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Abstract1

A key problem in network theory is how to reconfigure a graph in order to optimize2

a quantifiable objective. Given the ubiquity of networked systems, such work3

has broad practical applications in a variety of situations, ranging from drug and4

material design to telecommunications. The large decision space of possible5

reconfigurations, however, makes this problem computationally intensive. In this6

paper, we cast the problem of network rewiring for optimizing a specified structural7

property as a Markov Decision Process (MDP), in which a decision-maker is8

given a budget of modifications that are performed sequentially. We then propose9

a general approach based on the Deep Q-Network (DQN) algorithm and graph10

neural networks (GNNs) that can efficiently learn strategies for rewiring networks.11

We then discuss a cybersecurity case study, i.e., an application to the computer12

network reconfiguration problem for intrusion protection. In a typical scenario,13

an attacker might have a (partial) map of the system they plan to penetrate; if the14

network is effectively “scrambled", they would not be able to navigate it since15

their prior knowledge would become obsolete. This can be viewed as an entropy16

maximization problem, in which the goal is to increase the surprise of the network.17

Indeed, entropy acts as a proxy measurement of the difficulty of navigating the18

network topology. We demonstrate the general ability of the proposed method19

to obtain better entropy gains than random rewiring on synthetic and real-world20

graphs while being computationally inexpensive, as well as being able to generalize21

to larger graphs than those seen during training. Simulations of attack scenarios22

confirm the effectiveness of the learned rewiring strategies.23

1 Introduction24

A key problem in network theory is how to rewire a graph in order to optimize a given quantifiable25

objective. Addressing this problem might have applications in several domains, given the fact several26

systems of practical interest can be represented as graphs [23, 24, 29, 50, 51]. A large body of27

literature studies how to construct and design networks in order to optimize some quantifiable goal,28

such as robustness in supply chain and wireless sensor networks [40, 54] or ADME properties of29

molecules [18, 39]. Given the intractable number of distinct configurations of even relatively small30

networks, optimizing these structural and topological properties is generally a non-trivial task that31

has been approached from various angles in graph theory [14, 17] and also studied from heuristic32

perspectives [21, 35]. Exact solutions are too computationally expensive and heuristic methods are33

generally sub-optimal and do not generalize well to unseen instances.34

The adoption of graph neural networks (GNNs) [41] and deep reinforcement learning (RL) [36]35

techniques have led to promising approaches to the problem of optimizing graph processes or36

structure [13, 15, 30]. A fundamental structural modification is rewiring, in which edges (e.g., links37

in a computer network) are reconfigured such that the topology is changed while their total number38

remains constant. The problem of rewiring to optimize a structural property has not been studied in39

the literature.40
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In this paper, we present a solution to the network rewiring problem for optimizing a specified41

structural property. We formulate this task as a Markov Decision Process (MDP), in which a decision-42

maker is given a budget of rewiring operations that are performed sequentially. We then propose43

an approach based on the Deep Q-Network (DQN) algorithm and GNNs that can efficiently learn44

strategies for rewiring networks. We evaluate the method by means of a realistic cybersecurity case45

study. In particular, we assume a scenario in which an attacker has entered a computer network and46

aims to reach a particular node of interest. We also assume that the attacker has partial knowledge of47

the underlying graph topology, which is used to reach a given target inside the network. The goal is48

to learn a rewiring process for modifying the structure of the graph so as to disrupt the capability of49

the attacker to reach its target, all the while keeping the network operational. This can be seen as an50

example of moving target defense (MTD) [7]. We frame the solution as an entropy maximization51

problem, in which the goal is to increase the surprise of the network in order to disrupt the navigation52

of the attacker inside it. Indeed, entropy acts as proxy measurement of the difficulty of this task,53

with an increase in the entropy of the graph corresponding to a more challenging navigation task. In54

particular, we consider two measures of network entropy – namely Shannon entropy and Maximal55

Entropy Random Walk (MERW), and we compare their effectiveness.56

More specifically, the contributions of this paper can be summarized as follows:57

• We formulate the problem of graph rewiring so as to maximize a global structural property as an58

MDP, in which a central decision-maker is given a certain budget of rewiring operations that are59

performed sequentially. We formulate an approach that combines GNN architectures and the60

DQN algorithm to learn an optimal set of rewiring actions by trial-and-error;61

• We present an extensive case study of the proposed approach in the context of defense against62

network intrusion by an attacker. We show that our method is able to obtain better gains in63

entropy than random rewiring, while scaling to larger networks than a local greedy search, and64

generalizing to larger out-of-distribution graphs in some cases. Furthermore, we demonstrate65

the effectiveness of this approach by simulating the movement of an attacker in the network,66

finding that indeed the applied modifications increase the difficulty for the attacker to reach its67

targets in both synthetic and real-world graph topologies.68

2 Related work69

RL for graph reconfiguration. Recently, an increasing amount of research has been conducted70

on the use of reinforcement learning in graph reconfiguration. In particular, in [13] a solution71

based on reinforcement learning for modifying graphs with the aim of attacking both node and72

graph classification is presented. In addition, the authors briefly introduce a defense method using73

adversarial training and edge removal, which decreases their proposed classifier attack rate slightly74

by 1%. This defense strategy is however only effective on the attack strategy it is trained on and75

does not generalize. Instead, the authors of [34] use a reinforcement learning approach to learn an76

attack strategy for neural network classifiers of graph topologies based on edge rewiring, and show77

that they are able to achieve misclassification with changes that are less noticeable compared to edge78

and vertex removal and addition. Our paper focuses on a different problem that does not involve79

classification tasks, but the maximization of a given network objective function. In [15] reinforcement80

learning techniques are applied to the problem of optimizing the robustness of a graph by means81

of graph construction; the authors show that their proposed method is able to outperform existing82

techniques and generalize to different graphs. In the present work, we optimize a global structural83

property through rewiring instead of constructing a graph through edge addition.84

