
A Bandit Regret Bound Analysis

A.1 Algorithm Procedure

At each round s ∈ [t] , after performing a list of actions {As,i}Mi=1 with respect to corresponding
context vectors {Cs,i}Mi=1, the agent receives a list of rewards ys,i associated with input xs,i =
(Cs,i, As,i) for i ∈ [M ]. Note that we will use f(Ct, At) or f(xt) where xt = (Ct, At) in different
contexts. The algorithm first solves the following regression problem to obtain the empirical minimizer
function f̂t(·) = ϕ̂t(·)⊤Ŵ t based on samples collected.

ϕ̂t, Ŵ t = argmin
ϕ∈Φ,W=[w1,...,M ]

M∑
i=1

∥∥yt−1,i − ϕ(Xt−1,i)
⊤wi

∥∥2
2

s.t. |ϕ(x)⊤wi| ≤ 1, ∀i ∈ [M ],x ∈ C × A.

Here, Xt−1,i = [x1,i,x2,i, . . . ,xt−1,i] is the selected context-action pair for task i in the first t− 1
rounds, and yt−1,i = [R1,i, R2,i, . . . , Rt−1,i]

⊤ ∈ Rt−1 stacks all the received reward into a vector
accordingly. We use ϕ(X) to compactly represent feeding each column xi of X into ϕ(·) and get
concatenated output as [ϕ(x1), ϕ(x2), . . . , ϕ(xt−1)].

After obtaining the best empirical estimator function f̂
(i)
t (·) = ϕ̂t(·)⊤ŵt,i at round t ∈ [T ] for

each i ∈ [M ], we maintain a function confidence set Ft ⊆ F⊗M for representation function and
parameters.

Ft
def
=

{
f ∈ F⊗M :

∥∥∥f̂t − f
∥∥∥2
2,Et

≤ βt, |f (i)(x)| ≤ 1,∀x ∈ C × A, i ∈ [M ]

}
(∗)

Here we abuse the notation of F⊗M as F⊗M =
{
f =

(
f (1), . . . , f (M)

)
: f i(·) = ϕ(·)⊤wi ∈ F

}
to denote the M-head prediction version of F , parametrized by a shared representation function ϕ(·)
and a weight matrix W = [w1, . . . ,wM ] ∈ Rk×M . We use f (i) to denote the ith head of function
f . For the sake of simplicity, we use∥∥∥f̂t − f

∥∥∥2
2,Et

=

M∑
i=1

t−1∑
s=1

(
f̂
(i)
t (xs,i)− f (i)(xs,i)

)2
to denote the empirical 2-norm of function f̂t − f =

(
f̂
(1)
t − f (1), . . . , f̂

(M)
t − f (M)

)
. Another

important hyperparameter for our algorithm is the confidence set width term βt, which is a function
of representation function class Φ, probability δ and discretization scale parameter α.

βt(Φ, α, δ) = 12Mk + 12 log (N (Φ, α, ∥ · ∥∞)/δ) + 8α
√
Mtk(Mt+ log(2Mt2/δ))

here N (F , α, ∥ · ∥∞) is the α-covering number of function class Φ in the sup-norm ∥ϕ∥∞ =
maxx∈S×A ∥ϕ(x)∥2 (see detailed definition in Lemma 1) and α can be set to be some small scale
number, like 1

kMT .

A.2 Main Proof sketch

In this section we will give a theoretical guarantee for the performance of our algorithm. Before
diving into details, we first explain the overall idea and structure of our proof. First, we decompose
the regret into the summation of confidence set width at different rounds plus a small term which
accounts for the possibility that confidence function set Ft fails to contain ground truth function fθ.

Lemma 0. Fix any sequence of confidence set {Ft, t ∈ N} which is measurable with respect to history
Ht, denote the induced policy by Algorithm 1 as π = {πi}Mi=1 where each πi : C 7→ A, i ∈ [M ] is
for task i, then for any T ∈ N we have

Regret(T ) :=

M∑
i=1

T∑
t=1

f
(i)
θ

(
x⋆
t,i

)
− f

(i)
θ (xt,i) ≤

T∑
t=1

[wFt
(Xt) + C · I(fθ ̸∈ Ft)]
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where xt,i = (Ct,i, πi(Ct,i)) is the context-action pair that actually happened. A⋆
t,i =

argmaxA f
(i)
θ (Ct,i, A) is the optimal action for each task i ∈ [M ] at round t ∈ [T ], and

x⋆
t,i = (Ct,i, A

⋆
t,i) is the corresponding optimal context-action pair, C is a universal large enough con-

stant. We use Xt = [xt,1, . . . ,xt,M ] to stack xt,i into a matrix, similar for X⋆
t = [x⋆

t,1, . . . ,x
⋆
t,M ].

The confidence set width wFt(Xt) is defined by

wFt(Xt) := sup
f,f∈Ft

M∑
i=1

[
f
(i)
(xt,i)− f (i)(xt,i)

]
.

Essentially, it measures the largest total difference of value estimation among all the functions in
f ∈ Ft for the fixed inputs xt,i where i ∈ [M ]. Apart from the constant term accounting for the
case that Ft fails to contain fθ, which we will prove happen with small probability, this regret is then
bounded by the sum of width over time step t.

Next, we will show that our construction of confidence set Ft makes all of them contain real value
function with high probability.

Lemma 1. For all δ ∈ (0, 1) and α > 0, if Ft is defined by Ft = {f ∈ F⊗M : ∥f − f̂∥2,Et
≤√

βt(Φ, δ, α)} for all t ∈ N, where f̂ is the solution to the empirical error minimization. Denote the
ground truth value function as fθ(·), then we have

P

(
fθ ∈

T⋂
t=1

Ft

)
≥ 1− 2δ.

