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Figure 7: An illustrated example of notations in Graph Structured Reinforcement Learning (GSRL).

In this paper, we construct a state-transition graph on top of the replay buffer. As Figure[7(a) shows,
we build the graph G; based on historical explored trajectories at timestep ¢ in episode e. For any
not fully explored state-transition graph, there exist many not well explored states. We measure the
exploration (i.e., certainty in Defintion |1)) of these states according to the number of their untaken
candidate actions. As illustrated in Figure b), we define the boundary of Gf as a set of states,
at least one of whose candidate actions is not ready been taken. Each untaken action may lead to
unvisited states (denoted as ? icon). We denote the boundary as 9G;. As illustrated in Figure c),
after each timestep ¢+ 1, the agent explored a new state denoted as AGy. Then, G§ and AGy together
make up the dynamic graph at timestep ¢ + 1 denoted as Gf, ;.

B ALGORITHM

Algorithm 1 Graph Structured Reinforcement Learning (GSRL)

1: Initialize replay buffer D = {sq} and state-trainsition graph G = {so}

2: for epsiode numbere = 1,2,..., E do
3: Select an appropriate group for exploration according to Eq. (2))
4: Generate goal g, according to Eq.
5: for iteractiont = 0,1,2,...,7 — 1 do
6: Receive observation s; from environment
7: a; + e-greedy policy based on Q(s¢, a, g)
8: Take action ay, receive reward r; and next state s;y1
9: Append (s¢, ag, v, St41,ge) to D
10: Relabel rewards r, with g,
11: Append (s¢, at, s¢41) to G if (s¢, a4, 8¢41) € G
12: if £ mod update_interval == 0 then
13: Sample related experience (S¢, at, St41,7t, ge) 10 Drelated
14: Update parameter 6 using Eq. (6))
15: end if
16: end for

17: Compute optimal goal g} according to Deﬁnition
18: Update parameter ¢ using Eq. (4)
19: end for

We provide the overall algorithm in Algorithm[I] The key contribution of our paper is to leverage
structured information in the state-transition graph for efficient goal generation and value estimation,
which is represented in line ] and[I3] respectively. We then describe the overall procedure of GSRL
according to Algorithm [T)as follows:

There is no graph structure for agent to support when the task starts. Hence, the agent initializes the
replay buffer D and the state-transition graph G in line[l} At the beginning timestep of each episode
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e, we divide the boundary of the state-transition graph 9G§ into IV groups and adopt attention mech-
anism to select an appropriate one for exploration in line [3] Within selected group, we choose the
state with the highest value as the generated goal g. in line[d] The agent try to reach the goal state
through current policy based () value in line [7]and record interaction history in the replay rebuffer
in line[9} As goal-oriented RL provides the agent intrinsic reward conditioned on current goal, the
agent is required to relabel reward with r, conditioned on g, in line Then the agent updates
the state-transition graph in line In order to efficiently update policy, the agent sample related
trajectories that contains at least one neighbor states of current state in line[I3] In line[T4] the policy
is updated with DDPG (Lillicrap et al., 2015). At the end of each episode e, the state-transition
graph is actually built for episode e + 1 denoted as QSH. The agent is able to find optimal goal g
through planning algorithm on gg“ in line The attention mechanism is updated by supervised
learning in line[T§]

C PROOFS

C.1 PROOF OF PROPOSITION[I]

Proposition 1. Given the full state-transition graph G, we assume that the probability of degree of
an arbitrary state being less than or equal to d is larger than p (i.e., P(deg(s) < d) > p,Vs € Sg).
Considering a sequence of consecutively expanding sub-graphs (G3,GY, ..., 97@__11 ), starting with

d-(d—1)Tett—2

GY = {so}, forallt > 1,e > 0, we can ensure that P(|ng| < e) > p¢, where € = i

when d > 2 and ¢ = 1,3 when d = 1, 2 respectively.

Proof. We consider the extreme case of greedy consecutive expansion at each timestep ¢ in any
episode e, where Gy = Gy UAGy = G7 U 0G;, since if this case satisfies the inequality, any case
of consecutive expansion can also satisfy it. By definition, all the subgraphs G; are a connected
graph. Here, we use AS? to denote Sag: for short. In each episode, we can ensure that the newly
added nodes AS} at timestep ¢ only belong to the neighborhood of the last added nodes AS}_;.

Within each episode e, we study the sequence {AG§, AGS, ..., AGS_}, where T is the episode
length. In this case, each node in AS} already has at least one edge within AGy ;| due to the
definition of connected graphs, we can have

P(IAS]| < |AS |- (d = 1)) > pla%ial, )
For e = 1 and t = 0, we have P(|AS}| < d) > p and thus
P(|Sgs] < 1+d) > p. @®)

Fore > 1andt > 1, we analyze the conseutive expansion of the state-transition graph G as
gl N gQ SN gE

1 1 1 2 2 2 E E E
=G, -G = =60 ,—-6GG—>6G = =>G_ 1= =G =G —--—=>Gr_,.

gl g2 gE
©))
Given that [ASge| > 1,Vt € [0,T — 1], we consider the extreme case that [ASge| = 1,Vt €
[0,T — 1], which means that every exploration will result in a new explored state and should be
respondes to the upper bound of the explosion. Based on [ASge | = 1+ [ASg:| + [ASgi| + -+ +

|ASg1 [+ [ASgz| + [ASga| + -+ +[ASgz [+ -+ + |ASgg| + -+ + [ASge |, we have

dfl)e"T*t’Q

P(|Sge| S 1+d+d (d— 1)_|_ . +d (d— 1)6-T+t71) > p1+d+d-(d71)+'“+d-( ) (10)

When d = 1, there can be only one node, so in this case, ¢ = 1. When d = 2, we follow Eq. (1@])
and derive that in this case, ¢ = 3. When d > 2, it holds that

. _ eT+t _ a_1yeTHt—1_
d-(d d112 2 > pt D : (11)

We can find that ¢ = 0 also satisfies this inequality. [

P(|Sg:| <

Notice that here we share some mathematical derivations with Xu et al. (2020).
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Figure 8: An illustrated example for relationship between optimal goal and boundary. In the
fully explored graph Gp, the red circled states together show the optimal solution path (Pp; =<
S0, S1, S3, S6, Sg, S10 >) With terminal one (s1¢) for the optimal goal in (a). In any other not fully
explored state-transition graph G§ at the beginning timestep of any episode e in (b), we regard the
reachable state in the dashed line circle (s¢) through planning in the next episode G ¢l in (c) as the
optimal goal in (d).