Graph robustness and attacks. A related research area is the optimization of graph robustness [37],85

which denotes the capacity of a graph to withstand targeted attacks and random failures. [42]86

demonstrates how small changes in complex networks such as an electricity system or the Internet can87

improve their robustness against malicious attacks. [5] investigates several heuristic reconfiguration88

techniques that aim to improve graph robustness without substantially modifying the network structure,89

and find that preferential rewiring is superior to random rewiring. The authors of [10] extend this90

study to a framework that can accommodate multiple rewiring strategies and objectives. Several91

works have used information-based complexity metrics in the context of network defense or attack92

strategies: [27] proposes a network security metric to assess network vulnerability by measuring the93

Kolmogorov complexity of effective attack paths. The underlying reasoning is that the more complex94

attack paths have to be in order to harm a network, the less vulnerable a network is to external attacks.95
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Figure 1: Illustrative example of the MDP timesteps comprising a single rewiring operation. The
agent observes an initial state S0 = (G0,∅,∅) (first panel), from which it then selects a base node
v1 = {1} that will be rewired (second panel). Given the new state that contains the initial graph
and the selected base node, the agent selects a target node v2 = {5} to which an edge will be added
(third panel). Finally, a third node v3 = {0} is selected from the neighborhood of v1 = {1} and the
corresponding edge is removed (last panel). After a sequence of b rewiring operations, the agent will
receive a reward proportional to the improvement in the objective function F .

Furthermore, [25] investigates the vulnerability of complex networks, finding that attacks based on96

edge and vertex removal are substantially more effective when the network properties are recomputed97

after each attack.98

Cybersecurity and network defense. In the last decade and in recent years in particular, a drastic99

surge in cyberattacks on governmental and industrial organizations has exposed the imminent vulnera-100

bility of global society to cyberthreats [43]. The targeted digital systems are generally structured as a101

network in which entities in the system communicate and share resources among each other. Typically,102

attackers seek to gain unauthorized access to the underlying network through an entry point and103

search for highly valuable nodes in order to infect these digital systems with malicious software such104

as viruses, ransomware and spyware [2], enabling them to extract sensitive information or control the105

functioning of the network [26]. Moving target defense (MTD) is a cybersecurity defense technique106

by which a network and the underlying software are dynamically changed to counteract attack strate-107

gies [3, 7, 8, 44, 52] Most existing MTD techniques involve NP-hard problems, and approximate or108

heuristic solutions are often impractical [7]. We note that while most studies are applied to specific109

software architectures, which prevent them from being applied effectively to large scale deployments,110

in this work we focus on modeling this problem from an abstract, infrastructure-agnostic perspective.111

3 Graph rewiring as an MDP112

3.1 Problem statement113

We define a graph (network) as G = (V, E), where V = {v1, ..., vn} is the set of n = |V| vertices114

(nodes) and E = {e1, ..., em} is the set of m = |E| edges (links). A rewiring operation γ(G, vi, vj , vk)115

transforms the graph G by adding the non-edge (vi, vj) and removing the existing edge (vi, vk); we116

denote the set of all such operations by Γ. Given a budget b ∝ m of rewiring operations, and a global117

objective function F(G) to be maximized, the goal is to find the set of unique rewiring operations118

out of Γb such that the resulting graph G′ maximizes F(G′).119

Since the size of the set of possible rewirings grows rapidly with the graph size, we cast this problem120

as a sequential decision-making process, which is detailed below.121

3.2 MDP framework122

We let every rewiring operation consist of three sub-steps: 1) base node selection; 2) node selection123

for edge addition; and 3) node selection for edge removal. We precede the edge removal step by124

edge addition to suppress potential disconnections of the graph. The rewiring procedure is illustrated125

in Figure 1. For reducing the size of the decision space, we model each sub-step of the rewiring126

operation as a separate timestep in the MDP itself. Its elements are defined as:127
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State. The state St is the tuple St = (Gt, a1, a2), containing the graph Gt = (V, Et), the chosen128

base node a1, and the chosen addition node a2. The base node and addition node may be null (∅)129

depending on the rewiring operation sub-step.130

Actions. We specify three distinct action spaces At̂(St), where t̂ := (t mod 3) denotes the sub-step131

within a rewiring operation. Letting the degree of node v be kv , they are defined as:132

A0

(
St =

(
(V, Et),∅,∅

))
=

{
v ∈ V

∣∣ 0 < kv < |V| − 1
}
, (1)

A1

(
St =

(
(V, Et), a1,∅

))
=

{
v ∈ V

∣∣ (a1, v) /∈ Et
}
, (2)