After that, we prove that

Lemma 2.
T∑

t=1

I (wFt(Xt) > ϵ) ≤
(
4MβT

ϵ2
+ 1

)
dimE(F , ϵ)

Then plug it into lemma 0, we get our main result for the regret bound as

Reg(π, T ) ≤ 1

T
+min {dimE(F , αT ), T}+ 4

√
M dimE(F , αT )βTT (1)

Usually αT is set to be a small number like 1
kMT , or the minimizer for βT (Φ, α, δ). We know that

dimE(F , αT ) is a poly-logarithmic function of T , which means the final regret bound is dominant
by term

√
M dimE(F , αT )βTT when T → ∞. This further becomes√

MT (Mk + log (N (Φ, (kMT )−1, ∥ · ∥∞))) dimE(F , (kMT )−1) (2)

For example, if Φ is specialized as linear function class parametrized by matrix Θ ∈ Rd×k, then
log
(
N (Φ, (kMT )−1, ∥ · ∥∞)

)
= O(kd log(kMT )) and dimE(F , (kMT )−1) = O(d log(kMT )),

hence the regret bound becomes

O(
√
MT (Mk + kd)d log(kMT )) = Õ(M

√
kdT + d

√
MkT )

which reduces to result in [?] by a poly-logarithm factor.

A.3 Detailed Proof

Proof of Lemma 0. Define the upper and lower bounds Ut(Xt) = sup
{∑M

i=1 f
(i)(xt,i) : f ∈ Ft

}
and Lt(Xt) = inf

{∑M
i=1 f

(i)(xt,i) : f ∈ Ft

}
.

If fθ ̸∈ Ft, then the error will be bounded by a large constant C since all f(x) is constant bounded.
Otherwise fθ ∈ Ft, we have

Lt(Xt) ≤
M∑
i=1

f
(i)
θ (xt,i) ≤ Ut(Xt)
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M∑
i=1

f
(i)
θ (x⋆

t,i) ≤ Ut(X
⋆
t )

where Xt and X⋆
t is defined in lemma 0. Also, by the optimality of Xt with respect to Ft, we know

Ut(X
⋆
t ) ≤ Ut(Xt), therefore

M∑
i=1

[
f
(i)
θ (x⋆

t,i)− f
(i)
θ (xt,i)

]
≤C · I(fθ ̸∈ Ft) + [Ut(X

⋆
t )− Lt(Xt)]

=C · I(fθ ̸∈ Ft) +

M∑
i=1

[Ut(X
⋆
t )− Ut(Xt) + Ut(Xt)− Lt(Xt)]

≤C · I(fθ ̸∈ Ft) +

M∑
i=1

[Ut(Xt)− Lt(Xt)]

=C · I(fθ ̸∈ Ft) + wFt(Xt)

Take summation over t ∈ [T ] and complete the proof.

Lemma 1. For all δ ∈ (0, 1) and α > 0, if Ft is defined by Ft ={
f ∈ F⊗M : ∥f − f̂∥2,Et

≤
√
βt(Φ, δ, α)

}
for all t ∈ N, where f̂ is the solution to the empir-

ical error minimization. Denote the ground truth value function as fθ, then we have

P

(
fθ ∈

T⋂
t=1

Ft

)
≥ 1− 2δ.

Proof of Lemma 1. Denote L2,t(f) =
∑M

i=1

∑t
s=1 |f (i)(xs,i)− ys,i|2 and f̃t = f̂t − fθ, we have

L2,t(f̂)− L2,t(fθ) =

M∑
i=1

t∑
s=1

∣∣∣f̂ (i)
t (xs,i)− ys,i

∣∣∣2 − ∣∣∣f (i)
θ (xs,i)− ys,i

∣∣∣2 (3)

=

M∑
i=1

t∑
s=1

∣∣∣f̂ (i)
t (xs,i)− f

(i)
θ (xs,i)− ηs,i

∣∣∣2 − η2s,i (4)

=
∥∥∥f̂t − fθ

∥∥∥2
2,Et

−
M∑
i=1

t∑
s=1

2ηs,i · f̃ (i)
t (xs,i) (5)

By the optimality of f̂ , we know (5) ≤ 0, hence∥∥∥f̂t − fθ

∥∥∥2
2,Et

≤
M∑
i=1

2
〈
ηt,i, f̃

(i)
t (Xt,i)

〉
(6)

here f̃
(i)
t (Xt,i) = [f̃

(i)
t (x1,i), f̃

(i)
t (x2,i), . . . , f̃

(i)
t (xt,i)]

⊤ and ηt,i = [η1,i, η2,i, . . . , ηt,i]
⊤ are both

in Rt. We can represent each function f̃
(i)
t (·) in form f̃

(i)
t (·) =

[
ϕ⋆(·)⊤, ϕ̂t(·)⊤

] [ w⋆
t,i

−ŵt,i

]
=

ϕ⋆(·)⊤w⋆
t,i − ϕ̂t(·)⊤ŵt,i, which is exactly fθ − f̂t. Denote ϕ̃t(·) =

[
ϕ⋆(·)
ϕ̂t(·)

]
∈ Φ2 and w̃t,i =[

w⋆
t,i

−ŵt,i

]
∈ R2k, then f̃

(i)
t (·) = ϕ̃t(·)⊤w̃t,i. Since the output of ϕ̃t(xs,i) ∈ R2k, we can take

following decomposition for each i ∈ [M ]

ϕ̃t(Xt,i) =
[
ϕ̃t(xs,i)

]t
s=1

, ϕ̃t(Xt,i)
⊤ = U iQi, U i ∈ Ot×2k,Qi ∈ R2k×2k.
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For regret bound, we only need to care about t ≥ 2k by a constant regret difference, hence this
decomposition is possible. Plug it into (6) and we get

1

2

∥∥∥f̂ − fθ

∥∥∥2
2,Et

≤
M∑
i=1

〈
ηt,i, f̃

(i)
t (Xt,i)

〉
(7)

=

M∑
i=1

η⊤
t,i · ϕ̃t(Xt,i)

⊤w̃t,i (8)

=

M∑
i=1

η⊤
t,i ·U iQiw̃t,i (9)

Notice that, however, U t is obtained from optimization problem, which further depends on concrete
sampled noise ηt,i, hence the concentration bound based on i.i.d. assumption cannot be applied
directly. If we fix function f̃t = f̄t, which induces corresponding ϕ̄t(·) and ϕ̄t(Xt,i) = Ū i(ϕ̄)Q̄i,
Ū i(ϕ̄) means Ū i is a function determined by ϕ̄. According to standard sub-exponential random
variable concentration bound, each Ū i(ϕ̄) has 2k independent degrees of freedom, hence we know
that with probability at least 1− δ1

M∑
i=1

∥Ū⊤
i ηt,i∥2 ≤ 2Mk + log(1/δ1) (10)

Denote Φ2 = {g(x) = [ϕ1(x)
⊤, ϕ2(x)

