited states. In other words, the goal generated in the episode e must be visited before the episode
e. Therefore, we can guarantee that the generated goal is reachable.
Curriculum. The second property is the curriculum, which means that our optimal goals are re-
quired to approach the terminal state during the exploration. If the Q-value of each states is well
estimated, our goal generation under the supervision of forward-looking planning at the next episode
will focus on the potential highest value states in the future, which is actually the terminal state when
the agent has the full observation of states.

D.3 DISCUSSION ON GROUP DIVISION

Motivation. The intuitive motivation behind the group division is very natural. Proposition 1 implies
that exploration on the state-transition graph G

e
t at timestep t in episode e without any constraint may

lead to explosion of graph and inefficiency of exploration. Therefore, the agent is expected to do
exploration within a limited domain. Considering that G

e
t is always changing and the number of

nodes (i.e., |SGe
t
|) keeps increasing, it is non-trivial for the agent to learn to select state as the goal

for further exploration. Hence, we first restrict the exploration within the boundary of state-transition
graph @G

e
t according to Proposition 2. We then consider to partition @G

e
t into several groups.

We set the last visited state slast as the original point, because slast is likely to be close to the target
state and reachable for current policy. As introduced in Section 4, we propose to extend groups from
slast following two possible perspectives, namely neighbor and uncertain nodes.
Complexity. Let d@Ge

t
denote the maximum degree of states in @G

e
t , and |S@Ge

t
| denote the number

of states in @G
e
t . Note that @G

e
t is always a directed fully connected graph. If we want to find the n-

hop neighbors of slast, we need to iteratively go through related nodes’ neighborhood. In other words,

16

Under review as a conference paper at ICLR 2021

the computation complexity should be O(dn
@Ge

t
). Hence, the complexity to construct C1, . . . , CN by

extending from neighbor nodes is O(d1
@Ge

t
) + O(d2

@Ge
t
) + · · · + O(dN�1

@Ge
t

) = O(dN�1
@Ge

t
). If we want

to find nodes whose uncertainty equals n, we need to go through the graph once. In this case,
the computation complexity should be O(|S@Ge

t
|). Hence, the complexity to construct C1, . . . , CN

extending from uncertain nodes is O(|S@Ge
t
|).

E EXPERIMENTS

E.1 ENVIRONMENT CONFIGURATION

Then we check whether the exploration provided by the goals generated by HGG can result in better
policy training performance. As shown in Figure 3, we compare the vanilla HER, HER with Energy-
Based Prioritization (HER+EBP), HGG, HGG+EBP. It is worth noting that since EBP is designed
for the Bellman equation updates, it is complementary to our HGG-based exploration approach.
Among the eight environments, HGG substantially outperforms HER on four and has comparable
performance on the other four, which are either too simple or too difficult. When combined with EBP,
HGG+EBP achieves the best performance on six environments that are eligible.

Figure 4: Visualization of FetchPush with obstacle.

Performance on tasks with obstacle In a more
difficult task, crafted metric may be more suit-
able than �2-distance used in Eq. (5). As shown
in Figure 4, we created an environment based on
FetchPush with a rigid obstacle. The object and
the goal are uniformly generated in the green
and the red segments respectively. The brown
block is a static wall which cannot be moved.
In addition to �2, we also construct a distance
metric based on the graph distance of a mesh
grid on the plane, the blue line is a successful trajectory in such hand-craft distance measure. A more
detailed description is deferred to Appendix B.3. Intuitively speaking, this crafted distance should be
better than �2 due to the existence of the obstacle. Experimental results suggest that such a crafted
distance metric provides better guidance for goal generation and training, and significantly improves
sample efficiency over �2 distance. It would be a future direction to investigate ways to obtain or
learn a good metric.

5.2 Comparison with Explicit Curriculum Learning

Figure 5: Comparison with curricu-
lum learning. We compare HGG
with the original HER, HER+GOID
with two threshold values.

Since our method can be seen as an explicit curriculum learn-
ing for exploration, where we generate hindsight goals as
intermediate task distribution, we also compare our method
with another recently proposed curriculum learning method for
RL. Florensa et al. (2018) leverages Least-Squares GAN (Mao
et al., 2018b) to mimic the set called Goals of Intermediate
Difficult as exploration goal generator.

Specifically, in our task settings, we define a goal set
GOID(⇡) = {g : ↵ f(⇡, g) 1 � ↵}, where f(⇡, g)
represents the average success rate in a small region closed by
goal g. To sample from GOID, we implement an oracle goal
generator based on rejection sampling, which could uniformly
sample goals from GOID(⇡). Result in Figure 5 indicates
that our Hindsight Goal Generation substantially outperforms HER even with GOID from the oracle
generator. Note that this experiment is run on a environment with fixed initial state due to the
limitation of Florensa et al. (2018). The choice of ↵ is also suggested by Florensa et al. (2018).

5.3 Ablation Studies on Hyperparameter Selection

In this section, we set up a set of ablation tests on several hyper-parameters used in the Hindsight
Goal Generation algorithm.