A2

(
St =

(
(V, Et), a1, a2

))
=

{
v ∈ V

∣∣ (a1, v) ∈ Et \ (a1, a2)} . (3)

Transitions. Transitions are deterministic; the model P (St = s′|St−1 = s,At−1 = at−1) transitions133

to state S′ with probability 1, where:134

S′ =


(
(V, Et−1), a1,∅

)
, if 3 | t+ 2 mark base node(

(V, Et−1 ∪ (a1, a2)), a1, a2
)
, if 3 | t mark addition node & add edge(

(V, Et−1 \ (a1, a3)),∅,∅
)
, if 3 | t+ 1 remove edge & reset marked nodes

(4)

Rewards. The reward signal Rt is proportional to the difference in the value of the objective function135

F before and after the graph reconfiguration. Furthermore, a key operational constraint in the domain136

we consider is that the network remains connected after the rewiring operations. Instead of running137

connectivity algorithms at every time-step to determine if a potential removed edge disconnects the138

graph, we encourage maintaining connectivity by giving a penalty r̄ < 0 at the end of the episode139

if the graph becomes disconnected. All rewards and penalties are provided at the final timestep T ,140

and no intermediate rewards are given. This enables the flexibility to discover long-term strategies141

that maximize the total cumulative reward of a sequence of reconfigurations rather than a single-step142

rewiring operation, even if the graph is disconnected during intermediate steps. Concretely, given an143

initial graph G0 = (V, E0), we define the reward function at timestep t as:144

Rt =


cF ·

(
F(Gt)−F(G0)

)
if t = T ∧ c(G) = 1,

r̄ if t = T ∧ c(G) ≥ 2,

0 otherwise,
(5)

where c(G) denotes the number of connected components of G, and r̄ < 0 is the disconnection145

penalty. As the different objective functions may act on different scales, we use a reward scaling cF ,146

which we empirically establish for every objective function F .147

4 Reinforcement learning representation and parametrization148

In this section, we extend the graph representation and value function approximation parametrizations149

proposed in past work [13, 15] for the problem of graph rewiring.150

4.1 Graph representation151

As the state and action spaces in network reconfiguration quickly become intractable for a sequence152

of rewiring operations, we require a graph representation that generalizes over similar states and153

actions. To this end, we use a GNN architecture that is based on a mean field inference method [47].154

More specifically, we use a variant of the structure2vec [12] embedding method to represent every155

node vi ∈ V in a graph G = (V, E) by an embedding vector µi. This embedding vector is constructed156

in an iterative process by linearly transforming feature vectors xi with a set of weights {θ(1), θ(2)},157

aggregating the xi with the feature vectors of neighboring nodes vj ∈ Ni , then applying the nonlinear158

Rectified Linear Unit (ReLU) activation function. Hence, at every step l ∈ (1, 2, . . . , L), embedding159

vectors are updated according to:160

µ
(l+1)
i = ReLU

θ(1)xi + θ(2)
∑
j∈Ni

µ
(l)
j

 , (6)
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where all embedding vectors are initialized as µ(0)
i = 0. After L iterations of feature aggregation, we161

obtain the node embedding vectors µi ≡ µ
(L)
i . By summing the embedding vectors of nodes in a162

graph G, we obtain its permutation-invariant embedding: µ(G) =
∑

i∈V µi. These invariant graph163

embeddings represent part of the state that the RL agent observes. Aside from permutation invariance,164

such embeddings allow learned models to be applied to graphs of different sizes, potentially larger165

than those seen during training.166

4.2 Value function approximation167

Due to the intractable size of the state-action space in graph reconfiguration tasks, we make use of168

neural networks to learn approximations of the state-action values Q(s, a) [48]. More specifically, as169

the action spaces defined in Equation (1) are discrete, we use the DQN algorithm [36] to update the170

state-action values as follows:171

Q(s, a)← Q(s, a) + α

[
r + γmax

a′∈A
Q(s′, a′)−Q(s, a)

]
. (7)

The DQN algorithm uses an experience replay buffer [33] from which it samples previously observed172

transitions (s, a, r, s′), and periodically synchronizes a target network with the parameters of the173

Q-network. The target network is used in the computation of the learning target for estimating the174

Q-value of the best action in the next timestep, making the learning more stable as the parameters are175

kept fixed between updates. We use three separate MLP parametrizations of the Q-function, each176

corresponding to one of the three sub-steps of the rewiring procedure:177

Q1

(
St = (Gt,∅,∅), At

)
= θ(3)ReLU

(
θ(4) [µAt

⊕ µ(Gt)]
)
, (8a)

Q2

(
St = (Gt, a1,∅), At

)
= θ(5)ReLU

(
θ(6) [µa1

⊕ µAt
⊕ µ(Gt)]

)
, (8b)

Q3

(
St = (Gt, a1, a2), At

)
= θ(7)ReLU

(
θ(8) [µa1

⊕ µa2
⊕ µAt

⊕ µ(Gt)]
)
, (8c)

where ⊕ denotes concatenation. We highlight that, since the underlying structure2vec parameters178

shown in Equation (6) are shared, the combined set of the learnable parameters in our model is179

Θ = {θ(i)}8i=1. During validation and test time, we derive a greedy policy from the above learned180