⊤]⊤ : ϕ1, ϕ2 ∈ Φ}, Φ2
α is an α-cover of Φ2 such that for any

ϕ ∈ Φ2, there is a ϕα ∈ Φ2
α such that

max
x∈C×A

∥ϕ(x)− ϕα(x)∥2 ≤ α. (11)

For ϕ̃, find a closest ϕ̄ ∈ Φ2
α from α-cover net to satisfy the requirement above, then denote

f̄
(i)
t (·) = ϕ̄(·)⊤w̃t,i. By union bound, we know that with probability at least 1 − |Φ2

α|δ1, for any
ϕ̄ ∈ Φ2

α, the induced Ū i(ϕ̄) satisfy inequality (10), therefore

1

2

∥∥∥f̂t − fθ

∥∥∥2
2,Et

≤
M∑
i=1

〈
ηt,i, f̃

(i)
t (Xt,i)

〉
(12)

=

M∑
i=1

η⊤
t,i ·U iQiw̃t,i =

M∑
i=1

η⊤
t,i · (U i − Ū i + Ū i)Qiw̃t,i (13)

=

M∑
i=1

η⊤
t,i · Ū iQiw̃t,i +

M∑
i=1

η⊤
t,i · (U i − Ū i)Qiw̃t,i (14)

≤

√√√√ M∑
i=1

∥∥∥Ū⊤
i ηt,i

∥∥∥2 ·
√√√√ M∑

i=1

∥Qiw̃t,i∥2 +
M∑
i=1

〈
ηt,i, f̃t − f̄t

〉
(15)

≤

√√√√ M∑
i=1

∥∥∥Ū⊤
i ηt,i

∥∥∥2 ·
√√√√ M∑

i=1

∥U iQiw̃t,i∥2 +
M∑
i=1

〈
ηt,i, f̃t − f̄t

〉
(16)

=

√√√√ M∑
i=1

∥∥∥Ū⊤
i ηt,i

∥∥∥2 · ∥∥∥f̃∥∥∥
2,Et

+

M∑
i=1

〈
ηt,i, f̃t − f̄t

〉
(17)

≤
√
2Mk + log(1/δ1) ·

∥∥∥f̃∥∥∥
2,Et

+

√√√√ M∑
i=1

∥ηt,i∥2 ·
∥∥∥f̃t − f̄t

∥∥∥
2,Et

(18)

The first term of (18) comes from (10), and the second term is from Cauchy inequality. We assign
δt =

δ2
T failure probability for event

ωt :

M∑
i=1

∥ηt,i∥2 ≥ Mt+ log(2Mt/δt).
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By union bound, we have

P

(
∃t ∈ [T ] :

M∑
i=1

∥ηt,i∥2 ≥ Mt+ log(2Mt2/δ2)

)
≤

T∑
t=1

δt ≤ δ2. (19)

Next we will give a bound for ∥f̃t − f̄t∥2,Et
.

∥∥∥f̃t − f̄t

∥∥∥2
2,Et

=

M∑
i=1

t∑
s=1

∣∣∣ϕ̃t(xs,i)
⊤w̃s,i − ϕ̄t(xs,i)

⊤w̃s,i

∣∣∣2 (20)

=

M∑
i=1

t∑
s=1

∣∣∣(ϕ̃t(xs,i)− ϕ̄t(xs,i))
⊤w̃s,i

∣∣∣2 (21)

≤
M∑
i=1

t∑
s=1

∥∥∥ϕ̃t(xs,i)− ϕ̄t(xs,i)
∥∥∥2
2
· ∥w̃s,i∥22 (22)

According to our assumption, we know ∥w̃s,i∥2 ≤ 2∥ws,i∥2 + 2∥ŵs,i∥2 ≤ 4k, from (11) we know∥∥∥ϕ̃t(xs,i)− ϕ̄t(xs,i)
∥∥∥
2
≤ α, hence ∥∥∥f̃t − f̄t

∥∥∥2
2,Et

≤4Mtkα2 (23)

Plug (19) and (23) back into (18), we know with probability at least 1− δ2 − |Φ2
α|δ1, for any t ∈ N

1

2

∥∥∥f̃t∥∥∥2
2,Et

≤
√

2Mk + log(1/δ1) ·
∥∥∥f̃t∥∥∥

2,Et

+
√
Mt+ log(2Mt2/δ2) ·

√
4Mtkα2 (24)

Some simple algebraic transform gives∥∥∥f̂t − fθ

∥∥∥2
2,Et

=
∥∥∥f̃t∥∥∥2

2,Et

≤ 6(2Mk + log(1/δ1)) + 8α
√

Mtk(Mt+ log(2Mt2/δ2)) (25)

Let δ1 = δ/|Φ2
α|, δ2 = δ, and notice log |Φ2

α| ≤ 2 log (N (Φ, α, ∥ · ∥∞)), we conclude that with
probability at least 1− 2δ, for every t ∈ N∥∥∥f̂t − fθ

∥∥∥2
2,Et

≤ 12Mk + 12 log (N (Φ, α, ∥ · ∥∞)/δ) + 8α
√
Mtk(Mt+ log(2Mt2/δ)) (26)

where the right handside is exactly our defined βt(Φ, α, δ), hence our conclusion holds.

Lemma 2. If (βt ≥ 0 | t ∈ N) is a nondecreasing sequence and Ft :={
f ∈ F⊗M : ∥f − f̂LS

t ∥2,Et ≤
√
βt

}
. Also, denote F = L ◦ Φ : C × A 7→ [0, 1], we have

T∑
t=1

I (wFt
(Xt) > ϵ) ≤

(
4MβT

ϵ2
+ 1

)
dimE(F , ϵ)

Proof. The main structure of this proof is similar to proposition 3, section C in Eluder dimension’s
paper, and we will only point out the subtle details that makes the difference. We will show
that if wFt

(Xt) > ϵ , then Xt is ϵ-dependent on fewer than 4MβT /ϵ
2 disjoint subsequences of

(X1, . . . ,Xt−1). Note that if wFt
(Xt) > ϵ, there are f, f ∈ Ft such that

∑M
i=1 f

(i)
(xt,i) −

f (i)(xt,i) > ϵ. By definition, if Xt is ϵ-dependent on a subsequence (Xt1 ,Xt2 , . . . ,Xtk) of
(X1, . . . ,Xt−1), then we know

k∑
j=1

(
M∑
i=1

f
(i)
(xtj ,i)− f (i)(xtj ,i)

)2

> ϵ2
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It follows that, if Xt is ϵ-dependent on K disjoint subsequences of (X1, . . . ,Xt−1), then

∥f − f∥22,Et
=

t∑
s=1

M∑
i=1

(
f
(i)
(xs,i)− f (i)(xs,i)

)2
(27)

≥ 1

M

t∑
s=1

(
M∑
i=1

f
(i)
(xs,i)− f (i)(xs,i)

)2

(Cauchy Inequality)

>
Kϵ2

M
(28)

By triangle inequality we have

∥f − f∥2,Et ≤ ∥f − f̂LS
t ∥2,Et + ∥f̂LS

t − f∥2,Et ≤ 2
√

βt ≤ 2
√
βT (29)

and it follows that K < 4MβT /ϵ
2.