Lipschitz L: The selection of Lipschitz constant is task dependent, since it iss related with scale of
value function and goal distance. For the robotics tasks tested in this paper, we find that it is easier
to set L by first divided it with the upper bound of the distance between any two final goals in a
environment. We test a few choices of L on several environments and find that it is very easy to find
a range of L that works well and shows robustness for all the environments tested in this section. We
show the learning curves on FetchPush with different L. It appears that the performance of HGG is
reasonable as long as L is not too small. For all tasks we tested in the comparisons, we set L = 5.0.

Distance weight c: Parameter c defines the trade-off between the initial state similarity and the goal
similarity. Larger c encourages our algorithm to choose hindsight goals that has closer initial state.

8

A Proof of Theorem 1

In this section we provide the proof of Theorem 1.
Theorem 1. Assuming that the generalizability condition (Eq. (4)) holds for two distributions
(s, g) ⇠ T and (s0, g0) ⇠ T

0, we have

V ⇡(T 0) � V ⇡(T) � L · D(T , T 0). (6)

where D(·, ·) is the Wasserstein distance based on d(·, ·)

D(T (1), T (2)) = inf
µ2�(T (1),T (2))

�
Eµ[d((s0

(1), g(1)), (s0
(2), g(2)))]

�

where �(T (1), T (2)) denotes the collection of all joint distribution µ(s0
(1), g(1), s0

(2), g(2)) whose
marginal probabilities are T

(1), T (2), respectively.

Proof. By Eq. (4), for any quadruple (s, g, s0, g0), we have

V ⇡(s0, g0) � V ⇡(s, g) � L · d((s, g), (s0, g0)). (10)

For any µ 2 �(T , T 0), we sample (s, g, s0, g0) ⇠ µ and take the expectation on both sides of Eq. (10),
and get

V ⇡(T 0) � V ⇡(T) � L · Eµ[d((s, g), (s0, g0))]. (11)

Since Eq. (11) holds for any µ 2 �(T , T 0), we have

V ⇡(T 0) � V ⇡(T) � L · inf
µ2�(T ,T 0)

(Eµ[d((s, g), (s0, g0))]) = V ⇡(T) � L · D(T , T 0).

B Experiment Settings

B.1 Modified Environments

Figure 7: Visualization of modified task distribution in Fetch environments. The object is uniformly
generated on the green segment, and the goal is uniformly generated on the red segment.

Fetch Environments:

• FetchPush-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coordi-
nate on the table. The object is uniformly generated on the segment (�0.15, �0.15, 0) �

(0.15, �0.15, 0), and the goal is uniformly generated on the segment (�0.15, 0.15, 0) �

(0.15, 0.15, 0).
• FetchPickAndPlace-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coor-

dinate on the table. The object is uniformly generated on the segment (�0.15, �0.15, 0) �

(0.15, �0.15, 0), and the goal is uniformly generated on the segment (�0.15, 0.15, 0.45) �

(0.15, 0.15, 0.45).
• FetchSlide-v1: Let the origin (0, 0, 0) denote the projection of gripper’s initial coordi-

nate on the table. The object is uniformly generated on the segment (�0.05, �0.1, 0) �

(�0.05, 0.1, 0), and the goal is uniformly generated on the segment (0.55, �0.15, 0) �

(0.55, 0.15, 0).

13

(b) AntMaze (d) FetchPush with Obstacle(c) FetchPush(a) Maze

Published as a conference paper at ICLR 2020

memorized states like episodic memory, and maintain a graph on top of these states based on state
transitions at the same time. Then we develop an efficient reverse-trajectory propagation strategy
to allow the values of new experiences to rapidly propagate to all memory items through the graph.
Finally, we use the fast-adjusted non-parametric high values in associative memory as early guid-
ance for a parametric RL agent so that it can rapidly latch on states that previously yield high returns
instead of waiting for many slow gradient updates.

A

Figure 1: Comparison of selected poli-
cies based on episodic memory and as-
sociative memory. An agent starts from
two place A and B to collect two expe-
riences.

To illustrate the superiority of the associative memory
in reinforcement learning, consider a robot exploring in
a maze to seek out the apple (at place G), as shown in
Figure 1. It collects two trajectory experiences starting
from place A and B, respectively. All the states of tra-
jectory A (the top blue dash line) receive no reward be-
cause the agent terminates at a state with a non-zero re-
ward (at place C), while in trajectory B (the bottom blue
dash line) the final non-zero reward of catching an ap-
ple (at place G) back-propagates through the whole path.
Episodic memory keeps a high value at the intersection
of two trajectories (the door) when taking actions toward
lower-right corner while recording zero values at the other
states in trajectory A. If an episodic memory based robot
starts from place A, it will wander around A because there
are no positive values indicating the way to goal. Thus
based on the episodic memory, the robot may eventually
take a policy like the green line after multiple attempts.
However, if the robot adopts associative memory, the high
value in the door collected from trajectory B will be fur-
ther propagated to the start point A and thus the robot can
correctly take the red-line policy.

To some extent, our associative memory is equivalent to automatic augmentation of counterfactual
combinatorial trajectories in memory. Thus, our framework significantly improves the sample-
efficiency of reinforcement learning. Comparisons with state-of-the-art episodic reinforcement
learning methods show that ERLAM is substantially more sample efficient for general settings of
reinforcement learning. In addition, our associative memory can be used as a plug-and-play module
and is complementary to other reinforcement learning models, which opens the avenue for further
researches on associative memory based reinforcement learning.