C.2 PROOF OF PROPOSITION[2]

Proposition 2. Assume that QQ-value of each state is well estimated (i.e., Q = Q), then optimal
goal g at the beginning timestep of any episode e is always included in the boundary of the state-
transition graph G§ (i.e., 9G§).

Proof. According to Definition [2} as shown in Figure [§[a), in the fully explored graph Gy, the
optimal goal gy, is the terminal state in the optimal solution Py, which is also the terminal state
in the environment, i.e., s19. The intuitive explanation behind this is very natural, where the envi-
ronment in this case is fully explored, thus the agent is ready to target at the terminal state. In the
other cases, we generate the optimal goal g of eplsode e at the episode e + 1. Specially, we find
the shortest path to the highest value state in QO as the optimal solution path P.;. As Figure I
illustrates, in the episode e + 1, the highest value is sg and the optimal solution path in this case is
Pet1 =< S0, 51,53, S6, So >. We then compare the explored states in G§ with the states in ;‘L‘ﬁ“e,
where Pé‘ff“ =< 89, S, S3, S1,So > is the inverse order of P.;. As Figure d) shows, finally
we obtain sg as the optimal goal gJ. As stated above, it’s easy to find that there are two cases in
the optimal goal generation. One is the last node of solution path P, ;. The other is one of the rest
nodes in P, except the last one. We then prove that in the both of these cases, optimal goal g is
always included in the boundary of the state-transition graph 9G§.

Case I: Node at Last. If ()-value of each state is well estimated, i.e., Q = Q*, then the optimal
solution path P, at episode e+ 1 should be close to the optimal solution path Py in the full graph
Grun, and the last state of the path P, should be closest to the terminal state. Hence, if ¢} is not
in the boundary, there must be one neighbor node closer to the terminal state. Otherwise, g is the
dead end, thus should not be regarded as the optimal goal. And if there is one neighbor node closer
to the terminal state, then this state should be regarded as the optimal goal. Therefore, we obtain the
contradiction.

Case II: Node Not at Last. If the optimal goal is not the last state, then there must exist the state
unexplored at episode e. Take Figure las an example, if we take s¢ as the optimal goal g} in (d),

state sg must be unexplored in G in (c) and explored in QCH in (b). If g} is not included in 9Gg,
then there should not exist any unexplored state that is mcluded in its neighborhood. According to
the definition of the boundary of graph, we have proved the proposition by contradiction.

In summary, we have proved the proposition in both two cases by the contradiction. O

C.3 PROOF OF PROPOSITION[3]

Proposition 3. Denote the Bellman backup operator in Eq. (E]) as B : RISIXIAIXIGE _ RISIXIAIX|G]
and a mapping Q : S x A x G — RISXIAXIC] wih |S| < 0o and |A| < oc. Repeated application
of the operator B for our graph-based state-action value estimate Qg converges to a unique optimal
value Qé with well explored graph G* including optimal solution path.
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Proof. The proof of Proposition[3]is done in two main steps. The first step is to show that our state-
transition graph G can converge to well explored graph G*. Here, we define G* as the graph that
includes the optimal path (i.e. Pryy in Definition [2). In the second step, we prove that given graph
G, our graph-based method can converge to unique optimal value Q.

Step 1. Since |S| < oo and |A| < oo, we can obtain that Vg < oo and £g < co. Note that the
state-transition graph G is a dynamic graph and goals g generated on G are updated at the beginning
timestep of each episode. Hence, there is a sequence of goals denoted as (g1, g2, - ,9r) and
corresponding sequence of graphs denoted as (G}, G2, --- ,GF), where E here is the number of
episodes. Given that |.S| < oo and |A| < oo, the number of nodes and edges in the full graph Gy is
also bounded. Based on the explore strategy introduced in Section[d] we know that goal-oriented RL
will first search for a path leading to the terminal state. After that, the terminal state will be included
in G. Then the agent will seek for the shortest path to the terminal state, because the agent is given
with a negative reward at each timestep. Hence, the optimal solution path Py will be involved.
Hence, we can obtain that

Gy CGiC--CG =G—G" (12)
Assume that E is large enough, our state-transition graph G can finally converge to well explored
graph G*.
Step II. Note that the proof of convergence for our graph-based goal-oriented RL is quite similar to
@-learning (Bellman} [1966; Bertsekas et al.|[1995} [Sutton & Barto} 2018). The differences between
our approach and Q-learning are that Q) value (s, a, g) is also conditioned on goal g, and that the
state-transition probability Pg(s’|s,a) can be reflected by graph G. We provide detailed proof as
follows:

For any state-transition graph G, we can obtain goal ¢ € G conditioned on G from Step I. Based on
that, our estimated graph-based action-value function ()¢ can be defined as