Notice that essentially we are analyzing scalar output function g(Xt) =
∑M

i=1 f
(i)(xt,i) where

f ∈ F⊗M . Hence if we denote any f ∈ F⊗M as f(·) = ϕ(·)⊤Θ, then g(·) = ϕ(·)⊤w ∈ F ,w =
Θ · 1. Hence from original eluder dimension paper we know in any action sequence (X1, . . . ,Xτ ),
there must exist some element Xj that is ϵ-dependent on at least τ/d − 1 disjoint subsequences
of (X1, . . . ,Xτ ), where d := dimE(F , ϵ). Finally we select X1, . . . ,Xτ as those actions that
wFt > ϵ, combine these two facts above and get τ/d−1 ≤ 4MβT /ϵ

2. Hence τ ≤ (4MβT /ϵ
2+1)d,

which is our desired conclusion.

B Linear MDP Regret Analysis

Apart from the notations section 3, we add more symbols for the regret analysis. We use Q[f ] or
Q[ϕ ◦ θ] to denote the Q-value function parametrized by function f as Q[f ](s, a) = f(s, a) or
Q[ϕ ◦ θ](s, a) = ϕ(s, a)⊤θ (similar for V [f ] as state’s value estimation function). Also, based on

assumption 2.1, for any
{
Q

(i)
h+1

}M

i=1
, there always exists ḟh [Qh+1] ∈ F⊗M such that

∆
(i)
h

(
Q

(i)
h+1

)
(s, a) = T i

h

(
Q

(i
h+1)

)
(s, a)− ḟ

(i)
h (s, a) (30)

where the approximation error
∥∥∥∆(i)

h

(
Q

(i)
h+1

)∥∥∥ ≤ I for ∀ i ∈ [M ]. Here ḟh[Qh+1] indicates that

function ḟh has dependence on Q-value function Qh+1 on next level h+ 1. In following analysis, we
will use different annotations for different function approximation as below

• f
(i)∗
h (·, ·) = ϕ∗(·, ·)⊤θ(i)∗

h is the “best” Q-value function approximation in Qh for task i at
level h.

• f̂
(i)
h (·, ·) = ϕ̂(·, ·)⊤θ̂i is the empirical least-square minimizer solution for task i at level h.

• ḟ
(i)
h (·, ·) = ϕ̇(·, ·)⊤θ̇i is the value approximation function T (i)

h Q
(i)
h+1 induced by Q

(i)
h+1 for

task i at level h.

• f̃
(i)
h (·, ·) = ϕ̃(·, ·)⊤θ̃i is the optimism Q-value approximation function for task i at level h.

• f̄
(i)
h (·, ·) = ϕ̄(·, ·)⊤θ̄i is the nearest neighbor in covering set for task i at level h.

B.1 Main Proof sketch

The overall structure is similar to bandits, the main difference here is that we need to take care of the
transition dynamics.
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Firstly, we decompose the total regret into following terms

Reg(T ) =

T∑
t=1

M∑
i=1

(
V

(i)⋆
1 − V

πi
t

1

)(
s
(i)
1,t

)
(31)

=

T∑
t=1

M∑
i=1

(
V

(i)⋆
1 − V

(i)
1

[
f̃
(i)
1,t

])(
s
(i)
1,t

)
+

T∑
t=1

M∑
i=1

(
V

(i)
1

[
f̃
(i)
1,t

]
− V

πi
t

1

)(
s
(i)
1,t

)
(32)

≤
T∑

t=1

M∑
i=1

(
V

(i)
1

[
f̃
(i)
1,t

]
− V

πi
t

1

)(
s
(i)
1,t

)
+MHTI. (33)

The inequality is because according to lemma 3, we have at each episode t ∈ [T ]

M∑
i=1

(
V i⋆
1 − V

(i)
1

[
f̃
(i)
1,t

])(
s
(i)
1,t

)
≤MHI

=⇒
T∑

t=1

M∑
i=1

(
V i⋆
1 − V

(i)
1

[
f̃
(i)
1,t

])(
s
(i)
1,t

)
≤MHTI.

Denote a
(i)
h,t = πi

t

(
s
(i)
ht

)
, Q(i)

h [f̃
(i)
h,t] = Q̃

(i)
h,t and V

(i)
h [f̃

(i)
h,t] = Ṽ

(i)
h,t for short. We have for any

t ∈ [T ], h ∈ [H]

M∑
i=1

(
Ṽ

(i)
h,t − V

πi
t

h,t

)(
s
(i)
h,t

)
=

M∑
i=1

(
Q̃

(i)
h,t −Q

πi
t

h,t

)(
s
(i)
h,t, a

(i)
h,t

)
(34)

=

M∑
i=1

(
Q̃

(i)
h,t − T (i)

h Q̃
(i)
h+1,t

)(
s
(i)
1,t, a

(i)
h,t

)
+

M∑
i=1

(
T (i)
h Q̃

(i)
h+1,t −Q

πi
t

h,t

)(
s
(i)
h,t, a

(i)
h,t

)
(35)

Since the failure event
⋃T

t=1

⋃H
h=1 Eht only happens with probability δ according to lemma 6, and

the addition of regret when it happens is constant bounded, we will simply assume that it does not
happen. Then applying lemma 5, we have

M∑
i=1

(
Q̃

(i)
h,t − T (i)

h Q̃
(i)
h+1,t

)(
s
(i)
h,t, a

(i)
h,t

)
≤ MI + 2wFh,t

(xh,t) . (36)

where xh,t =
[
(s

(1)
h,t, a

(1)
h,t), . . . , (s

(M)
h,t , a

(M)
h,t )

]
denotes the stacked input for all state-action pair at

level h, episode t.