2 BACKGROUND

In the framework of reinforcement learning (Sutton & Barto, 1998), an agent learns a policy to
maximize its cumulative rewards by exploring in a Markov Decision Processes (MDP) environment.
An MDP is defined by a tuple (S, A, P, R, �), where S is a finite set of states, A is a finite set of
actions available to the agent, P : S ⇥ A ⇥ S ! R defines the transition probability distribution,
R is the reward function, and � 2 (0, 1] is the discount factor. At each time step t, the agent
observes state st 2 S , selects an action at 2 A according to its policy ⇡ : S ! A, and receives a
scalar reward rt. In the setting of finite horizon, the accumulated discounted return is calculated as,
Rt =

�T
k=0 �krt+k where T is the episode length and goal of the agent is to maximize the expected

return for each state st.

The state-action value function Q⇡(s, a) = E[Rt|st = s, a] is the expected return for executing
action a on state s and following policy ⇡ afterwards. DQN (Mnih et al., 2015) parameterizes
this action-value function by deep neural networks Q✓(s, a) and use Q-learning (Watkins & Dayan,
1992) to learn it to rank which action at is best to take in each state st at time step t. The parameters
of the value network ✓ are optimized by minimizing the L2 difference between the networks output
Q✓(s, a) and the Q-learning target yt = rt + � maxa Q✓̂(st+1, at), where ✓̂ are parameters of a
target network that is a older version of the value network and updated periodically. DQN uses an
off-policy learning strategy, which samples (st, at, rt, st+1) tuple from a replay buffer for training.

2

Figure 10: Visualization of robotic manipulation environments.

Maze. As shown in Figure 10(a), in the maze environment, a point in a 2D U -maze aims to reach
a goal represented by a red point. The size of maze is 15 ⇥ 15, the state space and is in this 2D
U -maze, and the goal is uniformly generated on the segment from (0, 0) to (15.0, 15.0). The action
space is from (�1.0,�1.0) to (1.0, 1.0), which represents the movement in x and y directions.
AntMaze. As shown in Figure 10(b), in the AntMaze environment, an ant is put in a U -maze, and
the size of maze is 12⇥12. The ant is put on a random location on the segment from (�2.0,�2.0) to
(10.0, 10.0), and the goal is uniformly generated on the segment from (�2.0,�2.0) to (10.0, 10.0).
The state of ant is 30-dimension, including its positions and velocities.
FetchPush. As shown in Figure 10(c), in the fetch environment, the agent is trained to fetch object
from inital position (rectangle depicted in green) to distant position (rectangle depicted in red). Let
the origin (0, 0, 0) denote the projection of gripper’s initial coordinate on the table. The object is
uniformly generated on the segment from (�0.0,�0.0, 0) to (8, 8, 0), and the goal is uniformly
generated on the segment from (�0.0,�0.0, 0) to (8, 8, 0).
FetchPush with Obstacle. As shown in Figure 10(d), in the fetch with obstacle environment, we
create an environment based on FetchPush with a rigid obstacle, where the brown block is a static
wall that can’t be moved. The object is uniformly generated on the segment from (�0.0,�0.0, 0) to
(8, 8, 0), and the goal is uniformly generated on the segment from (�0.0,�0.0, 0) to (8, 8, 0).
AntMaze with Obstacle. This environment is an extension version of AntMaze, where an 1 ⇥ 1
rigid obstacle is put in U-maze.

E.2 EVALUATION DETAILS

• All curves presented in this paper are plotted from 10 runs with random task initialization and
seeds.

• Shaded region indicates 60% population around median.
• All curves are plotted using the same hyper-parameters (except ablation section).
• Following (Andrychowicz et al., 2017), an episode is considered successful if kg� sobjectk2 �g

is achieved, where sobject is the object position at the end of the episode. �g is the threshold.
• The max timestep for each episode is set as 200 for training and 500 for tests.
• The average success rate using in the curve is estimated by 102 samples.

E.3 HYPER-PARAMETERS

Almost all hyper-parameters using DDPG (Lillicrap et al., 2015) and HER Andrychowicz et al.
(2017) are kept the same as benchmark results, except these:
• Number of MPI workers: 1;
• Actor and critic networks: 3 layers with 256 units and ReLU activation;

17

Under review as a conference paper at ICLR 2021

• Adam optimizer with 5⇥ 10�4 learning rate;
• Polyak-averaging coefficient: 0.98;
• Action l2-norm penalty coefficient: 0.5;
• Batch size: 256;
• Probability of random actions: 0.2;
• Scale of additive Gaussian noise: 0.2;
• Probability of HER experience replay: 0.8;
• Number of batches to replay after collecting one trajectory: 50.
Hyper-parameters in goal generation:
• Adam optimizer with 1⇥ 10�3 learning rate;
• K of K-bins discretization: 20;
• Number of groups to depart the graph: 3.

