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Abstract1

Searching for a path between two nodes in a graph is one of the most well-studied2

and fundamental problems in computer science. In numerous domains such as3

robotics, AI, or biology, practitioners develop search heuristics to accelerate their4

pathfinding algorithms. However, it is a laborious and complex process to hand-5

design heuristics based on the problem and the structure of a given use case. Here6

we present PHIL (Path Heuristic with Imitation Learning), a novel neural architec-7

ture and a training algorithm for discovering graph search and navigation heuristics8

from data by leveraging recent advances in imitation learning and graph represen-9

tation learning. At training time, we aggregate datasets of search trajectories and10

ground-truth shortest path distances, which we use to train a specialized graph11

neural network-based heuristic function using backpropagation through steps of12

the pathfinding process. Our heuristic function learns graph embeddings useful13

for inferring node distances, runs in constant time independent of graph sizes, and14

can be easily incorporated in an algorithm such as A* at test time. Experiments15

show that PHIL reduces the number of explored nodes compared to state-of-the-art16

methods on benchmark datasets by 58.5% on average, can be directly applied in17

diverse graphs ranging from biological networks to road networks, and allows for18

fast planning in time-critical robotics domains.19

1 Introduction20

Search heuristics are essential in several domains, including robotics, AI, biology, and chemistry [1–21

6]. For example, in robotics, complex robot geometries often yield slow collision checks, and search22

algorithms are constrained by the robot’s onboard computation resources, requiring well-performing23

search heuristics that visit as few nodes as possible [1, 4]. In AI, domain-specific search heuristics24

are useful for improving the performance of inference engines operating on knowledge bases [3, 5].25

Search heuristics have been previously also developed to reduce search efforts in protein-protein26

interaction networks [6] and in planning chemical reactions that can synthesize target chemical27

products [2]. This broad set of applications underlines the importance of good search heuristics that28

are applicable to a wide range of problems.29

Figure 1: The goal is to navigate (find a path) from the start to the goal node. While BFS visits many
nodes to find a start-to-goal path (left), one can use a heuristic based on the features of the nodes (e.g.,
Euclidean distance) on the graph to reduce the search effort (middle). We propose PHIL to learn
a tailored search heuristic for a given graph, capable of reducing the number of visited nodes even
further by exploiting the inductive biases of the graph (right).
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The search task can be formulated as a pathfinding problem on a graph, where given a graph, the30

task is to navigate and find a short feasible path from a start node to a goal node, while in the process31

visiting as few nodes as possible (Figure 1). The most straightforward approach would be to launch a32

search algorithm such as breadth-first search (BFS) and iteratively expand the graph from the start33

node until it reaches the goal node. Since BFS does not harness any prior knowledge about the graph,34

it usually visits many nodes before reaching the goal, which is expensive in cases such as robotics35

where visiting nodes is costly. To visit fewer nodes during the search, one may use domain-specific36

information about the graph via a heuristic function [7], which allows one to define a distance metric37

on graph nodes to prune directions that seem less promising to explore. Unfortunately, coming up38

with good search heuristics requires significant domain expertise and manual effort.39

While there has been significant progress in designing search heuristics, it remains a challenging40

problem. Classical approaches [8, 9] tend to hand-design search heuristics, which requires domain41

knowledge and a lot of trial and error. To alleviate this problem, there has been significant development42

in general-purpose search heuristics based on trading-off greedy expansions and novelty-based43

exploration [10–13] or search problem simplifications [14–16]. These approaches alleviate some of44

the common pitfalls of goal-directed heuristics, but we demonstrate that if possible, it is useful to45

learn domain-specific heuristics that can better exploit problem structure.46

On the other hand, learning-based methods face a set of different challenges. Firstly, the data47

distribution is not i.i.d., as newly encountered graph nodes depend on past heuristic values, which48

means that supervised learning-based methods are not directly applicable. Secondly, heuristics should49

run fast, with ideally constant time complexity. Otherwise, the overall asymptotic time complexity of50

the search procedure could be increased. Finally, as the environment (search graph) sizes increase,51

reinforcement learning-based heuristic learning approaches tend to perform poorly [1]. State-of-the-52

art imitation learning-based methods can learn useful search heuristics [1]; however, these methods53

still rely on feature-engineering for a specific domain and do not generally guarantee a constant time54

complexity with respect to graph sizes.55
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Figure 2: Main components of PHIL: On the left, using a greedy mixture policy induced by the
current version of our parameterized heuristic h✓ and an oracle heuristic h⇤ (i.e., a heuristic that
correctly determines distances between nodes), we roll-out a search trajectory from the start node to
the goal node. Each trajectory step contains a set of newly added fringe nodes with bounded random
subsets of their 1-hop neighborhoods and their oracle (h⇤) distances to the goal node. Trajectories
are aggregated throughout the training procedure. On the right, we use truncated backpropagation
through time on each collected trajectory to train h✓, where ĥ is the predicted distance between x2

and xg , and z2 is the updated state of the memory. Here, the memory captures the embedding of the
graph visited so far.