Next, we expand the second summation in (35) and have
M∑
i=1

(
T (i)
h Q̃

(i)
h+1,t −Q

πi
t

h,t

)(
s
(i)
h,t, a

(i)
h,t

)
=

M∑
i=1

E
s′∼P(i)

h

(
·|s(i)h,t,a

(i)
h,t

) [(Ṽ (i)
h+1,t − V

πi
t

h+1

)
(s′)
]

(37)

=

M∑
i=1

(
Ṽ

(i)
h+1,t − V

πi
t

h+1

)(
s
(i)
h+1,t

)
+

M∑
i=1

ζ
(i)
h,t (38)

where ζ
(i)
h,t is a martingale difference with respect to history Hh,t defined by

ζ
(i)
h,t

def
= E

s′∼P(i)
h

(
·|s(i)h,t,a

(i)
h,t

) [(Ṽ (i)
h+1,t − V

πi
t

h+1

)
(s′)
]
−
(
Ṽ

(i)
h+1,t − V

πi
t

h+1

)
(s′) (39)

According to assumption 2.2 we know that |ζ(i)h,t| ≤ 4, hence by Azuma-Hoeffding’s inequality, we
know that with probability at least 1− δ/2, for any t ∈ [T ] and i ∈ [M ]

t∑
j=1

ζ
(i)
h,t ≤ 4

√
2t log

2T

δ
. (40)
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We can then apply (38) recursively from h = 1 to H , which gives

Reg(T ) ≤
T∑

t=1

M∑
i=1

(
Ṽ

(i)
1,t − V

πi
t

1

)(
s
(i)
1,t

)
+MHTI (41)

≤2MHTI +

T∑
t=1

H∑
h=1

2wFt(xh,t) +

M∑
i=1

H∑
h=1

T∑
t=1

ζ
(i)
h,t (42)

According to lemma 2 we know that
T∑

t=1

wFt(xh,t) ≤
(
4Mβh,T

α2
+ 1

)
dimE(F , α) (43)

where βh,t = Õ(Mk + logN (Φ, α, ∥ · ∥∞) +MTI2). Summarizing all inequality above and we
have the final regret bound as

Reg(T ) =2MHTI +

T∑
t=1

H∑
h=1

2wFt
(xh,t) +

M∑
i=1

H∑
h=1

T∑
t=1

ζ
(i)
h,t (44)

=Õ
(
MHTI + Õ(

√
Mk + logN (Φ, α, ∥ · ∥∞) +MTI2)H

√
MT dimE(F , α) +MH

√
T
)

(45)

Set α = 1
kMT , we have the regret bound as

Õ
(
H
√
dimE(F , (kMT )−1)

(
M

√
Tk +

√
MT logN (Φ, (kMT )−1, ∥ · ∥∞) +MTI

))
.

B.2 Detailed Lemma Proof

Lemma 3. Let V i⋆
1 be the value of optimal policy and V i

1

[
f̃
(i)
1,t

]
be the optimistic value estimation

defined in main proof. We have the accuracy guarantee as
M∑
i=1

(
V

(i)⋆
1 − V

(i)
1

[
f̃
(i)
1,t

])(
s
(i)
1,t

)
≤MHI. (46)

Proof. Recursively define the closest value approximator function f∗
h = (ϕ∗

h)
⊤Θ∗

h at level h within
function class F⊗M as

ϕ∗
h,Θ

∗
h

def
= argmin

ϕ∈Φ,Θ=[θ1,...,θM ]∈Rk×M

sup
s,a,i

∣∣∣ϕ(s, a)⊤θ(i)
h − T (i)

h Q
(i)
h+1

[
ϕ∗
h+1 ◦ θ

(i)∗
h+1

]
(s, a)

∣∣∣ (47)

with θ
(i)
H+1 = 0 for any i ∈ [M ] and Θ∗

h =
[
θ
(1)∗
h , . . . ,θ

(M)∗
h

]
. By lemma 6 in [?] we have

sup
(s,a)∈S×A,i∈[M ]

∣∣∣Q(i)⋆
h (s, a)− ϕ∗

h(s, a)
⊤θ

(i)∗
h

∣∣∣ ≤ (H − h+ 1)I. (48)

where Q
(i)⋆
h is the optimal value function for task i.

Next, we will show that f∗
h is a feasible solution for the optimization of Ft. This is achieved via

inductive construction. For h = H + 1 we know it holds trivially because f̃
(i)
H+1 = f

(i)∗
H+1 = 0. Now

we suppose that βh,t for k = h+ 1, . . . ,H satisfies that we can always find f̃
(i)
k = f

(i)∗
k . Then from

the definition of f (i)∗
h we can always properly set Fh,t (to be specified later) to let it contain

ḟ
(i)
h

[
V

(i)
h+1

[
f
(i)∗
h+1

]]
= f

(i)∗
h . (49)

By lemma 4, we have ∥∥∥f̂h [Vh+1

[
f∗
h+1

]]
− ḟh

[
Vh+1

[
f∗
h+1

]]∥∥∥2
2,Et

≤ βh,t. (50)
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Therefore, set βh,t as the function we set does let f (i)∗
h ∈ Fh,t.

Finally, we can finish the proof from showing that
M∑
i=1

V
(i)
1

[
f̃
(i)
1,t

] (
s
(i)
1,t

)
(51)

=

M∑
i=1

max
a∈A

f̃
(i)
1,t

(
s
(i)
1,t, a

)
(52)

≥
M∑
i=1

max
a∈A

f
(i)∗
1,t

(
s
(i)
1,t, a

)
(because f

(i)∗
1 ∈ Ft)

≥
M∑
i=1

f
(i)∗
1,t

(
s
(i)
1,t, π

i⋆
1

(
s
(i)
1,t

))
(53)

≥
M∑
i=1

Q
(i)⋆
1

(
s
(i)
1,t, π

i⋆
1

(
s
(i)
1,t

))
−MHI (By (48))

≥
M∑
i=1

V
(i)⋆
1

(
s
(i)
1,t

)
−MHI. (54)

Lemma 4. For any episode t ∈ [T ], level h ∈ [H] and any Q-value function at next level
{Q(i)

h+1}Mi=1 ∈ Qh+1, denote ḟh,t as the best fit Q-value estimation induced by Q
(i)
h+1 minimizing

Bellman error, we have∥∥∥f̂h,t [Qh+1]− ḟh,t [Qh+1]
∥∥∥2
2,Et

≤ βh,t
def
=
(
Bh,1 +

√
MTI +

√
Bh,2

)2
. (55)

The Bh,1 and Bh,2 are from Lemma 6. Equivalently saying, this means that ḟh,t is contained in set
Fh,t defined as

Fh,t
def
=

{
f ∈ F⊗M :

∥∥∥f − f̂h,t [Qh+1]
∥∥∥2
2,Et

≤ βh,t

}
.