E.4 COMPARISON ON SAMPLE EFFICIENCY

We show sample efficiency with comparisons according to the number of states visited and actions
taken. We report the log files of GSRL and HER in Maze environment here at 10, 50, 100 episodes,
which contain the number of visited nodes and actions taken.
==================== Graph Structured Reinforcement Learning (GSRL) ====================

episode is: 10

nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,

59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40]

number of nodes: 45

edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (21, 21), (21, 11), (21, 31), (21,

32), (21, 22), (11, 11), (11, 21), (11, 12), (31, 31), (31, 42), (31, 41), (31, 22), (31, 32), (31, 21), (42, 42), (42,

32), (42, 43), (42, 41), (42, 31), (32, 31), (32, 32), (32, 42), (32, 43), (32, 33), (32, 23), (32, 22), (41, 41),

(41, 31), (23, 22), (23, 23), (23, 32), (23, 34), (23, 33), (23, 24), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44),

(43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 23), (33, 34), (44, 44), (44, 33), (44, 43), (44, 35), (44, 34)

, (44, 45), (34, 43), (34, 33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (13, 13), (13, 14), (13, 23), (14,

15), (14, 25), (14, 14), (15, 15), (15, 26), (15, 25), (15, 14), (15, 16), (26, 26), (26, 25), (26, 36), (26, 16), (26,

37), (26, 27), (25, 26), (25, 25), (25, 15), (25, 36), (36, 35), (36, 26), (36, 36), (36, 37), (36, 27), (35, 35),

(35, 45), (35, 26), (35, 34), (35, 36), (35, 44), (35, 25), (45, 35), (45, 44), (45, 45), (16, 26), (24, 35), (24, 34),

(24, 25), (37, 47), (37, 37), (37, 38), (37, 48), (47, 37), (47, 47), (47, 48), (47, 46), (38, 47), (38, 48), (38, 37)

, (38, 49), (38, 28), (38, 39), (48, 38), (48, 48), (48, 49), (46, 47), (46, 46), (12, 11), (12, 21), (12, 23), (12,

22), (12, 13), (49, 48), (49, 59), (49, 50), (59, 69), (69, 69), (69, 79), (79, 80), (79, 78), (79, 79), (79, 90), (80,

79), (78, 79), (90, 89), (89, 99), (99, 99), (99, 109), (109, 110), (109, 109), (109, 100), (110, 100), (100, 109),

(27, 36), (27, 27), (27, 38), (28, 28), (28, 38), (39, 50), (39, 40), (39, 39), (50, 39), (50, 40), (50, 50), (40, 49),

(40, 39), (40, 50)]

number of edges: 166

episode is: 50

nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,

59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40, 29, 30, 51, 57, 18, 19, 58, 68, 17, 60, 20, 67, 70,

71, 61]

number of nodes: 60

edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (22, 11), (21, 21), (21, 11), (21,

31), (21, 32), (21, 22), (21, 12), (11, 11), (11, 21), (11, 12), (11, 22), (31, 31), (31, 42), (31, 41), (31, 22), (31,

32), (31, 21), (31, 40), (31, 30), (42, 42), (42, 32), (42, 43), (42, 41), (42, 31), (32, 31), (32, 32), (32, 42),

(32, 43), (32, 33), (32, 23), (32, 22), (32, 41), (32, 21), (41, 41), (41, 31), (41, 40), (41, 32), (23, 22), (23, 23),

(23, 32), (23, 34), (23, 33), (23, 24), (23, 13), (23, 14), (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44)

, (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 23), (33, 34), (33, 22), (33, 42), (33, 24), (44, 44), (44,

33), (44, 43), (44, 35), (44, 34), (44, 45), (34, 43), (34, 33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (34,

25), (13, 13), (13, 14), (13, 23), (13, 12), (13, 22), (13, 24), (14, 15), (14, 25), (14, 14), (14, 24), (14, 13),

(14, 23), (15, 15), (15, 26), (15, 25), (15, 14), (15, 16), (26, 26), (26, 25), (26, 36), (26, 16), (26, 37), (26, 27),

(26, 35), (26, 17), (25, 26), (25, 25), (25, 15), (25, 36), (25, 24), (25, 35), (25, 16), (25, 34), (36, 35), (36, 26)

, (36, 36), (36, 37), (36, 27), (36, 46), (36, 47), (36, 45), (35, 35), (35, 45), (35, 26), (35, 34), (35, 36), (35,

44), (35, 25), (35, 46), (35, 24), (45, 35), (45, 44), (45, 45), (45, 46), (45, 36), (45, 34), (16, 26), (16, 16), (16,

27), (16, 17), (16, 15), (16, 25), (24, 35), (24, 34), (24, 25), (24, 24), (24, 14), (24, 23), (24, 15), (24, 33),

(37, 47), (37, 37), (37, 38), (37, 48), (37, 28), (37, 36), (37, 46), (37, 27), (47, 37), (47, 47), (47, 48), (47, 46),

(47, 38), (47, 58), (47, 57), (47, 36), (38, 47), (38, 48), (38, 37), (38, 49), (38, 28), (38, 39), (38, 38), (38, 27)

, (48, 38), (48, 48), (48, 49), (48, 57), (48, 47), (48, 58), (48, 59), (46, 47), (46, 46), (46, 37), (46, 45), (46,

36), (46, 35), (12, 11), (12, 21), (12, 23), (12, 22), (12, 13), (12, 12), (49, 48), (49, 59), (49, 50), (49, 39), (49,