Q-functions as argmaxa∈At
Q(s, a). During training, however, we use a linearly decaying ϵ-greedy181

behavioral policy. We refer the reader to Appendix B for a detailed description of our implementation.182

5 Case study: network reconfiguration for intrusion defense183

In this section, we detail the specifics of our intrusion defense application scenario. We first present184

the definition of the objective functions we leverage, which act as proxy metrics for the difficulty185

of navigating the graph. Secondly, we detail the procedure we use for simulating attacker behavior186

during an intrusion, which will allow us to compare the pre- and post-rewiring costs of traversal.187

5.1 Objective functions for network obfuscation188

Our goal is to reconfigure the network so as to deter an attacker with partial knowledge of the network189

topology. Equivalently, we seek to modify the network so as to increase the surprise of the network190

and render this prior knowledge obsolete, while keep the network operational. A natural formalization191

of surprise is the concept of entropy, which measures the quantity of information encoded in a graph192

or, equivalently, its complexity.193

As measures of entropy, we investigate two graph quantities that are invariant to permutations194

in representation: the Shannon entropy of the degree distribution [45] and the Maximum Entropy195

Random Walk (MERW) [6] calculated from the spectrum of the adjacency matrix. The former captures196

the idea that graphs with heterogeneous degrees are less predictable than regular graphs, while the197

latter is related to random walks on the network. Whereas generic random walks generally do not198

maximize entropy [16], MERW uses a specific choice of transition probabilities that ensures every199

trajectory of fixed length is equiprobable, resulting in a maximal global entropy in the limit of infinite200

trajectory length. Although the local transition probabilities depend on the global structure of the201

graph, the generating process is local [6]. More formally, the two objective functions are formulated202
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Figure 2: Illustrative example of the evaluation process for a network reconfiguration. (i) The graph
is rewired by our approach, removing and adding the highlighted edges respectively. (ii) The leftmost
nodes in the graph become unreachable by the attacker from the entry point marked E, and hence a
path to them must be rediscovered by exploring the graph. (iii) To reach the nodes, the attacker pays
a cost of 1 and 2 respectively for “unlocking” the previously unseen links along the highlighted paths.
The total cost induced by the rewiring strategy is CtotRW = 3.

as follows: the Shannon entropy is defined as FShannon(G) = −∑n−1
k=1 q(k) log2 q(k), where q(k) is203

the degree distribution; MERW is defined as FMERW(G) = lnλ, where λ is the largest eigenvalue of204

the adjacency matrix. In terms of time complexity, computing the Shannon entropy scales as O (n).205

The calculation of MERW has instead an O
(
n3

)
complexity due to the eigendecomposition required206

to compute the spectrum of the adjacency matrix.207

It is worth noting that, in preliminary experiments, we have additionally investigated objective208

functions related to the Kolmogorov complexity. Also known as algorithmic complexity, this209

measure does not suffer from distributional dependencies [32]. As the Kolmogorov complexity210

is theoretically incomputable [9], we used graph compression algorithms such as bzip-2 [11] and211

Block Decomposition Methods [53] to approximate the Kolmogorov complexity. However, as these212

approximations depend on the representation of the graph such as the adjacency matrix, one has213

to consider many permutations of the graph representation. Compressing the representation for a214

sufficient number of permutations becomes infeasible even for small graphs. While the MERW215

objective function is also derived from the adjacency matrix through its largest eigenvalue, it does not216

suffer from this artifact as the spectrum of the adjacency matrix is invariant to permutations.217

5.2 Simulating and evaluating attacker behavior218

Given an initial connected and undirected graph G0 = (V, E0), we model the attacker as having219

entered the network through an arbitrary node u ∈ V , and having built a local mapMu
0 = (Vu, Eu0 )220

around this entry point, where Vv ⊂ V is the set of nodes and Eu0 ⊂ E0 is the set of edges in the221

map. The rewiring procedure transforms the initial graph G0 = (V, E0) to the graph G∗ = (V, E∗),222

yielding the new local mapMu
∗ = (Vu, Eu∗ ) that is unknown to the attacker. Our goal is to evaluate223

the effectiveness of the reconfiguration by measuring how “stale" the prior information of the attacker224

has become in comparison to the new map: if the attacker struggles to find its targets in the updated225

topology, the rewiring has succeeded.226

Let Vu denote the set of nodes in the new local mapMu
∗ that are unreachable through at least one227

trajectory composed of original edges Eu
0 in the old map. For each newly unreachable node vi, we228

measure the cost CRW(vi) of finding it with a forward random walk, in which the random walker only229

returns to the previous node if the current node has no other outgoing links. Every time the random230

walker encounters a link that is (i) not included in Eu
0 and (ii) not yet encountered during the random231

walk, the cost increases by one. This simulates the cost of having to explore the new graph topology232

due to the reconfigurations that were introduced. Finally, we let CtotRW =
∑

vi∈Vu CRW(vi) denote233

the sum of the costs for all newly unreachable nodes, which is our metric for the effectiveness of a234

rewiring strategy. An illustrative example of a forward random walk and cost evaluation is shown in235

Figure 2, and a formal description is presented in Algorithm 1 in Appendix B to aid reproducibility.236