Proof. By the empirical optimality of f̂h,t, we know

M∑
i=1

∥∥∥f̂ (i)
h,t(Xh,t)− y

(i)
h,t

∥∥∥2 ≤
M∑
i=1

∥∥∥ḟ (i)
h,t(Xh,t)− y

(i)
h,t

∥∥∥2 . (56)

Here we abuse the notation and use f̂ (i)
h,t(Xh,t) to denote function f̂

(i)
h,t’s output on all the state-action

pair Xh,t in the first t− 1 episodes at level h for task i, also y
(i)
h,t is the corresponding target value

label. This inequality implies that
M∑
i=1

∥∥∥f̂ (i)
h,t(Xh,t)− ḟ

(i)
h,t(Xh,t)

∥∥∥2 (57)

≤2

M∑
i=1

〈
∆

(i)
h,t, f̂

(i)
h,t(Xh,t)− ḟ

(i)
h,t(Xh,t)

〉
+ 2

M∑
i=1

〈
z
(i)
h,t, f̂

(i)
h,t(Xh,t)− ḟ

(i)
h,t(Xh,t)

〉
(58)

where

∆
(i)
h,t

def
=
[
∆

(i)
h,1(Q

(i)
h+1)(s

(i)
h,1, a

(i)
h,2) ∆

(i)
h,2(Q

(i)
h+1)(s

(i)
h,2, a

(i)
h,2) . . . ∆

(i)
h,t−1(Q

(i)
h+1)(s

(i)
h,t−1, a

(i)
h,t−1)

]
is the Bellman error for Q-value approximation, each ∆

(i)
h,j(Q

(i)
h+1)(s

(i)
h,j , a

(i)
h,j)is defined in (30). And

z
(i)
h,t

def
=
[
z
(i)
h,1(Q

(i)
h+1)(s

(i)
h,1, a

(i)
h,2) . . . z

(i)
h,t−1(Q

(i)
h+1)(s

(i)
h,t−1, a

(i)
h,t−1)

]
9



where z
(i)
h,j

(
Q

(i)
h+1

)(
s
(i)
h,j , a

(i)
h,j

)
def
= R

(
s
(i)
h,j , a

(i)
h,j

)
+ maxa∈A Q

(i)
h+1

(
s
(i)
h+1,j , a

)
−

T (i)
h

(
Q

(i)
h+1

)(
s
(i)
h,j , a

(i)
h,j

)
is the finite sampling noise.

Next, we are going to bound the two terms in (58). For the first term, we have
M∑
i=1

〈
∆

(i)
h,t, f̂

(i)
h,t(Xh,t)− ḟ

(i)
h,t(Xh,t)

〉
(59)

≤
M∑
i=1

∥∥∥∆(i)
h,t

∥∥∥ · ∥∥∥f̂ (i)
h,t(Xh,t)− ḟ

(i)
h,t(Xh,t)

∥∥∥ (60)

≤
√
TI ·

M∑
i=1

∥∥∥f̂ (i)
h,t(Xh,t)− ḟ

(i)
h,t(Xh,t)

∥∥∥ (61)

≤
√
MTI ·

∥∥∥f̂h,t − ḟh,t

∥∥∥
2,Et

(62)

By lemma 6, when the failure case does not happen, we have
M∑
i=1

〈
z
(i)
h,t, f̂

(i)
h,t(Xh,t)− ḟ

(i)
h,t(Xh,t)

〉
≤ Bh,1 ·

∥∥∥f̂h,t − ḟh,t

∥∥∥
2,Et

+Bh,2 (63)

where

Bh,1 =
√
2Mk + log(N (Φ, (kMT )−1, ∥ · ∥∞)/δ) + 1 (64)

Bh,2 =2
√

MT + log(2MT 2/δ) (65)

Adding the bound for two terms and we get∥∥∥f̂h,t − ḟh,t

∥∥∥2
2,Et

≤ (Bh,1 +
√
MTI) ·

∥∥∥f̂h,t − ḟh,t

∥∥∥
2,Et

+Bh,2 (66)

=⇒
∥∥∥f̂h,t − ḟh,t

∥∥∥2
2,Et

≤
(
Bh,1 +

√
MTI +

√
Bh,2

)2 def
= βh,t (67)

which completes the proof.

Lemma 5. If the failure event in lemma 6 does not happen, for any feasible solution Q
(i)
h

[
f̃
(i)
h

]
in

the definition of Fh,t, and any h ∈ [H], t ∈ [T ], we have
M∑
i=1

∣∣∣(Q̃(i)
h,t − T (i)

h Q̃
(i)
h+1,t

)(
s
(i)
h,t, a

(i)
h,t

)∣∣∣ ≤ MI + 2wFh,t
(xh,t) , (68)

where xh,t =
[
(s

(1)
h,t, a

(1)
h,t), . . . , (s

(M)
h,t , a

(M)
h,t )

]
denotes the stacked input for all state-action pair at

level h, episode t.