49), (49, 60), (59, 69), (59, 59), (59, 48), (59, 50), (59, 60), (59, 49), (59, 58), (69, 69), (69, 79), (69, 78),

(69, 80), (79, 80), (79, 78), (79, 79), (79, 90), (79, 68), (80, 79), (80, 69), (80, 80), (80, 90), (78, 79), (78, 78),

(78, 68), (78, 69), (78, 89), (90, 89), (90, 79), (90, 90), (89, 99), (89, 79), (99, 99), (99, 109), (109, 110), (109,

109), (109, 100), (110, 100), (100, 109), (27, 36), (27, 27), (27, 38), (27, 28), (27, 26), (27, 37), (27, 18), (27,

16), (27, 17), (28, 28), (28, 38), (28, 27), (28, 18), (28, 19), (28, 37), (28, 39), (28, 29), (39, 50), (39, 40), (39,

39), (39, 29), (39, 38), (50, 39), (50, 40), (50, 50), (50, 49), (50, 59), (50, 60), (50, 51), (40, 49), (40, 39),

(40, 50), (40, 40), (40, 51), (40, 41), (40, 29), (40, 31), (40, 30), (29, 30), (29, 39), (29, 29), (29, 19), (29, 28),

(30, 29), (30, 40), (30, 31), (30, 30), (30, 20), (30, 39), (51, 40), (57, 57), (57, 68), (57, 47), (57, 58), (57, 48)

, (18, 19), (18, 27), (18, 28), (18, 18), (18, 17), (18, 29), (19, 28), (19, 19), (19, 18), (19, 30), (19, 29), (58,

48), (58, 58), (58, 57), (58, 59), (58, 49), (58, 47), (58, 67), (68, 69), (68, 78), (68, 79), (17, 17), (17, 18), (17,

28), (17, 16), (17, 27), (60, 50), (60, 60), (60, 49), (60, 70), (60, 61), (60, 59), (20, 19), (67, 67), (67, 58),

(70, 71), (70, 70), (70, 60), (70, 69), (71, 71), (71, 70), (61, 70)]

18

Under review as a conference paper at ICLR 2021

number of edges: 336

episode: 100

nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,

59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40, 29, 30, 51, 57, 18, 19, 58, 68, 17, 60, 20, 67, 70,

71, 61, 88, 87, 96, 106, 105, 104, 114, 115, 81, 77, 97, 107, 86, 98, 108, 95, 85, 94, 103]

number of nodes: 79

edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (22, 11), (21, 21), (21, 11), (21,

31), (21, 32), (21, 22), (21, 12), (21, 20), (21, 30), (11, 11), (11, 21), (11, 12), (11, 22), (31, 31), (31, 42), (31,

41), (31, 22), (31, 32), (31, 21), (31, 40), (31, 30), (42, 42), (42, 32), (42, 43), (42, 41), (42, 31), (42, 33),

(32, 31), (32, 32), (32, 42), (32, 43), (32, 33), (32, 23), (32, 22), (32, 41), (32, 21), (41, 41), (41, 31), (41, 40),

(41, 32), (41, 42), (41, 50), (41, 30), (23, 22), (23, 23), (23, 32), (23, 34), (23, 33), (23, 24), (23, 13), (23, 14)

, (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33,

23), (33, 34), (33, 22), (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 35), (44, 34), (44, 45), (34, 43), (34,

33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (34, 25), (34, 23), (13, 13), (13, 14), (13, 23), (13, 12),

(13, 22), (13, 24), (14, 15), (14, 25), (14, 14), (14, 24), (14, 13), (14, 23), (15, 15), (15, 26), (15, 25), (15, 14),

(15, 16), (15, 24), (26, 26), (26, 25), (26, 36), (26, 16), (26, 37), (26, 27), (26, 35), (26, 17), (26, 15), (25, 26)

, (25, 25), (25, 15), (25, 36), (25, 24), (25, 35), (25, 16), (25, 34), (25, 14), (36, 35), (36, 26), (36, 36), (36,

37), (36, 27), (36, 46), (36, 47), (36, 45), (36, 25), (35, 35), (35, 45), (35, 26), (35, 34), (35, 36), (35, 44), (35,

25), (35, 46), (35, 24), (45, 35), (45, 44), (45, 45), (45, 46), (45, 36), (45, 34), (16, 26), (16, 16), (16, 27),

(16, 17), (16, 15), (16, 25), (24, 35), (24, 34), (24, 25), (24, 24), (24, 14), (24, 23), (24, 15), (24, 33), (24, 13),

(37, 47), (37, 37), (37, 38), (37, 48), (37, 28), (37, 36), (37, 46), (37, 27), (37, 26), (47, 37), (47, 47), (47, 48)

, (47, 46), (47, 38), (47, 58), (47, 57), (47, 36), (38, 47), (38, 48), (38, 37), (38, 49), (38, 28), (38, 39), (38,

38), (38, 27), (38, 29), (48, 38), (48, 48), (48, 49), (48, 57), (48, 47), (48, 58), (48, 59), (48, 37), (48, 39), (46,

47), (46, 46), (46, 37), (46, 45), (46, 36), (46, 35), (12, 11), (12, 21), (12, 23), (12, 22), (12, 13), (12, 12),

