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A NOTATIONS

Here is the list of notations used in this manuscript.

* Dyool: The pool of unlabeled data.
» DF : Acquired data at k-th AL cycle.

acq”
e DF...: Cumulative training data after k-th cycle of AL.

e Dya: Validation data.

¢ Diest: Held-out test data.

* b: Acquisition batch size.

* K: Total number of AL cycles.

* k=][1,2,..., K]: Index of the AL cycle.

¢ [K]=1[1,2,...,K].

* e € &: Inherent noise (aleatoric uncertainty).

* T € T: Treatment variable.

* E[Y | X = z,do(T = t)]: The conditional expected outcomes.

* §(t;w): The model parameterised by w € € to estimate E[Y | X = x,do(T = t)].
» X: random variable X with distribution X ~ F(X) and density f(z).

B ACQUISITION FUNCTIONS CONT.

Coreset. Coreset acquisition looks to maximize the diversity of acquired samples. This is done by
finding the data points in DF ., that are furthest from the labelled data points in DXL, The robust

avai cum
K-centers algorithm of |Sener & Savarese|(2017) approximates a solution to:

~k—1 k . .
acoreseT(G" (1), Davait) =  argmin  argmax  argmin  A(t;, ;). )
{t1,...t,}€DE . t,€DE . t;€Dk uDkLt

avail avail

Euclidean distances, A(t;,t;), are calculated between the output of the penultimate layer of g(¢; w).

Margin Sample. Margin sampling is designed for classifiers where selection is based on the dis-
tance of a sample from the classifiers decision boundary (Roth & Small| [2006). As a proxy, the
difference between the predicted probability of the most and second most probable classes is used.
The distance between the most probable and the second most probable classes for a multi-class clas-
sification problem can be seen as how confident the model is about the label of that class. However,
The concept of a decision boundary is ill-defined for regression tasks. One option to approximate
margin sampling could be to model the aleatoric uncertainty of the model by predicting the condi-
tional variance of the outcome o2 (#; w) and select data based on the magnitude of this value. Here,
we instead look at the difference in the maximum and minimum values of the predicted outcome as
a measure of the model’s confidence and select data based on the magnitude of this value. Formally,
we have

—

. k—1y\ __ ~ry. k—1 : ~ry. k—1
MY;Q [, D ) = jegl?_ﬁn}(g(t,wj ) — je{ml,l__r}m}(g(wj ) ©

and the acquisition function:

b
QtMargin (/g\k_l (t)’ ,Delfvail) = argmax Z M (Y; Q | li, ,Dfu;nl)' (10)
{t1, 1o} €D, =1

Note that this approximation is similar to BALD under the assumption of a uniformly distributed
outcome: f(y | t,w) =U(y | g(t;w)).
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Adversarial Basic Iteractive Method (AdvBIM). Some of the adversarial algorithms can act as
active learning acquisition functions by nominating the adversarial samples. Here, we extended the
famous Adversarial BIM method for our regression task as an example. BIM was introduced by
(Kurakin et al., 2016) to iteratively perturb adversarial samples to maximize the cost function J
subject to an [, norm constraint as

10 = 1,8 = clip, , ("~ + sign(V-1) J (6,877 y))) (11)

(intermediate results are clipped to stay in e-neighbourhood of the primary data point ). This
technique bypasses the intractable problem of finding the distance from the decision boundary by
iteratively perturbing the features until crossing the boundary (Tramer et al.,|2017). In our regression
task, we perturb the features in the gradients’ direction to increase the conditional variance of the
outcome, i.e.,

1 =1, = clip, ,(F + sign(Vi-1) Var, (§(t, w)))) fori = {1,...,m}, (12)

where [|£; — t||o < 7 * ||t]|2 with the hyperparameter ~y. After creating adversarial samples for each
data point in D}, cadversarialeiM acquires the samples by

QO Adversarial BIM (:q\k_l(t)v Dz]fvail) = U argmin A(igm)7 tj)7 (13)

tiepk i €Dy

. avail
avail

where A is the euclidean distance.

k-means Sampling. This method nominates samples by returning the closest sample to each cen-
ter of the unlabeled data clusters. In order to do so, one may run Kmeans++ clustering algorithm
with the number of clusters equal to b over either the unlabeled data points DX . or the output
of the penultimate layer of g(t;w). We refer to the former as kmeansdata and to the latter as

kmeansembed in the experiments. Assuming {u1, ..., u} are the centers of the clustering, we
have
b
QKmeans (./g\k_l(t)v Dz]fvail) = U argn}cin A(pisty), (14)
i=1 1 €Dy

where A is euclidean distance over the data points or the penultimate layer of g(¢; w).