BQg(s,a,9) = R(s,a,9) + 7~ max > Pg(s'|s,a) - Qg(s',a', 9). (13)
s'eS

For any action-value function estimates Qé, Qé, we study that
|8Qé($7 a, g) - BQ%(Sa a, g)|
_ A1
=7+ |max > Pg(s']s,a) - Qg(s',a,g) —max Y Po(s'|s,a) - Q5(s',a’,g)|

s’esS s’esS

Svg}2§| Z Pg |S a) Qg S a,g Z PQ |'S a (Slvalag” (14)
s'esS s’es

o~ 1 OL (! A _N2(S

=7 max > Pg(s'ls,a) - |Q4(s',a',9) — QF (5,0, 9)|
s'es

< N2

S Selgl?é |Qg(5 a,g) — Qg(57a79)|

So the contraction property of Bellman operator holds that

2 [BQg(s,a,9) = BOG(s,a,9) < -

e [Qh(s0.0) = G(sag) A9

For the fixed point Qg, we have that

max |BQg(s,a,9) — BQg(s,a,9)| <7+ max |Qg(s,a,9) — Q5(s.a,9)| = Qg — Qg

sES,acA s€S,acA
(16)
Combining Step I and II, we can conclude that our graph-based estimated state-action value Qg can
converge to unique optimal value Q.. O

D DISCUSSIONS

D.1 DISCUSSION ON CERTAINTY OF STATE

In this section, we further dicuss the relationship between certainty of state and number of state. In
the previous exploration RL literatures (Ostrovski et al.,|[2017; Bellemare et al., 2016), the perfor-
mance of exploration often is measured by the number of the visited states. Namely, given fixed
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Figure 9: An illustrated example for relationship between certainty and number of visited states.

number of episodes, more visited states, better performance. In this paper, we propose to utilize a
new measurement, i.e., certainty of state as illustrated in Definition E} We conclude the relations
between certainty and number of visited states as Proposition 4}

Proposition 4. Given a whole state-trainsition graph G, we can regard the certainty of states as
the local measurement and the number of states as the global measurement for exploration, which
share the similar trend during agent exploration.

Proof. We illustrate and prove the proposition hindsightly. If we have the fully observation for states
as shown in Figure Pfa), we can model the agent finding new states as connecting new states with
visited states. In other words, since the state-transition graph G; must keep to be a fully connected
graph at any timestep ¢ in any episode e. Hence, adding new states into the visited state set can
always be regarded as finding new edge between new states and the visited state set. And each
directed edge in the state-transition graph as shown in Figure[9(b) is determined by action and state-
transition function. If the environment is determined, we can roughly regard the number of edges
as the approximate measurement for exploration. The certainty of states is the local perspective for
this measurement. O

D.2 DISCUSSION ON OPTIMAL GOAL

In the previous goal-oriented RL literatures (Andrychowicz et al.| 2017; |Ren et al., 2019), what
kind of generated goals is helpful for the agent to efficiently learn a well performed policy is one
of the key question to be answered. The basic idea of goal-oriented RL architecture is to generate
goals to decompose the complex task into several goal-oriented tasks. In this paper, we analyze our
generated goals in two prespectives, namely reachability and curriculum.

Reachability. The first property required in the optimal goal is that the generated goal is guaranteed
to be reachable for the agent. To this end, in this paper, the candidate goal set is constrained into the
visited states. In other words, the goal generated in the episode e must be visited before the episode
e. Therefore, we can guarantee that the generated goal is reachable.

Curriculum. The second property is the curriculum, which means that our optimal goals are re-
quired to approach the terminal state during the exploration. If the (Q-value of each states is well
estimated, our goal generation under the supervision of forward-looking planning at the next episode
will focus on the potential highest value states in the future, which is actually the terminal state when
the agent has the full observation of states.

D.3 DISCUSSION ON GROUP DIVISION

Motivation. The intuitive motivation behind the group division is very natural. Proposition|l|implies
that exploration on the state-transition graph Gy at timestep ¢ in episode e without any constraint may
lead to explosion of graph and inefficiency of exploration. Therefore, the agent is expected to do
exploration within a limited domain. Considering that Gy is always changing and the number of
nodes (i.e., |Sge|) keeps increasing, it is non-trivial for the agent to learn to select state as the goal
for further exploration. Hence, we first restrict the exploration within the boundary of state-transition
graph 0G; according to Proposition 2| We then consider to partition JG; into several groups.

We set the last visited state sja5¢ as the original point, because s, is likely to be close to the target
state and reachable for current policy. As introduced in Section[d] we propose to extend groups from
Sast following two possible perspectives, namely neighbor and uncertain nodes.

Complexity. Let dyge denote the maximum degree of states in 9Gy, and |Spge | denote the number
of states in Gy . Note that Gy is always a directed fully connected graph. If we want to find the n-
hop neighbors of sj,5t, we need to iteratively go through related nodes’ neighborhood. In other words,
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the computation complexity should be O(dg. ). Hence, the complexity to construct Cy, . .., Cy by
extending from neighbor nodes is O(djg, ) + O(d3g.) + -+ + (’)(dévggl) = O(dévg?). If we want
to find nodes whose uncertainty equals n, we need to go through the graph once. In this case,
the computation complexity should be O(|Ssg:|). Hence, the complexity to construct Cy,...,Cxn
extending from uncertain nodes is O(|Sage ).

E EXPERIMENTS

E.1 ENVIRONMENT CONFIGURATION

(a) Maze (b) Ant Maze (c) FetchPush (d) FetchPush with Obstacle

Figure 10: Visualization of robotic manipulation environments.

Maze. As shown in Figure ma), in the maze environment, a point in a 2D U-maze aims to reach
a goal represented by a red point. The size of maze is 15 x 15, the state space and is in this 2D
U-maze, and the goal is uniformly generated on the segment from (0, 0) to (15.0, 15.0). The action
space is from (—1.0,—1.0) to (1.0, 1.0), which represents the movement in x and y directions.

AntMaze. As shown in Figure b), in the AntMaze environment, an ant is put in a U-maze, and
the size of maze is 12 x 12. The ant is put on a random location on the segment from (—2.0, —2.0) to
(10.0,10.0), and the goal is uniformly generated on the segment from (—2.0, —2.0) to (10.0, 10.0).
The state of ant is 30-dimension, including its positions and velocities.