(49, 48), (49, 59), (49, 50), (49, 39), (49, 49), (49, 60), (49, 58), (49, 40), (49, 38), (59, 69), (59, 59), (59, 48),

(59, 50), (59, 60), (59, 49), (59, 58), (59, 68), (59, 70), (69, 69), (69, 79), (69, 78), (69, 80), (69, 70), (69, 68)

, (69, 59), (79, 80), (79, 78), (79, 79), (79, 90), (79, 68), (79, 88), (79, 89), (79, 69), (80, 79), (80, 69), (80,

80), (80, 90), (80, 89), (80, 81), (80, 70), (80, 71), (78, 79), (78, 78), (78, 68), (78, 69), (78, 89), (78, 87), (78,

67), (78, 77), (78, 88), (90, 89), (90, 79), (90, 90), (90, 80), (89, 99), (89, 79), (89, 80), (89, 89), (89, 88),

(89, 90), (89, 78), (89, 98), (99, 99), (99, 109), (99, 88), (99, 89), (99, 98), (99, 100), (109, 110), (109, 109),

(109, 100), (110, 100), (100, 109), (100, 99), (27, 36), (27, 27), (27, 38), (27, 28), (27, 26), (27, 37), (27, 18),

(27, 16), (27, 17), (28, 28), (28, 38), (28, 27), (28, 18), (28, 19), (28, 37), (28, 39), (28, 29), (28, 17), (39, 50),

(39, 40), (39, 39), (39, 29), (39, 38), (39, 49), (39, 48), (39, 30), (50, 39), (50, 40), (50, 50), (50, 49), (50, 59)

, (50, 60), (50, 51), (50, 61), (50, 41), (40, 49), (40, 39), (40, 50), (40, 40), (40, 51), (40, 41), (40, 29), (40,

31), (40, 30), (29, 30), (29, 39), (29, 29), (29, 19), (29, 28), (29, 18), (29, 40), (29, 38), (29, 20), (30, 29), (30,

40), (30, 31), (30, 30), (30, 20), (30, 39), (30, 19), (30, 21), (51, 40), (51, 51), (51, 60), (51, 50), (57, 57),

(57, 68), (57, 47), (57, 58), (57, 48), (57, 67), (18, 19), (18, 27), (18, 28), (18, 18), (18, 17), (18, 29), (19, 28),

(19, 19), (19, 18), (19, 30), (19, 29), (19, 20), (58, 48), (58, 58), (58, 57), (58, 59), (58, 49), (58, 47), (58, 67)

, (58, 69), (58, 68), (68, 69), (68, 78), (68, 79), (68, 68), (68, 57), (68, 67), (68, 77), (68, 58), (17, 17), (17,

18), (17, 28), (17, 16), (17, 27), (60, 50), (60, 60), (60, 49), (60, 70), (60, 61), (60, 59), (60, 51), (60, 69), (60,

71), (20, 19), (20, 30), (20, 20), (20, 21), (20, 29), (67, 67), (67, 58), (67, 68), (67, 78), (67, 77), (67, 57),

(70, 71), (70, 70), (70, 60), (70, 69), (70, 79), (70, 80), (70, 59), (71, 71), (71, 70), (71, 80), (61, 70), (61, 61),

(61, 50), (61, 60), (88, 87), (88, 79), (88, 89), (88, 88), (88, 99), (88, 98), (88, 78), (88, 97), (87, 78), (87, 88)

, (87, 96), (87, 87), (87, 97), (87, 77), (87, 86), (96, 106), (96, 97), (96, 87), (96, 86), (96, 96), (96, 95), (106,

105), (106, 107), (106, 96), (105, 105), (105, 104), (105, 114), (105, 115), (104, 114), (104, 104), (104, 105), (114,

114), (114, 104), (114, 105), (115, 105), (81, 80), (77, 77), (77, 67), (77, 68), (77, 88), (77, 78), (97, 96), (97,

106), (97, 107), (97, 87), (107, 96), (107, 106), (107, 107), (107, 108), (86, 96), (86, 86), (98, 99), (98, 89), (98,

98), (95, 95), (95, 85), (95, 94), (85, 85), (85, 95), (94, 103), (103, 103)]

number of edges: 486

==================== Hindsight Experience Replay (HER) ====================

episode is: 10

nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27]

number of nodes: 29

edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (21, 21), (21, 31), (21, 22), (31, 31), (31, 41), (31,

21), (31, 42), (41, 42), (41, 41), (41, 32), (41, 31), (42, 41), (42, 42), (42, 32), (42, 43), (42, 31), (32, 31), (32,

32), (32, 42), (32, 33), (32, 43), (32, 23), (32, 41), (23, 22), (23, 13), (23, 14), (23, 33), (43, 32), (43, 43),

(43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 34), (44, 44), (44, 33), (44, 43),

(44, 34), (44, 35), (44, 45), (34, 43), (34, 33), (34, 35), (34, 34), (34, 45), (35, 45), (35, 46), (35, 35), (35, 34)

, (35, 25), (45, 46), (45, 45), (45, 35), (45, 44), (45, 34), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37), (36,

36), (36, 37), (36, 47), (36, 26), (36, 46), (37, 47), (37, 37), (37, 36), (37, 48), (47, 47), (47, 37), (47, 36), (47,