6 Experiments237

6.1 Experimental setup238

Training and evaluation procedure. Our agent is trained on synthetic graphs of size n = 30239

that are generated using the graph models listed below. Every agent has a budget b, defined as a240

percentage of the total edges m in the graph. This definition is based on the normalization using the241
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total number of edges and enables consistent comparisons over different graph sizes and topologies.242

Where not specified otherwise, we use b = 15%. When performing the attacker simulations, the243

initial local map contains the subgraph induced by all nodes that are 2 hops away from the entry244

point, which is sampled without replacement from the node set. Training occurs separately for each245

graph model and objective F on a set of graphs Gtrain of size |Gtrain| = 6 · 102. Every 10 training steps,246

we measure the performance on a disjoint validation set Gvalidation of size |Gvalidation| = 2 · 102. We247

perform reconfiguration operations on a test set Gtest of size |Gtest| = 102. To account for stochasticity,248

we train our models with 10 different seeds and present mean and confidence intervals accordingly.249

Further details about the experimental procedure (e.g., hyperparameter optimization) can be found in250

the Appendix B.251

Synthetic graphs. We evaluate the approaches on graphs generated by the following models:252

Barabási–Albert (BA): A preferential attachment model where nodes joining the network are linked253

to M nodes [4]. We consider values of Mba = 2 and Mba = 1 (abbreviated BA-2 and BA-1).254

Watts–Strogatz (WS): A model that starts with a ring lattice of nodes with degree k. Each edge255

is rewired to a random node with probability p, yielding characteristically small shortest path256

lengths [49]. We use k = 4 and p = 0.1.257

Erdős–Rényi (ER): A random graph model in which the existence of each edge is governed by a258

uniform probability p [19]. We use p = 0.15.259

Real-world graphs. We also consider the real-world Unified Host and Network (UHN) dataset [46],260

which is a subset of network and host events from an enterprise network. We transform this dataset261

into a graph by identifying the bidirectional links between hosts appearing in these records, obtaining262

a graph with n = 461 nodes and m = 790 edges. Further information about this processing can be263

found in Appendix B.264

Baselines. We compare the entropy maximization method against two baselines: Random, which265

acts in the same MDP as the agent but chooses actions uniformly, and Greedy, which is a shallow266

one-step search over all rewirings from a given configuration. The latter selects the rewiring that267

provides the largest improvement in F . Besides Random and Greedy, we compare our intrusion268

defense method to a third baseline named MinConnectivity. This baseline is a modification of the269

greedy heuristic introduced by [21] and aims to decrease the algebraic connectivity of a graph based270

on the Fiedler vector [20] v. It performs the rewiring by removing the existing edge (i, j) with the271

largest contribution (vi − vj)
2 to the algebraic connectivity, and adding the edge (j, k) with the272

smallest (vj − vk)
2. The motivation behind this baseline is that decreasing the connectivity of the273

graph would impede / slow down the navigation task of the intruder.274

6.2 Entropy maximization results275

Table 1: Entropy gains on test graphs with n = 30 and
a budget of 15%.

F Gtest DQN Greedy Random
∆FMERW BA-2 0.197±0.002 0.225±0.003 -0.019±0.003

BA-1 0.167±0.003 0.135±0.003 -0.045±0.004

ER 0.182±0.004 0.209±0.012 -0.005±0.003

WS 0.233±0.003 0.298±0.002 0.035±0.002

∆FShannon BA-2 0.541±0.009 0.724±0.015 0.252±0.024

BA-1 0.167±0.008 0.242±0.012 0.084±0.015

ER 0.101±0.012 0.400±0.023 -0.022±0.018

WS 0.926±0.016 1.116±0.022 0.567±0.036

We first consider the results for the max-276

imization of the entropy-based objectives.277

The gains in entropy obtained by the meth-278

ods on the held-out test set are shown in Ta-279

ble 1, while training curves are presented in280

Appendix A. The results demonstrate that281

the approach discovers better reconfigura-282

tion strategies than random rewiring in all283

cases, and even the greedy search in one284

setting. Furthermore, we evaluate the out-285

of-distribution generalization properties of286

the learned models along two dimensions: varying the graph size n ∈ [10, 300] and the budget b287

as a percentage of existing edges ∈ {5, 10, 15, 20, 25}. The results for this experiment are shown288

in Figure 3.We do not report results for the Greedy solution since it is characterized by very poor289

scalability and, therefore, it is not practical. We find that, with the exception of the (BA, FShannon)290

combination, the learned models generalize well to graphs substantially larger in size as well as291

varying rewiring budgets.292

6.3 Evaluating the reconfiguration impact293
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Figure 3: Evaluation of the out-of-distribution generalization performance (higher is better) of the
learned entropy maximization models as a function of graph size (top) and budget size (bottom). All
models are trained on graphs with n = 30. In the top figure, the applied budget is 15%. In the bottom
figure, the solid and dotted lines represent graphs with n = 30 and n = 100 respectively. Note the
different x-axes used for ER graphs due to their high edge density.

We next evaluate the performance of the learned models for entropy maximization on the downstream294

task of disrupting the navigation of the graph by the attacker.295

Table 2: Total random walk cost of mod-
els applied to the real-world UHN graph
(n = 461,m = 790, b = 15%).