FetchPush. As shown in Figure[I0[c), in the fetch environment, the agent is trained to fetch object
from inital position (rectangle depicted in green) to distant position (rectangle depicted in red). Let
the origin (0,0, 0) denote the projection of gripper’s initial coordinate on the table. The object is
uniformly generated on the segment from (—0.0,—0.0,0) to (8,8,0), and the goal is uniformly
generated on the segment from (—0.0, —0.0, 0) to (8,8, 0).

FetchPush with Obstacle. As shown in Figure d), in the fetch with obstacle environment, we
create an environment based on FetchPush with a rigid obstacle, where the brown block is a static
wall that can’t be moved. The object is uniformly generated on the segment from (—0.0, —0.0, 0) to
(8,8,0), and the goal is uniformly generated on the segment from (—0.0, —0.0, 0) to (8, 8, 0).

AntMaze with Obstacle. This environment is an extension version of AntMaze, where an 1 x 1
rigid obstacle is put in U-maze.

E.2 EVALUATION DETAILS

e All curves presented in this paper are plotted from 10 runs with random task initialization and
seeds.

e Shaded region indicates 60% population around median.

o All curves are plotted using the same hyper-parameters (except ablation section).

e Following (Andrychowicz et al., 2017), an episode is considered successful if ||g — Sopject||2 < dg
is achieved, where sy is the object position at the end of the episode. d, is the threshold.

e The max timestep for each episode is set as 200 for training and 500 for tests.

o The average success rate using in the curve is estimated by 102 samples.

E.3 HYPER-PARAMETERS

Almost all hyper-parameters using DDPG (Lillicrap et al.| 2015) and HER |Andrychowicz et al.
(2017) are kept the same as benchmark results, except these:

e Number of MPI workers: 1;
e Actor and critic networks: 3 layers with 256 units and ReL.U activation;
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Adam optimizer with 5 x 10~% learning rate;
Polyak-averaging coefficient: 0.98;

Action [2-norm penalty coefficient: 0.5;

Batch size: 256;

Probability of random actions: 0.2;

Scale of additive Gaussian noise: 0.2;

Probability of HER experience replay: 0.8;

Number of batches to replay after collecting one trajectory: 50.

Hyper-parameters in goal generation:

e Adam optimizer with 1 x 103 learning rate;
e K of K-bins discretization: 20;
e Number of groups to depart the graph: 3.

E.4 COMPARISON ON SAMPLE EFFICIENCY

We show sample efficiency with comparisons according to the number of states visited and actions
taken. We report the log files of GSRL and HER in Maze environment here at 10, 50, 100 episodes,
which contain the number of visited nodes and actions taken.

Graph Structured Reinforcement Learning (GSRL)

episode is: 10

nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,
59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40]

number of nodes: 45

edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (21, 21), (21, 11), (21, 31), (21,
32), (21, 22), (11, 11), (11, 21), (11, 12), (31, 31), (31, 42), (31, 41), (31, 22), (31, 32), (31, 21), (42, 42), (42,
32), (42, 43), (42, 41), (42, 31), (32, 31), (32, 32), (32, 42), (32, 43), (32, 33), (32, 23), (32, 22), (41, 41),
(41, 31), (23, 22), (23, 23), (23, 32), (23, 34), (23, 33), (23, 24), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44),
(43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 23), (33, 34), (44, 44), (44, 33), (44, 43), (44, 35), (44, 34)
, (44, 45), (34, 43), (34, 33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (13, 13), (13, 14), (13, 23), (14,
15), (14, 25), (14, 14), (15, 15), (15, 26), (15, 25), (15, 14), (15, 16), (26, 26), (26, 25), (26, 36), (26, 16), (26,
37), (26, 27), (25, 26), (25, 25), (25, 15), (25, 36), (36, 35), (36, 26), (36, 36), (36, 37), (36, 27), (35, 35),
(35, 45), (35, 26), (35, 34), (35, 36), (35, 44), (35, 25), (45, 35), (45, 44), (45, 45), (16, 26), (24, 35), (24, 34),
(24, 25), (37, 47), (37, 37), (37, 38), (37, 48), (47, 37), (47, 47), (47, 48), (47, 46), (38, 47), (38, 48), (38, 37)
, (38, 49), (38, 28), (38, 39), (48, 38), (48, 48), (48, 49), (46, 47), (46, 46), (12, 11), (12, 21), (12, 28), (12,
22), (12, 13), (49, 48), (49, 59), (49, 50), (59, 69), (69, 69), (69, 79), (79, 80), (79, 78), (79, 79), (79, 90), (80,
79), (78, 79), (90, 89), (89, 99), (99, 99), (99, 109), (109, 110), (109, 109), (109, 100), (110, 100), (100, 109),
(27, 36), (27, 27), (27, 38), (28, 28), (28, 38), (39, 50), (39, 40), (39, 39), (50, 39), (50, 40), (50, 50), (40, 49),
(40, 39), (40, 50)]

number of edges: 166

episode is: 50

nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,
59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40, 29, 30, 51, 57, 18, 19, 58, 68, 17, 60, 20, 67, 70,
71, 61]