46), (13, 13), (13, 12), (13, 14), (12, 13), (12, 11), (12, 12), (12, 23), (14, 14), (14, 13), (14, 15), (15, 15),

(15, 16), (15, 26), (15, 25), (16, 16), (16, 17), (26, 25), (26, 26), (26, 37), (26, 36), (26, 27), (25, 24), (25, 36),

(25, 26), (24, 15), (48, 37), (11, 12), (11, 11), (27, 27)]

number of edges: 112

episode is: 50

nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27,

18, 19, 20, 58, 57, 49, 39, 60, 50, 59, 40, 38, 28, 29, 30, 69, 70, 80, 90, 101, 100, 67, 68, 77, 78, 61]

number of nodes: 55

edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (22, 13), (22, 11), (21, 21), (21, 31), (21, 22), (21,

11), (21, 12), (21, 32), (31, 31), (31, 41), (31, 21), (31, 42), (31, 32), (41, 42), (41, 41), (41, 32), (41, 31), (42,

41), (42, 42), (42, 32), (42, 43), (42, 31), (42, 33), (32, 31), (32, 32), (32, 42), (32, 33), (32, 43), (32, 23),

(32, 41), (32, 22), (32, 21), (23, 22), (23, 13), (23, 14), (23, 33), (23, 34), (23, 24), (23, 23), (23, 12), (43, 32),

(43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 34), (33, 23), (33, 22)

, (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 34), (44, 35), (44, 45), (34, 43), (34, 33), (34, 35), (34,

34), (34, 45), (34, 23), (34, 44), (34, 25), (34, 24), (35, 45), (35, 46), (35, 35), (35, 34), (35, 25), (35, 44), (35,

36), (45, 46), (45, 45), (45, 35), (45, 44), (45, 34), (45, 36), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37),

(46, 47), (36, 36), (36, 37), (36, 47), (36, 26), (36, 46), (36, 45), (36, 35), (36, 27), (37, 47), (37, 37), (37, 36),

(37, 48), (37, 46), (37, 27), (47, 47), (47, 37), (47, 36), (47, 46), (47, 48), (47, 38), (47, 57), (47, 58), (13, 13)

, (13, 12), (13, 14), (13, 22), (13, 23), (12, 13), (12, 11), (12, 12), (12, 23), (12, 22), (12, 21), (14, 14), (14,

13), (14, 15), (14, 23), (14, 25), (14, 24), (15, 15), (15, 16), (15, 26), (15, 25), (15, 14), (16, 16), (16, 17), (16,

15), (16, 26), (17, 17), (17, 18), (26, 25), (26, 26), (26, 37), (26, 36), (26, 27), (26, 15), (26, 16), (25, 24),

19

Under review as a conference paper at ICLR 2021

(25, 36), (25, 26), (25, 16), (25, 15), (25, 14), (25, 25), (25, 35), (24, 15), (24, 35), (24, 24), (24, 25), (24, 33),

(24, 23), (24, 34), (48, 37), (48, 47), (48, 48), (48, 58), (48, 49), (48, 59), (48, 38), (11, 12), (11, 11), (11, 21)

, (27, 27), (27, 28), (27, 38), (27, 37), (18, 18), (18, 19), (19, 19), (19, 20), (20, 20), (20, 19), (20, 30), (58,

57), (58, 69), (58, 58), (58, 67), (58, 59), (58, 48), (57, 48), (57, 57), (57, 58), (57, 67), (49, 39), (49, 60), (49,

50), (49, 59), (49, 49), (39, 49), (39, 29), (39, 39), (60, 49), (60, 50), (60, 70), (50, 60), (50, 49), (50, 40),

(59, 49), (59, 59), (59, 69), (59, 58), (59, 60), (40, 49), (38, 47), (38, 28), (38, 38), (38, 39), (38, 48), (28, 29),

(28, 38), (29, 29), (29, 30), (29, 39), (30, 30), (30, 20), (30, 29), (69, 69), (69, 70), (69, 58), (69, 68), (69, 59)

, (70, 70), (70, 80), (70, 61), (80, 80), (80, 90), (90, 90), (90, 101), (101, 101), (101, 100), (100, 101), (100, 100)

, (100, 90), (67, 68), (67, 67), (67, 77), (68, 58), (68, 69), (77, 77), (77, 78)]

number of edges: 255

episode: 100

nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27,

18, 19, 20, 58, 57, 49, 39, 60, 50, 59, 40, 38, 28, 29, 30, 69, 70, 80, 90, 101, 100, 67, 68, 77, 78, 61, 88, 87, 97,

96, 106, 117, 107, 71, 79, 89, 86, 85, 95, 51, 99, 110]

number of nodes: 71

edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (22, 13), (22, 11), (22, 31), (21, 21), (21, 31), (21,

22), (21, 11), (21, 12), (21, 32), (21, 20), (31, 31), (31, 41), (31, 21), (31, 42), (31, 32), (31, 30), (31, 40), (31,

22), (41, 42), (41, 41), (41, 32), (41, 31), (42, 41), (42, 42), (42, 32), (42, 43), (42, 31), (42, 33), (32, 31),

(32, 32), (32, 42), (32, 33), (32, 43), (32, 23), (32, 41), (32, 22), (32, 21), (23, 22), (23, 13), (23, 14), (23, 33),