F CtotRW/n (
x)

DQN FMERW BA-2 3.087±0.225

BA-1 1.294±0.185

ER 2.887±0.335

WS 4.888±0.568

FShannon BA-2 3.774±0.445

BA-1 4.660±0.461

ER 3.891±0.559

WS 3.555±0.318

Random — — 2.071±0.289

MinConnectivity — — 2.086±0.671

Greedy — — ∞

Synthetic graphs. The results for synthetic graphs are296

shown in Figure 4 in an out-of-distribution setting as a297

function of graph size, a regime in which the Greedy base-298

line is too expensive to scale. We find that the best proxy299

metric varies with the class of synthetic graphs – Shan-300

non entropy performs better for BA graphs, MERW is301

better for ER, and performance is similar for WS. Strong302

out-of-distribution generalization performance is observed303

for 3 out of 4 synthetic graph models. The results also304

show that, in the case of WS graphs, even if we observe305

high performance in relation to the metric (as shown in306

Figure 3), the objective is not a suitable proxy for the307

downstream task in an out-of-distribution setting since the308

random walk cost decays rapidly. This might be explained309

by the fact that the graph topology is derived through a310

rewiring process of cliques of nodes of a given size. Finally, both DQN agents outperform Random311

and MinConnectivity on BA-2 and ER graphs. In the BA-1 setting, the Shannon DQN outperforms312
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Figure 4: Evaluation of the learned rewiring strategies for entropy maximization on the downstream
task of disrupting attacker navigation. All models are trained on graphs with n = 30 and have a
budget b of 15%. The random walk cost CtotRW (higher is better) is normalized by n for meaningful
comparisons. Note the different x-axis used for ER graphs due to their high edge density.

the baselines on BA-1 graphs in the small-n domain, while MinConnectivity is clearly superior313

for large n. The baseline likely converts the sparse graph into a long string (which has very low314

connectivity), resulting in large random walk costs. In contrast, DQN aims to maximize entropy and315

therefore avoids strings, which have low entropy due to the monotonic node degrees of the sequence.316

Real-world graphs. We also evaluate the models trained on synthetic graphs on the real-world graph317

constructed from the UHN dataset. Results are shown in Table 2. All but one of the trained models318

maintain a statistically significant random walk cost difference over the Random and MinConnectivity319

baselines. The best-performing models were trained on the (WS, FMERW ) and (BA-1, FShannon)320

combinations, obtaining total gains in random walk cost CtotRW of 136% and 125% respectively. The321

Greedy baseline is not applicable for a graph of this size.322

7 Conclusion323

Summary. In this work, we have addressed the problem of graph reconfiguration for the optimization324

of a given property of a networked system, a computationally challenging problem given the generally325

large decision space. We have then formulated it as a Markov Decision Process that treats rewirings326

as sequential and proposed an approach based on deep reinforcement learning and graph neural327

networks for efficient learning of network reconfigurations. As a case study, we have applied the328

proposed method to a cybersecurity scenario in which the task is to disrupt the navigation of potential329

intruders in a computer network. We have assumed that the goal of the intruder is to navigate the330

network given some knowledge about its topology. In order to disrupt the attack, we have designed331

a mechanism for increasing the level of surprise of the network through entropy maximization by332

means of network rewiring. More specifically, in terms of the objective of the optimization process,333

we have considered two entropy metrics that quantify the predictability of the network topology,334

and demonstrated that our method generalizes well on unseen graphs with varying rewiring budgets335

and different numbers of nodes. We have also validated the effectiveness of the learned models for336

increasing path lengths towards targeted nodes. The proposed approach outperforms the considered337

baselines on both synthetic and real-world graphs.338

Limitations and future work. An advantage of the proposed approach is that it does not require any339

knowledge of the exact position of the attacker as the traversal of the graph takes place. One may also340

consider a real-time scenario in which the network reconfiguration aims to “close off” the attacker341

given knowledge of their location, which may lead to a more efficient defense if such information342

is available. We have also adopted a simple model of attacker navigation (forward random walks).343

Different, more complex navigation strategies (e.g., targeting vulnerable machines) can also be344

considered. This knowledge might be integrated as part of the training process, for example by345

increasing the probability of rewiring of edges around these nodes through a corresponding reward346

structure (i.e., higher reward for protecting more sensitive nodes). More generally, we have identified347

an important application to cybersecurity, which might have a positive impact in safeguarding348

networks from malicious intrusions.349

9



Dynamic Network Reconfiguration for Entropy Maximization using Deep Reinforcement Learning

References350

[1] Réka Albert and Albert-László Barabási. Statistical Mechanics of Complex Networks. Reviews351

of Modern Physics, 74:47–97, 2002.352

[2] Ross Anderson. Security Engineering: a Guide to Building Dependable Distributed Systems.353

John Wiley & Sons, 2020. 3354

[3] Abdullah Aydeger, Nico Saputro, Kemal Akkaya, and Mohammed Rahman. Mitigating crossfire355

attacks using SDN-based moving target defense. In LCN, pages 627–630. IEEE, 2016. 3356

[4] Albert-László Barabási and Réka Albert. Emergence of Scaling in Random Networks. Science,357

286(5439):509–512, 1999. 7358

[5] Alina Beygelzimer, Geoffrey Grinstein, Ralph Linsker, and Irina Rish. Improving Network359