In this paper, we propose Path Heuristic with Imitation Learning (PHIL), a framework that extends56

the recent imitation learning-based heuristic search paradigm with a learnable explored graph memory.57

This means that PHIL learns a representation that allows it to capture the structure of the so far58

explored graph, so that it can then better select what node to explore next (Figure 2). We train our59

approach to predict the node-to-goal distances (h⇤ in Figure 2) of graph nodes during search. To train60
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our memory module, which captures the explored graph, we use truncated backpropagation through61

time (TBTT) [17], where we utilize ground-truth node-to-goal distances as a supervision signal at62

each search step. Our TBTT procedure is embedded within an adaptation of the AggreVaTe imitation63

learning algorithm [18]. PHIL also includes a specialized graph neural network architecture, which64

allows us to apply PHIL to diverse graphs from different Fdomains.65

We evaluate PHIL on standard benchmark heuristic learning datasets (Section 5.1), diverse graph-66

based datasets from different domains (Section 5.2), and practical UAV flight use cases (Section 5.3).67

Experiments demonstrate that PHIL outperforms state-of-the-art heuristic learning methods up to68

4⇥. Further, PHIL performs within 4.9% of an oracle in indoor drone planning scenarios, which is69

up to a 21.5% reduction compared with commonly used approaches. In practice, our contributions70

enable practitioners to quickly extract useful search heuristics from their graph datasets without any71

hand-engineering.72

2 Preliminaries73

Graph search. Suppose that we are given an unweighted connected graph G = (V, E), where V74

is a set of nodes, and E a corresponding set of edges. Further suppose that each node i 2 V has75

corresponding features xi 2 RDv , and each edge (i, j) 2 E has features eij 2 RDe . Assume that we76

are also given a start node vs 2 V and a goal node vg 2 V . At any stage of our search algorithm,77

we can partition the nodes of our graph into three sets as V = CLOSE [ OPEN [ REST, where78

CLOSE are the nodes already explored, OPEN are candidate nodes for exploration (i.e., all nodes79

connected to any node in CLOSE, but not yet in CLOSE), and REST is the rest of the graph. Each80

expansion moves a node from OPEN to CLOSE, and adds the neighbors of the given node from81

REST to OPEN. We call the set of newly added fringe nodes Vnew at each search step. At the start82

of the search procedure, CLOSE = {vs} and we expand the nodes until vg is encountered (i.e., until83

vg 2 CLOSE).84

Greedy best-first search. We can perform greedy best-first search using a greedy fringe expansion85

policy, such that we always expand the node v 2 OPEN that minimizes h(v, vg). Here, h : V⇥V �!86

R is a tailored heuristic function for a given use case. In our work, we are interested in learning a87

function h that predicts shortest path lengths, this way minimizing |CLOSE| in a greedy best-first88

search regime.89

Imitation of perfect heuristics. Partially observable Markov decision processes (POMDPs) are90

a suitable framework to describe the problem of learning search heuristics [1]. We can have s =91

(CLOSE,OPEN,REST) as our state, an action a 2 A corresponds to moving a node from OPEN to92

CLOSE, and the observations o 2 O are the features of newly included nodes in OPEN. Note that93

one could consider an MDP framework to learn heuristics, but the time complexity of operating on the94

whole state is in most cases prohibitive. We also define a history  2  as a sequence of observations95

 = o1, o2, o3, .... Our work leverages the observation that using a heuristic function during greedy96

best-first search that correctly determines the length of the shortest path between fringe nodes and the97

goal node will also yield minimal |CLOSE|. For training, we adopt a perfect heuristic h⇤, similar to98