(23, 34), (23, 24), (23, 23), (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44)

, (33, 32), (33, 43), (33, 34), (33, 23), (33, 22), (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 34), (44,

35), (44, 45), (34, 43), (34, 33), (34, 35), (34, 34), (34, 45), (34, 23), (34, 44), (34, 25), (34, 24), (35, 45), (35,

46), (35, 35), (35, 34), (35, 25), (35, 44), (35, 36), (35, 24), (35, 26), (45, 46), (45, 45), (45, 35), (45, 44),

(45, 34), (45, 36), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37), (46, 47), (36, 36), (36, 37), (36, 47), (36, 26),

(36, 46), (36, 45), (36, 35), (36, 27), (36, 25), (37, 47), (37, 37), (37, 36), (37, 48), (37, 46), (37, 27), (37, 38)

, (37, 26), (47, 47), (47, 37), (47, 36), (47, 46), (47, 48), (47, 38), (47, 57), (47, 58), (13, 13), (13, 12), (13,

14), (13, 22), (13, 23), (13, 24), (12, 13), (12, 11), (12, 12), (12, 23), (12, 22), (12, 21), (14, 14), (14, 13), (14,

15), (14, 23), (14, 25), (14, 24), (15, 15), (15, 16), (15, 26), (15, 25), (15, 14), (15, 24), (16, 16), (16, 17),

(16, 15), (16, 26), (16, 27), (17, 17), (17, 18), (17, 16), (17, 28), (17, 27), (17, 26), (26, 25), (26, 26), (26, 37),

(26, 36), (26, 27), (26, 15), (26, 16), (26, 35), (26, 17), (25, 24), (25, 36), (25, 26), (25, 16), (25, 15), (25, 14)

, (25, 25), (25, 35), (24, 15), (24, 35), (24, 24), (24, 25), (24, 33), (24, 23), (24, 34), (24, 14), (48, 37), (48,

47), (48, 48), (48, 58), (48, 49), (48, 59), (48, 38), (48, 39), (48, 57), (11, 12), (11, 11), (11, 21), (27, 27), (27,

28), (27, 38), (27, 37), (27, 18), (27, 26), (27, 17), (18, 18), (18, 19), (18, 17), (19, 19), (19, 20), (19, 29),

(19, 18), (19, 28), (20, 20), (20, 19), (20, 30), (20, 29), (20, 21), (58, 57), (58, 69), (58, 58), (58, 67), (58, 59),

(58, 48), (58, 68), (58, 49), (57, 48), (57, 57), (57, 58), (57, 67), (57, 68), (49, 39), (49, 60), (49, 50), (49, 59)

, (49, 49), (49, 58), (49, 48), (39, 49), (39, 29), (39, 39), (39, 38), (39, 30), (39, 40), (60, 49), (60, 50), (60,

70), (60, 60), (60, 69), (60, 59), (60, 61), (50, 60), (50, 49), (50, 40), (50, 61), (50, 50), (50, 51), (59, 49), (59,

59), (59, 69), (59, 58), (59, 60), (59, 68), (40, 49), (40, 40), (40, 39), (40, 29), (40, 30), (40, 31), (40, 50),

(38, 47), (38, 28), (38, 38), (38, 39), (38, 48), (38, 37), (38, 29), (38, 49), (28, 29), (28, 38), (28, 28), (28, 39),

(28, 18), (28, 19), (29, 29), (29, 30), (29, 39), (29, 19), (29, 28), (29, 38), (29, 40), (30, 30), (30, 20), (30, 29)

, (30, 31), (30, 40), (69, 69), (69, 70), (69, 58), (69, 68), (69, 59), (69, 78), (69, 80), (69, 79), (70, 70), (70,

80), (70, 61), (70, 71), (70, 60), (80, 80), (80, 90), (80, 79), (80, 70), (80, 69), (80, 89), (90, 90), (90, 101),

(90, 79), (90, 89), (101, 101), (101, 100), (100, 101), (100, 100), (100, 90), (100, 110), (67, 68), (67, 67), (67, 77)

, (67, 57), (68, 58), (68, 69), (68, 68), (68, 67), (68, 78), (77, 77), (77, 78), (77, 67), (77, 87), (78, 88), (78,

77), (78, 68), (78, 69), (61, 61), (61, 60), (61, 50), (61, 70), (88, 87), (87, 97), (87, 86), (97, 96), (96, 106),

(106, 117), (106, 107), (117, 106), (107, 107), (71, 71), (71, 70), (79, 79), (79, 68), (79, 80), (79, 69), (79, 78),

(89, 90), (89, 99), (86, 85), (85, 95), (51, 60), (99, 99), (99, 100)]

number of edges: 370

20

	Introduction
	Related Work
	Preliminaries
	Graph Structured Reinforcement Learning
	Explore with Dynamic Graph
	Learn with Graph Structured Reinforcement Learning

	Experiments
	conclusion
	Notations
	Algorithm
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Discussions
	Discussion on Certainty of State
	Discussion on Optimal Goal
	Discussion on Group Division

	Experiments
	Environment Configuration
	Evaluation Details
	Hyper-Parameters
	Comparison on Sample Efficiency