Robustness by Edge Modification. Physica A: Statistical Mechanics and its Applications, 357360

(3-4):593–612, 2005. 2361

[6] Zdzisław Stanisław Burda, Jarosłav Duda, Jean-Marc Luck, and Bartłomiej Waclaw. Lo-362

calization of the Maximal Entropy Random Walk. Physical Review Letters, 102(16), 2009.363

5364

[7] Gui-lin Cai, Bao-sheng Wang, Wei Hu, and Tian-zuo Wang. Moving target defense: state of the365

art and characteristics. Frontiers of Information Technology & Electronic Engineering, 17(11):366

1122–1153, 2016. 2, 3367

[8] Thomas E Carroll, Michael Crouse, Errin W Fulp, and Kenneth S Berenhaut. Analysis of368

network address shuffling as a moving target defense. In ICC, pages 701–706. IEEE, 2014. 3369

[9] Gregory J. Chaitin. On the Length of Programs for Computing Finite Binary Sequences. Journal370

of the ACM, 13(4):547–569, 10 1966. 6371

[10] Hau Chan and Leman Akoglu. Optimizing network robustness by edge rewiring: a general372

framework. Data Mining and Knowledge Discovery, 30(5):1395–1425, 2016. 2373

[11] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience,374

New York, 2nd edition, 1991. 6375

[12] Hanjun Dai, Bo Dai, and Le Song. Discriminative Embeddings of Latent Variable Models for376

Structured Data. In ICML, volume 6, pages 3970–3986, 2016. 4, 14377

[13] Hanjun Dai, Hui Li, Tian Tian, Huang Xin, Lin Wang, Zhu Jun, and Song Le. Adversarial378

Attack on Graph Structured Data. In ICML, volume 3, pages 1799–1808, 2018. 1, 2, 4, 14379

[14] George B. Dantzig, D. Ray Fulkerson, and Selmer Johnson. Solution of a large scale traveling380

salesman problem. Operations Research, pages 393–410, 1954. 1381

[15] Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Goal-directed graph construc-382

tion using reinforcement learning. Proceedings of the Royal Society A: Mathematical, Physical383

and Engineering Sciences, 477(2254), 2021. 1, 2, 4, 14384

[16] Jarek Duda. From Maximal Entropy Random Walk to Quantum Thermodynamics. In Journal385

of Physics: Conference Series, volume 361, 2012. 5386

[17] Jack Edmonds and Richard M Karp. Theoretical Improvements in Algorithmic Efficiency for387

Network Flow Problems. Journal of the Association for Computing Machinery, 19(2):248–264,388

1972. 1389

[18] Sean Ekins, J. Dana Honeycutt, and James T. Metz. Evolving molecules using multi-objective390

optimization: Applying to ADME/Tox. Drug Discovery Today, 15(11-12):451–460, 6 2010. 1391
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A Additional results483
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Figure 5: Wall clock time needed to complete a
sequence of rewirings by the Greedy and DQN
methods on Barabási-Albert graphs (Mba = 2)
with a rewiring budget of 15%.

Computational cost of Greedy baseline. To484

evidence the poor scalability of the Greedy base-485

line as discussed in Section 6.1, we perform an486

additional experiment that measures the wall487

clock time taken by the different approaches to488

complete a sequence of rewirings. Results are489

shown in Figure 5 for Barabási-Albert graphs490

(Mba = 2) as a function of graph size. Beyond491

graphs of size n = 150, we extrapolate by fit-492

ting polynomials of degree 5 and 4 for FMERW493

and FShannon respectively.494

The time needed for evaluating the Greedy base-495

line increases rapidly as the size of the graph496

grows, while the post-training DQN is very effi-497

cient from a computational point of view. Hence,498

it is not feasible to use the Greedy baseline be-499

yond very small graphs, but it serves as a useful500

comparison point.501

Learning curves. Learning curves are shown in Figure 6, which captures the performance on the502

held-out validation set Gvalidation. We note that in many cases (e.g., BA / FMERW ) the performance503

averaged across all seeds is misleadingly low compared to the baselines, an artifact of the variability504

of the validation set performance. We also show the performance of the worst-performing seed505

(dotted) and best-performing seed (dashed) to clarify this.506

0.0

0.2

∆
F M

E
R
W

BA (Mba = 2) BA (Mba = 1) ER WS

MERW-DQN
Random
Greedy

0.0 0.5 1.0
Training step ×105

0.0

1.0

∆
F S

h
a
n
n
on

0.0 0.5 1.0
Training step ×105

0.0 0.5 1.0
Training step ×105

0.0 0.5 1.0
Training step ×105

Shannon-DQN
Random
Greedy

Figure 6: MERW (upper half) and Shannon entropy (lower half) increase on the held-out validation
set Gvalidation during training of the DQN algorithm. The dotted and dashed lines for the DQN
algorithm represent the worst-performing and best-performing seeds respectively. Random and
Greedy rewiring performance are shown for comparison. Graphs are of size n = 30 and the rewiring
budget is 15% of the number of existing edges.
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B Implementation and training details507

Codebase. The code for reproducing the results of this work will be made available in a future508

version. The DQN implementation we use is bootstrapped from the RNet-DQN codebase1 in [15],509

which itself is based on the RL-S2V2 implementation from [13] and S2V GNN3 from [12]. Our510

neural network architecture is implemented with the deep learning library PyTorch [38].511