[1], which has full information about s during search. Such oracle can provide ground-truth distances99

h⇤(s, v, vg), where v 2 OPEN. To conclude, we define a greedy best-first search policy ⇡✓ that uses100

a parameterized heuristic h✓ to expand nodes from OPEN with minimal heuristic values. One could101

also directly use a POMDP solver for the above-described problem, but this approach is usually102

infeasible due to the dimensionality of the search state [19].103

3 Related Work104

General purpose heuristic design. There has been significant research in designing general-purpose105

heuristics for speeding up satisficing planning. The first set of approaches are based on simplifying106

the search problem for example using landmark heuristics [14, 16]. The next set of approaches aim107

to include novelty-based exploration in greedy best-first search [10–13]. The latter set of approaches108

showed state-of-the-art performance (best-first width search [12, 13], BFWS) in numerous settings.109

We show that in domains where data is available, it can be more effective to incorporate a learned110

heuristic into a greedy best-first search procedure.111

3



Submission Guidelines and Formatting Instructions for LoG Conference 2022

Learning heuristic search. There have been numerous previous works that attempt to learn search112

heuristics: Arfaee et al. [20] propose to improve heuristics iteratively, Virseda et al. [21] learn to113

combine heuristics to estimate graph node distances, Wilt et al. [22] and Garrett et al. [23] propose114

to learn node rankings, Thayer et al. [24] suggest to infer heuristics during a search, and Kim et al.115

[25] train a neural network to predict graph node distances. These methods generally do not consider116

the non-i.i.d. nature of heuristic search. Further, Bhardwaj et al. [1] propose SAIL, where heuristic117

learning is framed as an imitation learning problem with cost-to-go oracles. The SAIL heuristic uses118

hand-designed features tailored for obstacle avoidance, with a linear time-complexity in the number119

of explored grid nodes found to be colliding with an obstacle. Feature-engineering becomes more120

difficult as we attempt to learn heuristics on diverse graphs such as ones seen in Section 5.2, where121

we may need expert knowledge. Further, heuristics that do not have a constant time complexity in the122

size of the graph [1, 26–29] generally scale poorly with graph size and hence have constrained use123

cases. Recent approaches to learning heuristics include Retro* [2] by Chen et al., where a heuristic124

is learned in the context of AND-OR search trees for chemical retrosynthetic planning. Our work125

focuses on a more general graph setting.126

There has been significant progress on learning heuristics for NP-hard combinatorial optimization127

problems [30–32]. Still, these heuristic learning methods, due to their time complexities, are128

impractical for the application in polynomial-time search problems, on which this work focuses.129

Learning general purpose search. Learning general search policies is a very well-studied research130

area with a rich set of developments and applications. These include Monte Carlo Tree Search131

methods [33, 34], implicit planning methods [35–37], and imagination-based planning approaches132

[38, 39]. Learning search heuristics can be seen as a special case of general purpose search, where133

the search problem is treated as a partially observable Markov decision process with restricted action134

evaluation (see Section 4), and with models running in O(1) to remain competitive time-complexity-135

wise on problems where best-first search performs well. General purpose search methods do not136

take into account the above-mentioned constraints, which motivates the development of tailored137

approaches for learning heuristics [1, 2].138

Imitation learning. Our approach builds on prior work in imitation learning (IL) with cost-to-go139

oracles. Cost-to-go oracles have been incorporated in the context of IL in methods such as SEARN140

[40], AggreVaTe [18], LOLS [41], AggrevaTeD [42], DART [43], and THOR [44]. SAIL [1] presents141

an AggreVaTe-based algorithm for learning heuristic search. We extend SAIL by incorporating a142

recurrent Q-like function, in which sense our algorithm more closely resembles AggreVaTeD by Sun143

et al. [42]. While a recurrent policy can be easily incorporated in AggreVaTeD, we cannot use a144

policy to evaluate actions. This is due to the fact that we would either have to evaluate all actions in a145

state, which is computationally infeasible, or we would have to give up on taking actions that are not146

in the most recent version of the search fringe, which would degrade the performance (see Section 4).147

4 Path Heuristic with Imitation Learning148

Training objective. With the aim of minimizing |CLOSE| after search, our goal is to train a149

parameterized heuristic function h✓ :  ⇥ V ⇥ V �! R to predict ground-truth node distances h⇤150

and use h✓ within a greedy best-first policy ⇡✓ at test time. More specifically, we assume access151

to a distribution over graphs PG , a start-goal node distribution Pvsg (· | G), and a time horizon T .152