number of nodes: 60

edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (22, 11), (21, 21), (21, 11), (21,
31), (21, 32), (21, 22), (21, 12), (11, 11), (11, 21), (11, 12), (11, 22), (31, 31), (31, 42), (31, 41), (31, 22), (31,
32), (31, 21), (31, 40), (31, 30), (42, 42), (42, 32), (42, 43), (42, 41), (42, 31), (32, 31), (32, 32), (32, 42),
(32, 43), (32, 33), (32, 23), (32, 22), (32, 41), (32, 21), (41, 41), (41, 31), (41, 40), (41, 32), (23, 22), (23, 23),
(23, 32), (28, 34), (28, 33), (23, 24), (23, 13), (23, 14), (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44)
, (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 23), (33, 34), (33, 22), (33, 42), (33, 24), (44, 44), (44,
33), (44, 43), (44, 35), (44, 34), (44, 45), (34, 43), (34, 33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (34,
25), (13, 13), (13, 14), (13, 23), (13, 12), (13, 22), (13, 24), (14, 15), (14, 25), (14, 14), (14, 24), (14, 13),
(14, 23), (15, 15), (15, 26), (15, 25), (15, 14), (15, 16), (26, 26), (26, 25), (26, 36), (26, 16), (26, 37), (26, 27),
(26, 35), (26, 17), (25, 26), (25, 25), (25, 15), (25, 36), (25, 24), (25, 35), (25, 16), (25, 34), (36, 35), (36, 26)
, (36, 36), (36, 37), (36, 27), (36, 46), (36, 47), (36, 45), (35, 35), (35, 45), (35, 26), (35, 34), (35, 36), (35,
44), (35, 25), (35, 46), (35, 24), (45, 35), (45, 44), (45, 45), (45, 46), (45, 36), (45, 34), (16, 26), (16, 16), (16,
27), (16, 17), (16, 15), (16, 25), (24, 35), (24, 34), (24, 25), (24, 24), (24, 14), (24, 23), (24, 15), (24, 33),
(37, 47), (37, 37), (37, 38), (37, 48), (37, 28), (37, 36), (37, 46), (37, 27), (47, 37), (47, 47), (47, 48), (47, 46),
(47, 38), (47, 58), (47, 57), (47, 36), (38, 47), (38, 48), (38, 37), (38, 49), (38, 28), (38, 39), (38, 38), (38, 27)
, (48, 38), (48, 48), (48, 49), (48, 57), (48, 47), (48, 58), (48, 59), (46, 47), (46, 46), (46, 37), (46, 45), (46,
36), (46, 35), (12, 11), (12, 21), (12, 23), (12, 22), (12, 13), (12, 12), (49, 48), (49, 59), (49, 50), (49, 39), (49,
49), (49, 60), (59, 69), (59, 59), (59, 48), (59, 50), (59, 60), (59, 49), (59, 58), (69, 69), (69, 79), (69, 78),
(69, 80), (79, 80), (79, 78), (79, 79), (79, 90), (79, 68), (80, 79), (80, 69), (80, 80), (80, 90), (78, 79), (78, 78),
(78, 68), (78, 69), (78, 89), (90, 89), (90, 79), (90, 90), (89, 99), (89, 79), (99, 99), (99, 109), (109, 110), (109,
109), (109, 100), (110, 100), (100, 109), (27, 36), (27, 27), (27, 38), (27, 28), (27, 26), (27, 37), (27, 18), (27,
16), (27, 17), (28, 28), (28, 38), (28, 27), (28, 18), (28, 19), (28, 37), (28, 39), (28, 29), (39, 50), (39, 40), (39,
39), (39, 29), (39, 38), (50, 39), (50, 40), (50, 50), (50, 49), (50, 59), (50, 60), (50, 51), (40, 49), (40, 39),
(40, 50), (40, 40), (40, 51), (40, 41), (40, 29), (40, 31), (40, 30), (29, 30), (29, 39), (29, 29), (29, 19), (29, 28),
(30, 29), (30, 40), (30, 31), (30, 30), (30, 20), (30, 39), (51, 40), (57, 57), (57, 68), (57, 47), (57, 58), (57, 48)
, (18, 19), (18, 27), (18, 28), (18, 18), (18, 17), (18, 29), (19, 28), (19, 19), (19, 18), (19, 30), (19, 29), (58,
48), (58, 58), (58, 57), (58, 59), (58, 49), (58, 47), (58, 67), (68, 69), (68, 78), (68, 79), (17, 17), (17, 18), (17,
28), (17, 16), (17, 27), (60, 50), (60, 60), (60, 49), (60, 70), (60, 61), (60, 59), (20, 19), (67, 67), (67, 58),
(70, 71), (70, 70), (70, 60), (70, 69), (71, 71), (71, 70), (61, 70)]
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number of edges: 336

episode: 100

nodes: [22, 21, 11, 31, 42, 32, 41, 23, 43, 33, 44, 34, 13, 14, 15, 26, 25, 36, 35, 45, 16, 24, 37, 47, 38, 48, 46, 12, 49,
59, 69, 79, 80, 78, 90, 89, 99, 109, 110, 100, 27, 28, 39, 50, 40, 29, 30, 51, 57, 18, 19, 58, 68, 17, 60, 20, 67, 70,
71, 61, 88, 87, 96, 106, 105, 104, 114, 115, 81, 77, 97, 107, 86, 98, 108, 95, 85, 94, 103]