Proof.
M∑
i=1

∣∣∣(Q̃(i)
h,t − T (i)

h Q̃
(i)
h+1,t

)(
s
(i)
h,t, a

(i)
h,t

)∣∣∣ (69)

=

M∑
i=1

∣∣∣Q̃(i)
h,t(s, a)− ḟ

(i)
h

[
Q̃

(i)
h+1

] (
s
(i)
h,t, a

(i)
h,t

)
−∆

(i)
h

(
Q̃

(i)
h+1

)(
s
(i)
h,t, a

(i)
h,t

)∣∣∣ (70)

≤MI +

M∑
i=1

∣∣∣f̃ (i)
h,t

(
s
(i)
h,t, a

(i)
h,t

)
− ḟ

(i)
h

[
Q̃

(i)
h+1

] (
s
(i)
h,t, a

(i)
h,t

)∣∣∣ (71)

≤MI +

M∑
i=1

∣∣∣f̃ (i)
h,t

(
s
(i)
h,t, a

(i)
h,t

)
− f̂

(i)
h

(
s
(i)
h,t, a

(i)
h,t

)∣∣∣+ ∣∣∣f̂ (i)
h

(
s
(i)
h,t, a

(i)
h,t

)
− ḟ

(i)
h

[
Q̃

(i)
h+1

] (
s
(i)
h,t, a

(i)
h,t

)∣∣∣
(72)
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According to our construction, we know that both f̃
(i)
h,t and ḟ

(i)
h are contained in

Fh,t, therefore we have
∑M

i=1

∣∣∣f̃ (i)
h,t

(
s
(i)
h,t, a

(i)
h,t

)
− f̂

(i)
h

(
s
(i)
h,t, a

(i)
h,t

)∣∣∣ ≤ wFh,t
(xh,t)

and
∑M

i=1

∣∣∣ḟ (i)
h,t

[
Q̃

(i)
h+1

] (
s
(i)
h,t, a

(i)
h,t

)
− f̂

(i)
h

(
s
(i)
h,t, a

(i)
h,t

)∣∣∣ ≤ wFh,t
(xh,t), where xh,t =[

(s
(1)
h,t, a

(1)
h,t), . . . , (s

(M)
h,t , a

(M)
h,t )

]
denotes the stacked input for all state-action pair at level h,

episode t.

Summarizing all the inequalities and we know the whole lemma holds.

Lemma 6. (Probability bound for failure event) In this lemma we denote f̂
(i)
h

[
Q

(i)
h+1

]
as f̂ (i)

h for the

sake of simplicity (similar for ḟ (i)
h ). Define event Eh,t as

Eh,t
def
= I

[
∃{Q(i)

h+1}
M
i=1

M∑
i=1

〈
z
(i)
h,t, f̂

(i)
h (Xh,t)− ḟ

(i)
h (Xh,t)

〉
> Bh,1 ·

∥∥∥f̂ (i)
h − ḟ

(i)
h

∥∥∥
2,Et

+Bh,2

]
(73)

where Bh,1 and Bh,2 will be specified later. We have

P

(
T⋃

t=1

H⋃
h=1

Eh,t

)
≤ δ. (74)

Proof. Similar to lemma 1, we can find a α-cover Φα for Φ such that for any Q-value function(
Q

(1)
h+1[ϕ ◦ θ1], Q

(2)
h+1[ϕ ◦ θ2], . . . , Q

(M)
h+1[ϕ ◦ θM ]

)
, we can find ϕ̄ ∈ Φα and θ̄i for i ∈ [M ] such

that for any (s, a) ∈ S ×A and any i ∈ [M ]∣∣∣Q(i)
h+1(s, a)− ϕ̄(s, a)⊤θ̄i

∣∣∣ ≤ √
kα. (75)

Define Q̄
(i)
h+1 = Q

(i)
h+1

[
ϕ̄ ◦ θi

]
and further let

z̄
(i)
h,t

def
=
[
z
(i)
h,1

(
Q̄

(i)
h+1

)(
s
(i)
h,1, a

(i)
h,1

)
. . . z

(i)
h,t−1

(
Q̄

(i)
h+1

)(
s
(i)
h,t−1, a

(i)
h,t−1

)]
∈ Rt−1

then we have

M∑
i=1

〈
z
(i)
h,t, f̂

(i)
h (Xh,t)− ḟ

(i)
h (Xh,t)

〉
(76)

=

M∑
i=1

〈
z̄
(i)
h,t, f̂

(i)
h (Xh,t)− ḟ

(i)
h (Xh,t)

〉
(77)

+

M∑
i=1

〈
z
(i)
h,t − z̄

(i)
h,t, f̂

(i)
h (Xh,t)− ḟ

(i)
h (Xh,t)

〉
(78)

(79)

Notice that for fixed f̄
(i)
h (·, ·) = ϕ(·, ·)⊤θ̄(i)

h+1, each z
(i)
h,1

(
Q̄

(i)
h+1

)(
s
(i)
h,1, a

(i)
h,2

)
is a zero-mean 1-sub-

Gaussian random variable conditioned on past history. Therefore we can treat it as ηt,i = z
(i)
h,t in

Lemma 1 and get

M∑
i=1

〈
z̄
(i)
h,t, f̂

(i)
h (Xh,t)− ḟ

(i)
h (Xh,t)

〉
(80)

≤
√

2Mk + log(1/δ1)
∥∥∥f̂h,t − ḟh,t

∥∥∥
2,Et

+ 2α
√
Mtk(Mt+ log(2Mt2/δ2)). (81)
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Setting δ1 = δ
2|Φα| , δ2 = δ/2 and get

M∑
i=1

〈
z̄
(i)
h,t, f̂

(i)
h (Xh,t)− ḟ

(i)
h (Xh,t)

〉
(82)

≤
√
2Mk + log(N (Φ, α, ∥ · ∥∞)/δ) ·

∥∥∥f̂h,t − ḟh,t

∥∥∥
2,Et

+ 2α
√

MTk(MT + log(2MT 2/δ)).

(83)

By union bound, we know it holds for any f̄h with probability at least 1 − |Φα|δ1 = 1 − δ. Also,
from

∣∣∣Q(i)
h+1(s, a)− ϕ̄(s, a)⊤θ̄i

∣∣∣ ≤ √
kα′ we know that∣∣∣z(i)h,j

(
Q

(i)
h+1

)(
s
(i)
h,j , a

(i)
h,j

)
− z

(i)
h,j

(
Q̄

(i)
h+1

)(
s
(i)
h,j , a

(i)
h,j

)∣∣∣ (84)

=

∣∣∣∣max
a∈A

Q
(i)
h+1

(
s
(i)
h+1,j , a

)
− T (i)

h

(
Q

(i)
h+1

)(
s
(i)
h,j , a

(i)
h,j

)
−max

a∈A
Q̄

(i)
h+1

(
s
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≤max
a∈A
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≤2
√
kα′ (87)

hence we have
M∑
i=1

〈
z
(i)
h,t − z̄

(i)
h,t, f̂

(i)
h (Xh,t)− ḟ

(i)
h (Xh,t)

〉
(88)

≤
M∑
i=1

∥∥∥z(i)
h,t − z̄

(i)
h,t

∥∥∥ · ∥∥∥f̂ (i)
h (Xh,t)− ḟ

(i)
h (Xh,t)

∥∥∥ (89)

≤2α′
√
MTk ·

∥∥∥f̂h,t − ḟh,t

∥∥∥
2,Et

(90)

holds for arbitrary {Q(i)
h+1} at any level h ∈ [H], t ∈ [T ].