C DETAILED EXPERIMENTAL RESULTS

C.1 BAYESIAN NEURAL NETWORK (BNN) MODEL

We provide here detailed experimental results across all hyperparameter settings. The result of fig.
that was presented for 3 batch sizes are provided for 6 batch sizes in fig. 4] Similarly, the results
of fig. 3] are provided for additional batch sizes in fig. [/} In addition, both fig. [2] and fig. 3] report
the results for the STRING treatment descriptors. All experiments are repeated for two other sets of
input treatment descriptors (Achilles and CCLE) whose results are provided in figs. [5] [6] [8] and [9]

C.2 RANDOM FOREST MODEL

In addition to the BNN model, we carried out thorough analyses for a different model class. The
experiments are repeated for the random forest as an uncertainty aware ensemble model. The un-
certainty in random forests, similar to other ensemble methods, is originated from the prediction
made by each model instance in the ensemble. We use the random forest implementation in the
Scikit-learn package (Pedregosa et al.,|2011) with 100 trees and set the option max_depth=None so
that the depth of the trees are determined automatically. The performance of the model trained over
the active learning cycles can be seen in fig. [I0] for different acquisition functions, different batch
sizes, different target datasets, and the STRING treatment descriptors. Similarly, the hit ratio of the
interesting genes for a random forest model is reported in fig. The same experiment was repeated
for CCLE treatment descriptors whose results are provided in fig.[IT]and fig.[T3] Notice that random
forest experiments are done with a reduced set of acquisition functions that could be adjusted to the
random forest model.
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C.3 IN-DEPTH DESCRIPTION OF THE Hit Ratio EXPERIMENT

Here we elaborate more on the purpose and the message of the hit ratio experiment whose results
are reported in figs. [7] to 0] [I2] and [I3] for various settings. The purpose of these experiments is to
compare the performance of different acquisition functions in different settings of batch sizes and
input/output datasets to hit the gene targets that are known to be interesting by genomics experts.
To choose the set of interesting genes, we sort them based on their absolute target values. Then we
choose the top 5% of this list that corresponds to both extremes of positive and negative values (both
extremes are considered to be good targets by experts.) The experiments are repeated for 5 different
random seeds to obtain the error bars.
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Figure 4: The evaluation of the model trained with STRING treatment descriptors at each active
learning cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is the active
learning cycles multiplied by the acquisition bath size that gives the total number of data points
collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 6: The evaluation of the model trained with CCLE treatment descriptors at each active learn-
ing cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is the active learning
cycles multiplied by the acquisition bath size that gives the total number of data points collected so
far. The y-axis is the test MSE error evaluated on the test data.
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Figure 7: The hit ratio of different acquisition for BNN model, different target datasets, and different
acquisition batch sizes. We use STRING treatment descriptors here. The x-axis shows the number
of data points collected so far during the active learning cycles. The y-axis shows the ratio of the set
of interesting genes that have been found by the acquisition function up until each cycle.
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Figure 8: The hit ratio of different acquisition for BNN model, different target datasets, and different
acquisition batch sizes. We use Achilles treatment descriptors here. The x-axis shows the number
of data points collected so far during the active learning cycles. The y-axis shows the ratio of the set
of interesting genes that have been found by the acquisition function up until each cycle.
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Figure 9: The hit ratio of different acquisition for BNN model, different target datasets, and different
acquisition batch sizes. We use CCLE treatment descriptors here. The x-axis shows the number of
data points collected so far during the active learning cycles. The y-axis shows the ratio of the set of
interesting genes that have been found by the acquisition function up until each cycle.
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Figure 10: The evaluation of the random forest model trained with STRING treatment descriptors
at each active learning cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is
the active learning cycles multiplied by the acquisition bath size that gives the total number of data
points collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 11: The evaluation of the random forest model trained with CCLE treatment descriptors at
each active learning cycle for 4 datasets and 6 acquisition batch sizes. In each plot, the x-axis is
the active learning cycles multiplied by the acquisition bath size that gives the total number of data
points collected so far. The y-axis is the test MSE error evaluated on the test data.
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Figure 12: The hit ratio of different acquisition for random forest model, different target datasets,
and different acquisition batch sizes. We use STRING treatment descriptors here. The x-axis shows
the number of data points collected so far during the active learning cycles. The y-axis shows the
ratio of the set of interesting genes that have been found by the acquisition function up until each
cycle.
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Figure 13: The hit ratio of different acquisition for random forest model, different target datasets,
and different acquisition batch sizes. We use CCLE treatment descriptors here. The x-axis shows
the number of data points collected so far during the active learning cycles. The y-axis shows the
ratio of the set of interesting genes that have been found by the acquisition function up until each

cycle.
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