number of nodes: 79

edges: [(22, 22), (22, 21), (22, 23), (22, 32), (22, 33), (22, 13), (22, 31), (22, 12), (22, 11), (21, 21), (21, 11), (21,
31), (21, 32), (21, 22), (21, 12), (21, 20), (21, 30), (11, 11), (11, 21), (11, 12), (11, 22), (31, 31), (31, 42), (31,
41), (31, 22), (31, 32), (31, 21), (31, 40), (31, 30), (42, 42), (42, 32), (42, 43), (42, 41), (42, 31), (42, 33),
(32, 31), (32, 32), (32, 42), (32, 43), (32, 33), (32, 23), (32, 22), (32, 41), (32, 21), (41, 41), (41, 31), (41, 40),
(41, 32), (41, 42), (41, 50), (41, 30), (23, 22), (23, 23), (23, 32), (23, 34), (23, 33), (23, 24), (23, 13), (23, 14)
, (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33,
23), (33, 34), (33, 22), (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 35), (44, 34), (44, 45), (34, 43), (34,
33), (34, 34), (34, 24), (34, 35), (34, 44), (34, 45), (34, 25), (34, 23), (13, 13), (13, 14), (13, 23), (13, 12),
(13, 22), (13, 24), (14, 15), (14, 25), (14, 14), (14, 24), (14, 13), (14, 23), (15, 15), (15, 26), (15, 25), (15, 14),
(15, 16), (15, 24), (26, 26), (26, 25), (26, 36), (26, 16), (26, 37), (26, 27), (26, 35), (26, 17), (26, 15), (25, 26)
, (25, 25), (25, 15), (25, 36), (25, 24), (25, 35), (25, 16), (25, 34), (25, 14), (36, 35), (36, 26), (36, 36), (36,
37), (36, 27), (36, 46), (36, 47), (36, 45), (36, 25), (35, 35), (35, 45), (35, 26), (35, 34), (35, 36), (35, 44), (35,
25), (35, 46), (35, 24), (45, 35), (45, 44), (45, 45), (45, 46), (45, 36), (45, 34), (16, 26), (16, 16), (16, 27),
(16, 17), (16, 15), (16, 25), (24, 35), (24, 34), (24, 25), (24, 24), (24, 14), (24, 23), (24, 15), (24, 33), (24, 13),
(37, 47), (37, 37), (37, 38), (37, 48), (37, 28), (37, 36), (37, 46), (37, 27), (37, 26), (47, 37), (47, 47), (47, 48)
, (47, 46), (47, 38), (47, 58), (47, 57), (47, 36), (38, 47), (38, 48), (38, 37), (38, 49), (38, 28), (38, 39), (38,
38), (38, 27), (38, 29), (48, 38), (48, 48), (48, 49), (48, 57), (48, 47), (48, 58), (48, 59), (48, 37), (48, 39), (46,
47), (46, 46), (46, 37), (46, 45), (46, 36), (46, 35), (12, 11), (12, 21), (12, 23), (12, 22), (12, 13), (12, 12),
(49, 48), (49, 59), (49, 50), (49, 39), (49, 49), (49, 60), (49, 58), (49, 40), (49, 38), (59, 69), (59, 59), (59, 48),
(59, 50), (59, 60), (59, 49), (59, 58), (59, 68), (59, 70), (69, 69), (69, 79), (69, 78), (69, 80), (69, 70), (69, 68)
, (69, 59), (79, 80), (79, 78), (79, 79), (79, 90), (79, 68), (79, 88), (79, 89), (79, 69), (80, 79), (80, 69), (80,
80), (80, 90), (80, 89), (80, 81), (80, 70), (80, 71), (78, 79), (78, 78), (78, 68), (78, 69), (78, 89), (78, 87), (78,
67), (78, 77), (78, 88), (90, 89), (90, 79), (90, 90), (90, 80), (89, 99), (89, 79), (89, 80), (89, 89), (89, 88),
(89, 90), (89, 78), (89, 98), (99, 99), (99, 109), (99, 88), (99, 89), (99, 98), (99, 100), (109, 110), (109, 109),
(109, 100), (110, 100), (100, 109), (100, 99), (27, 36), (27, 27), (27, 38), (27, 28), (27, 26), (27, 37), (27, 18),
(27, 16), (27, 17), (28, 28), (28, 38), (28, 27), (28, 18), (28, 19), (28, 37), (28, 39), (28, 29), (28, 17), (39, 50),
(39, 40), (39, 39), (39, 29), (39, 38), (39, 49), (39, 48), (39, 30), (50, 39), (50, 40), (50, 50), (50, 49), (50, 59)
, (50, 60), (50, 51), (50, 61), (50, 41), (40, 49), (40, 39), (40, 50), (40, 40), (40, 51), (40, 41), (40, 29), (40,
31), (40, 30), (29, 30), (29, 39), (29, 29), (29, 19), (29, 28), (29, 18), (29, 40), (29, 38), (29, 20), (30, 29), (30,
40), (30, 31), (30, 30), (30, 20), (30, 39), (30, 19), (30, 21), (51, 40), (51, 51), (51, 60), (51, 50), (57, 57),
(57, 68), (57, 47), (57, 58), (57, 48), (57, 67), (18, 19), (18, 27), (18, 28), (18, 18), (18, 17), (18, 29), (19, 28),
(19, 19), (19, 18), (19, 30), (19, 29), (19, 20), (58, 48), (58, 58), (58, 57), (58, 59), (58, 49), (58, 47), (58, 67)
, (58, 69), (58, 68), (68, 69), (68, 78), (68, 79), (68, 68), (68, 57), (68, 67), (68, 77), (68, 58), (17, 17), (17,
18), (17, 28), (17, 16), (17, 27), (60, 50), (60, 60), (60, 49), (60, 70), (60, 61), (60, 59), (60, 51), (60, 69), (60,
71), (20, 19), (20, 30), (20, 20), (20, 21), (20, 29), (67, 67), (67, 58), (67, 68), (67, 78), (67, 77), (67, 57),
(70, 71), (70, 70), (70, 60), (70, 69), (70, 79), (70, 80), (70, 59), (71, 71), (71, 70), (71, 80), (61, 70), (61, 61),
(61, 50), (61, 60), (88, 87), (88, 79), (88, 89), (88, 88), (88, 99), (88, 98), (88, 78), (88, 97), (87, 78), (87, 88)
, (87, 96), (87, 87), (87, 97), (87, 77), (87, 86), (96, 106), (96, 97), (96, 87), (96, 86), (96, 96), (96, 95), (106,
105), (106, 107), (106, 96), (105, 105), (105, 104), (105, 114), (105, 115), (104, 114), (104, 104), (104, 105), (114,
114), (114, 104), (114, 105), (115, 105), (81, 80), (77, 77), (77, 67), (77, 68), (77, 88), (77, 78), (97, 96), (97,
106), (97, 107), (97, 87), (107, 96), (107, 106), (107, 107), (107, 108), (86, 96), (86, 86), (98, 99), (98, 89), (98,
98), (95, 95), (95, 85), (95, 94), (85, 85), (85, 95), (94, 103), (103, 103)]