Adding (83) and (90), we finally finish the proof by setting α = α′ = 1
MTk

Bh,1 =
√
2Mk + log(N (Φ, (kMT )−1, ∥ · ∥∞)/δ) + 1 (91)

Bh,2 =2
√

MT + log(2MT 2/δ) (92)

C Experiment Dissection and Discussion

In this section, we will take a closer view of the learning procedure and analyze the functionality of
the UCB term in our algorithm. Usually, a reasonable UCB term should embrace several properties.
(i) It should let confidence set Ft contain the real parameter with high probability. (ii) It should shrink
at a reasonable speed to achieve low regret.

To check (i), we choose the model f̂t at step t = 200 which is trained on insufficient data with only
2000 samples. We then sample 100 images from test set as unknown inputs D = {(xi, yi)}100i=1, where
xi is the digit image and yi is the corresponding target value. We inspect the relationship between the
original prediction error |f̂t(xi)−yi| and the added bonus bi = f̄t(xi)−f̂t(xi) via finetuning on each
input xi ∈ D. The result is presented as scatter dots in Figure 2(a). We can clearly see that almost all
the points lie above the line y = x, meaning that bi = f̄t(xi)− f̂t(xi) ≥ |f̂t(xi)− yi| ≥ yi− f̂t(xi)
for any i ∈ [100], which further indicates that f̄t(xi) ≥ yi. This validates that we can always find
some f̄ ∈ Ft to give an optimistic estimation of the value for almost every x. Moreover, we can
observe an apparent correlated pattern between the test error and bonus, which implies that our
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(a) (b)

Figure 1: (a) The relationship between unknown data’s prediction error and the bonus it gets from
finetuning. The grey line is y = x. (b) The average bonus level of 100 test images with respect to the
number of samples in training set, the shaded area is the interval for ±1 standard deviation.

algorithm will give larger bonus for the data point whose prediction is not reliable, and only give
relatively small bonus for the data that it is confident with.

We also check (ii) by plotting the average bonus level (closely related to the width of confidence
set) against the number of samples the algorithm has been trained on. We gradually increase the
number of samples from 10 to 20000 and fix a set of test images D as before to see how the average
bonus level changes when the training set size increases. The result is shown in Figure 2(b). Previous
work [?] proves that the eluder dimension of neural networks can be exponentially large in the worst
case, which means that it can give almost arbitrary output value even when it is constrained to give
a precisely accurate prediction for a large number of samples in the training set. In that case, the
average bonus level should have remained constant regardless of the size of the training set. However,
our experiment shows that the average bonus drops when the number of training samples increases.
We conjecture that it is because in reality, when the input data are restricted to regular images with
clear semantics, and the optimization procedure of the model is conducted via gradient-based methods
in a very close neighborhood, the arbitrariness of the neural network’s output is substantially reduced.

Restricting the model’s training loss in the training set effectively limits the bonus obtained from the
finetune procedure, which realizes the desired fast-shrinking property from our functional confidence
set. Such a phenomenon sheds light on the unknown property of neural network’s generalization
capability and interpolation plasticity. We leave explaining the underlying mechanism as future work.

C.1 Visualize the Learned Representation

A natural and interesting question is what representation does our CNN backbone actually learn. To
investigate this problem and visualize the learned representation, we measure the information of
different digits within the learned representation. Interestingly, we find that our model indeed learns
an indicative representation for classification problem via multitask value regression training.

The basic measurement for the quality of representation is evaluated with the kernel function
κ(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩ and see whether it has a strong diagonal. We take the checkpoint
of neural network model at final step (around 600 with more than 6000 samples), and treat the module
before the final linear layer as ϕ(·). Denote the MNIST test set as D = {Di}9i=0 where Di is the
images of digit i. Define the correlation between digit i and j under representation ϕ as

C(i, j) =
1

|Di| × |Dj |
∑

xs∈Di

∑
xt∈Dj

⟨ϕ(xs), ϕ(xt)⟩ (93)
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To accelerate the evaluation, notice that we can preprocess an “template vector” T i for each digit i as

T i =
1

|Di|
∑
x∈Di

ϕ(x) (94)

so that the correlation can be computed through

C(i, j) =
1

|Di| × |Dj |
∑

xs∈Di

∑
xt∈Dj

⟨ϕ(xs), ϕ(xt)⟩ (95)

=
1

|Dj |
∑

xt∈Dj

(
1

|Di|
∑

xs∈Di

⟨ϕ(xs), ϕ(xt)⟩

)
(96)

=
1

|Dj |
∑

xt∈Dj

〈
1

|Di|
∑

xs∈Di

ϕ(xs), ϕ(xt)

〉
(97)

=
1

|Dj |
∑

xt∈Dj

⟨T i, ϕ(xt)⟩ (98)

= ⟨T i,T j⟩ (99)

We plot this 10x10 correlation map for single task training and multitask training with M = 10.
Notice that the single task reward mapping function is σ(i) = i/10, and to assure the different tasks
in multitask training are heterogeneous, we manually set that the best digit for each task are distinct.

The result is in figure 3. We can see that since single task only needs to recognize the large value
digit, namely 9, 8 or 7, its representation function is not informative for distinguishing digits. And
interestingly, the multitask trained network’s representation demonstrates a very strong diagonal,
indicating that the representation vector is very specific to the digit’s image, although the training
process has no explicit definition for the classification task but a regression problem instead. Actually,
we found a simple linear layer append to this representation can achieve over 95% accuracy on
MNIST test set.

(a) Single task (b) Multitask M = 10

Figure 2: The kernel function for the representation learned by single task and 10-tasks multitask. It
is clear that multitask representation learning obtains a more comprehensive and interpretable pattern
for the MNIST images.
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