Infrastructure and runtimes. Experiments were carried out on a cluster of 8 machines, each512

equipped with 2 Intel Xeon E5-2630 v3 processors and 128GB RAM. On this infrastructure, all513

experiments reported in this paper took approximately 8 days to complete.514

MDP parameters. To improve numerical stability we scale the reward signals in Equation 5 by515

cF = 101 for MERW-DQN and cF = 102 for Shannon-DQN. We set the disconnection penalty516

r̄n = −10.0. As we consider a finite horizon MDP, we set the discount factor γ = 1.517

Table 3: Optimal initial learning rate
α0, message passing rounds L and graph
embedding dimension dim(µi) found by
a hyperparameter search.

DQN G α0 [10
−4] L dim(µi)

FMERW BA-2 5 3 128
BA-1 5 6 128
ER 5 4 128
WS 10 6 128

FShannon BA-2 10 3 64
BA-1 5 6 64
ER 1 4 64
WS 10 6 64

Model architectures and hyperparameters. In all ex-518

periments the same neural network architectures and hy-519

perparameters are used in the three stages of the rewiring520

procedure as described in Section 3. The final MLPs de-521

scribed in Equation 8 contain a hidden layer of 128 units522

and a single-unit output layer representing the estimated523

state-action value. Batch normalization [28] is applied to524

the input of the final layer.525

We performed an initial hyperparameter grid search on526

BA-2 graphs over the following search space: the initial527

learning rate α0 ∈ {5, 10, 50}·10−4 for MERW-DQN and528

α0 ∈ {1, 5, 10} · 10−4 for Shannon-DQN; the number of529

message-passing rounds L ∈ {3, 4}; the latent dimension530

of the graph embedding dim (µi) ∈ {32, 64, 128}. Due to computational budget constraints, for531

BA-1, ER and WS graphs, we only performed a hyperparameter search for for the initial learning rate532

α0 over the same values as for BA-2 graphs, while setting the number of message passing rounds533

equal to the graph diameter L = D and bootstrapping the latent dimension from the hyperparameter534

search on BA-2 graphs. Table 3 presents an overview of the optimal values of the hyperparameters535

that were used for the results presented in the paper.536

Training details. We train the models for 120, 000 steps, and let the exploration parameter ε decay537

linearly from ε = 1.0 to ε = 0.1 in the first 40, 000 training steps after which it is kept constant.538

The network parameters are initialized using Glorot initialization [22] and updated using the Adam539

optimizer [31]. We use a batch size of 50 graphs. The replay memory contains 12,000 instances and540

replaces the oldest entry when adding a new transition. The target network parameters are updated541

every 50 training steps.542

Graphs. The real-world UHN dataset [46] contains network events on day 2 of approximately 90543

days of network events collected from the Los Alamos National Laboratory enterprise network and is544

pre-processed as follows: firstly, we build a directional graph where nodes represent unique hosts in545

the data set and construct directional links from the events between the hosts. Secondly, we filter the546

graph by removing all unidirectional links and transform the graph to be undirected, only keeping547

the largest connected component. Thirdly, we exclude nodes that only have many single-degree548

neighbors, such as email servers, and furthermore only retain nodes with degrees ≤ 80. The graph549

obtained by this procedure is illustrated in Figure 7. We additionally note that, in all downstream550

experiments, graphs that are disconnected after rewiring are not considered in any of the evaluations.551

Reconfiguration impact evaluation. The algorithm we use for measuring the random walk cost552

CRW induced by a sequence of rewirings is shown in Algorithm 1. We sample without replacement553

Nsynthetic = min {n, 30} and NUHN = n entry nodes for synthetic graphs and the UHN graph,554

1https://github.com/VictorDarvariu/graph-construction-rl
2https://github.com/Hanjun-Dai/graph_adversarial_attack
3https://github.com/Hanjun-Dai/pytorch_structure2vec
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Figure 7: The graph derived from the Unified Host and Network (UHN) data set. It contains n = 461
nodes, m = 790 edges, and has a diameter D = 18.

respectively. After rewiring, we find the nodes that have become unreachable through at least one555

trajectory composed of the edges of the old map. We then perform a single random walk per missing556

target node as described in Section 5.2 and Algorithm 1.557

Algorithm 1: Random walk cost evaluation
Data: G∗(V, E∗), u, vi ∈ V, Eu

0 ⊂ E0; // u, vi are entry, target node resp.
CRW ← 0;
Evisited ← (vj , vk) ∈ Eu

0 ∀j, k;
vt−1, vt ← u ∈ V ; // vt−1, vt are previous, current position resp.
vt+1 ← U (Nu) ; // vt+1 is next position
while vt+1 ̸= vi do

et ← (vt, vt+1);
if et /∈ Evisited then
CRW ← CRW + 1;
add et to Evisited;

end
if kvt+1

= 1 then
vt−1 ← vt+1; // reverse random walk if dead end

else
vt−1 ← vt;
vt ← vt+1;

end
vt+1 ← U (Nvt \ vt−1); // choose next node randomly

end
et ← (vt, vt+1) if et /∈ Evisited then
CRW ← CRW + 1;

end

558
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