number of edges: 486

Hindsight Experience Replay (HER)

episode is: 10

nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27]

number of nodes: 29

edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (21, 21), (21, 31), (21, 22), (31, 31), (31, 41), (31,
21), (31, 42), (41, 42), (41, 41), (41, 32), (41, 31), (42, 41), (42, 42), (42, 32), (42, 43), (42, 31), (32, 31), (32,
32), (32, 42), (32, 33), (32, 43), (32, 23), (32, 41), (23, 22), (23, 13), (23, 14), (23, 33), (43, 32), (43, 43),
(43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 34), (44, 44), (44, 33), (44, 43),
(44, 34), (44, 35), (44, 45), (34, 43), (34, 33), (34, 35), (34, 34), (34, 45), (35, 45), (35, 46), (35, 35), (35, 34)
, (35, 25), (45, 46), (45, 45), (45, 35), (45, 44), (45, 34), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37), (36,
36), (36, 37), (36, 47), (36, 26), (36, 46), (37, 47), (37, 37), (37, 36), (37, 48), (47, 47), (47, 37), (47, 36), (47,
46), (13, 13), (13, 12), (13, 14), (12, 13), (12, 11), (12, 12), (12, 23), (14, 14), (14, 13), (14, 15), (15, 15),
(15, 16), (15, 26), (15, 25), (16, 16), (16, 17), (26, 25), (26, 26), (26, 37), (26, 36), (26, 27), (25, 24), (25, 36),
(25, 26), (24, 15), (48, 37), (11, 12), (11, 11), (27, 27)]

number of edges: 112

episode is: 50

nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27,
18, 19, 20, 58, 57, 49, 39, 60, 50, 59, 40, 38, 28, 29, 30, 69, 70, 80, 90, 101, 100, 67, 68, 77, 78, 61]

number of nodes: 55

edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (22, 13), (22, 11), (21, 21), (21, 31), (21, 22), (21,
11), (21, 12), (21, 32), (31, 31), (31, 41), (31, 21), (31, 42), (31, 32), (41, 42), (41, 41), (41, 32), (41, 31), (42,
41), (42, 42), (42, 32), (42, 43), (42, 31), (42, 33), (32, 31), (32, 32), (32, 42), (32, 33), (32, 43), (32, 23),
(32, 41), (32, 22), (32, 21), (23, 22), (23, 13), (23, 14), (23, 33), (23, 34), (23, 24), (23, 23), (23, 12), (43, 32),
(43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44), (33, 32), (33, 43), (33, 34), (33, 23), (33, 22)
, (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 34), (44, 35), (44, 45), (34, 43), (34, 33), (34, 35), (34,
34), (34, 45), (34, 23), (34, 44), (34, 25), (34, 24), (35, 45), (35, 46), (35, 35), (35, 34), (35, 25), (35, 44), (35,
36), (45, 46), (45, 45), (45, 35), (45, 44), (45, 34), (45, 36), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37),
(46, 47), (36, 36), (36, 37), (36, 47), (36, 26), (36, 46), (36, 45), (36, 35), (36, 27), (37, 47), (37, 37), (37, 36),
(37, 48), (37, 46), (37, 27), (47, 47), (47, 37), (47, 36), (47, 46), (47, 48), (47, 38), (47, 57), (47, 58), (13, 13)
, (13, 12), (13, 14), (13, 22), (13, 23), (12, 13), (12, 11), (12, 12), (12, 23), (12, 22), (12, 21), (14, 14), (14,
13), (14, 15), (14, 23), (14, 25), (14, 24), (15, 15), (15, 16), (15, 26), (15, 25), (15, 14), (16, 16), (16, 17), (16,
15), (16, 26), (17, 17), (17, 18), (26, 25), (26, 26), (26, 37), (26, 36), (26, 27), (26, 15), (26, 16), (25, 24),
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(25, 36), (25, 26), (25, 16), (25, 15), (25, 14), (25, 25), (25, 35), (24, 15), (24, 35), (24, 24), (24, 25), (24, 33),
(24, 23), (24, 34), (48, 37), (48, 47), (48, 48), (48, 58), (48, 49), (48, 59), (48, 38), (11, 12), (11, 11), (11, 21)
, (27, 27), (27, 28), (27, 38), (27, 37), (18, 18), (18, 19), (19, 19), (19, 20), (20, 20), (20, 19), (20, 30), (58,
57), (58, 69), (58, 58), (58, 67), (58, 59), (58, 48), (57, 48), (57, 57), (57, 58), (57, 67), (49, 39), (49, 60), (49,
50), (49, 59), (49, 49), (39, 49), (39, 29), (39, 39), (60, 49), (60, 50), (60, 70), (50, 60), (50, 49), (50, 40),
(59, 49), (59, 59), (59, 69), (59, 58), (59, 60), (40, 49), (38, 47), (38, 28), (38, 38), (38, 39), (38, 48), (28, 29),
(28, 38), (29, 29), (29, 30), (29, 39), (30, 30), (30, 20), (30, 29), (69, 69), (69, 70), (69, 58), (69, 68), (69, 59)
, (70, 70), (70, 80), (70, 61), (80, 80), (80, 90), (90, 90), (90, 101), (101, 101), (101, 100), (100, 101), (100, 100)
, (100, 90), (67, 68), (67, 67), (67, 77), (68, 58), (68, 69), (77, 77), (77, 78)]

number of edges: 255

episode: 100

nodes: [22, 21, 31, 41, 42, 32, 23, 43, 33, 44, 34, 35, 45, 46, 36, 37, 47, 13, 12, 14, 15, 16, 17, 26, 25, 24, 48, 11, 27,
18, 19, 20, 58, 57, 49, 39, 60, 50, 59, 40, 38, 28, 29, 30, 69, 70, 80, 90, 101, 100, 67, 68, 77, 78, 61, 88, 87, 97,
96, 106, 117, 107, 71, 79, 89, 86, 85, 95, 51, 99, 110]

number of nodes: 71

edges: [(22, 21), (22, 23), (22, 22), (22, 32), (22, 33), (22, 12), (22, 13), (22, 11), (22, 31), (21, 21), (21, 31), (21,
22), (21, 11), (21, 12), (21, 32), (21, 20), (31, 31), (31, 41), (31, 21), (31, 42), (31, 32), (31, 30), (31, 40), (31,
22), (41, 42), (41, 41), (41, 32), (41, 31), (42, 41), (42, 42), (42, 32), (42, 43), (42, 31), (42, 33), (32, 31),
(32, 32), (32, 42), (32, 33), (32, 43), (32, 23), (32, 41), (32, 22), (32, 21), (23, 22), (23, 13), (23, 14), (23, 33),
(23, 34), (23, 24), (28, 23), (23, 12), (43, 32), (43, 43), (43, 42), (43, 33), (43, 44), (43, 34), (33, 33), (33, 44)
, (33, 32), (33, 43), (33, 34), (33, 23), (33, 22), (33, 42), (33, 24), (44, 44), (44, 33), (44, 43), (44, 34), (44,
35), (44, 45), (34, 43), (34, 33), (34, 35), (34, 34), (34, 45), (34, 23), (34, 44), (34, 25), (34, 24), (35, 45), (35,
46), (35, 35), (35, 34), (35, 25), (35, 44), (35, 36), (35, 24), (35, 26), (45, 46), (45, 45), (45, 35), (45, 44),
(45, 34), (45, 36), (46, 46), (46, 45), (46, 35), (46, 36), (46, 37), (46, 47), (36, 36), (36, 37), (36, 47), (36, 26),
(36, 46), (36, 45), (36, 35), (36, 27), (36, 25), (37, 47), (37, 37), (37, 36), (37, 48), (37, 46), (37, 27), (37, 38)
, (37, 26), (47, 47), (47, 37), (47, 36), (47, 46), (47, 48), (47, 38), (47, 57), (47, 58), (13, 13), (13, 12), (13,
14), (13, 22), (13, 23), (13, 24), (12, 13), (12, 11), (12, 12), (12, 23), (12, 22), (12, 21), (14, 14), (14, 13), (14,
15), (14, 23), (14, 25), (14, 24), (15, 15), (15, 16), (15, 26), (15, 25), (15, 14), (15, 24), (16, 16), (16, 17),
(16, 15), (16, 26), (16, 27), (17, 17), (17, 18), (17, 16), (17, 28), (17, 27), (17, 26), (26, 25), (26, 26), (26, 37),
(26, 36), (26, 27), (26, 15), (26, 16), (26, 35), (26, 17), (25, 24), (25, 36), (25, 26), (25, 16), (25, 15), (25, 14)
, (25, 25), (25, 35), (24, 15), (24, 35), (24, 24), (24, 25), (24, 33), (24, 23), (24, 34), (24, 14), (48, 37), (48,
47), (48, 48), (48, 58), (48, 49), (48, 59), (48, 38), (48, 39), (48, 57), (11, 12), (11, 11), (11, 21), (27, 27), (27,
28), (27, 38), (27, 37), (27, 18), (27, 26), (27, 17), (18, 18), (18, 19), (18, 17), (19, 19), (19, 20), (19, 29),
(19, 18), (19, 28), (20, 20), (20, 19), (20, 30), (20, 29), (20, 21), (58, 57), (58, 69), (58, 58), (58, 67), (58, 59),
(58, 48), (58, 68), (58, 49), (57, 48), (57, 57), (57, 58), (57, 67), (57, 68), (49, 39), (49, 60), (49, 50), (49, 59)
, (49, 49), (49, 58), (49, 48), (39, 49), (39, 29), (39, 39), (39, 38), (39, 30), (39, 40), (60, 49), (60, 50), (60,
70), (60, 60), (60, 69), (60, 59), (60, 61), (50, 60), (50, 49), (50, 40), (50, 61), (50, 50), (50, 51), (59, 49), (59,
59), (59, 69), (59, 58), (59, 60), (59, 68), (40, 49), (40, 40), (40, 39), (40, 29), (40, 30), (40, 31), (40, 50),
(38, 47), (38, 28), (38, 38), (38, 39), (38, 48), (38, 37), (38, 29), (38, 49), (28, 29), (28, 38), (28, 28), (28, 39),
(28, 18), (28, 19), (29, 29), (29, 30), (29, 39), (29, 19), (29, 28), (29, 38), (29, 40), (30, 30), (30, 20), (30, 29)
, (30, 31), (30, 40), (69, 69), (69, 70), (69, 58), (69, 68), (69, 59), (69, 78), (69, 80), (69, 79), (70, 70), (70,
80), (70, 61), (70, 71), (70, 60), (80, 80), (80, 90), (80, 79), (80, 70), (80, 69), (80, 89), (90, 90), (90, 101),
(90, 79), (90, 89), (101, 101), (101, 100), (100, 101), (100, 100), (100, 90), (100, 110), (67, 68), (67, 67), (67, 77)
, (67, 57), (68, 58), (68, 69), (68, 68), (68, 67), (68, 78), (77, 77), (77, 78), (77, 67), (77, 87), (78, 88), (78,
77), (78, 68), (78, 69), (61, 61), (61, 60), (61, 50), (61, 70), (88, 87), (87, 97), (87, 86), (97, 96), (96, 106),
(106, 117), (106, 107), (117, 106), (107, 107), (71, 71), (71, 70), (79, 79), (79, 68), (79, 80), (79, 69), (79, 78),
(89, 90), (89, 99), (86, 85), (85, 95), (51, 60), (99, 99), (99, 100)]

number of edges: 370
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