Moreover, we assume a joint state-history distribution s, ⇠ Ps(· | G, t,⇡✓, vs, vg), where Ps153

represents the probability our search being in state s, at time 0  t  T on graph G with pathfinding154

problem (vs, vg), with a greedy best-first search policy ⇡✓ using heuristic h✓. Hence, our goal can be155

summarized as minimizing the following objective:156

L(✓) = E
G⇠PG ,

(vs,vg)⇠Pvsg

t⇠U(0,...,T ),
s, ⇠Ps

⇥ 1

|OPEN|

X

v2OPEN

(h⇤(s, v, vg)� h✓( , v, vg))
2
⇤

(1)

Before we describe the algorithm that can be used to minimize L, we rewrite h✓ to include a memory157

digest component (zt), which represents an embedding of  at time step t. Hence, h✓ becomes158

h✓ : Rd
⇥O ⇥ V ⇥ V �! R, where d is the dimensionality of our memory’s embedding space. As159

opposed to previous methods [1], zt allows us to automatically extract relevant features for heuristic160
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Algorithm 1: PHIL— Sequential Heuristic Training
Obtain hyperparameters T , �0, N , m, t⌧ ;
Initialize D  ;, h✓1 ;
for i = 1, . . . , N do

Sample G ⇠ PG ;
Sample vs, vg ⇠ Pvsg ;
Set �  �i

0;
Set mixture policy ⇡mix  (1� �) ⇤ ⇡✓i + � ⇤ ⇡⇤;
Collect m trajectories ⌧ij as follows;
for j = 1, . . . ,m do

Sample t ⇠ U(0, ..., T � t⌧ );
Roll-in t time steps of ⇡✓i to obtain zt and new state st = (CLOSE0,OPEN0,REST0);
Roll-out trajectory ⌧ij as follows;
for k = 1, . . . , t⌧ do

Update st+k�1 using ⇡mix to get new state st+k and new fringe state OPENk;
Obtain new fringe nodes Vnew = OPENk

\ OPENk�1;
Update trajectory ⌧ij  ⌧ij [ {(Vnew, h⇤(st+k,Vnew, vg))};

Update dataset D  D [ {(⌧ij , zt)} or D [ {(⌧ij , 0)};
Train h✓i using TBTT on each ⌧ 2 D to get h✓i+1 ;

return best performing h✓i on validation;

computations and concurrently reduce the computational complexity of the heuristic function. Further,161

as shown in [1], if we would use h✓ to evaluate all actions in a state (i.e., recalculate the heuristic162

values of all nodes in OPEN), we would need a squared reduction in the number of expanded nodes163

compared with BFS for PHIL to bring performance benefits over BFS, which however may not164

be possible on all datasets. Hence, we constrain the heuristic only to evaluate new OPEN nodes165

which we obtain after moving a node to CLOSE, calling the set of new fringe nodes Vnew after each166

expansion. In practice, the policy ⇡✓ yields an algorithm equivalent to greedy best-first search, with167

the heuristic function replaced by h✓.168

4.1 Learning algorithm & architecture169

Imitation learning algorithm. In Algorithm 1, we present the pseudo-code of the IL algorithm used170

to train our heuristic models (Figure 3). The high-level idea of our algorithm is that we aggregate171

trajectories of search traces (i.e., sequences of new fringe nodes) and use truncated backpropagation172

through time to optimize h✓ after each data-collection step. In particular, after sampling a graph173

G and a search problem vs, vg, we use our greedy learned policy ⇡✓ induced by h✓ to roll-in for174

t ⇠ U(0, . . . , T � t⌧ ) expansions, where T is the episode time horizon, and t⌧ is the roll-out length.175

From our roll-in, we obtain a new state s = (CLOSE0,OPEN0,REST0), and an initial memory state176

zt. After our roll-in, we roll-out for t⌧ steps using our mixture policy ⇡mix, which is obtained by177

probabilistically blending ⇡✓ and the greedy best-first policy induced by the oracle heuristic ⇡⇤. In178

a roll-out, we collect sequences of new fringe nodes, together with their ground-truth distances to179

the goal vg, given by h⇤. Once the roll-out is complete, we append the obtained trajectory and the180

initial state for the following optimization using backpropagation through time. Further analysis on181

the trade-offs between using rolled-in states zt or zeroed-out states for training can be found in the182

supplementary material.183

Note that we could also use supervised learning-based approaches to sample a fixed dataset of (vs,184

vg, h⇤(s, vs, vg)) 3-tuples and train a model to predict node distances conditioned on their features.185

However, our experiments in Section 5 demonstrate that ignoring the non-i.i.d. nature of heuristic186

search negatively impacts model performance, with supervised learning-based methods performing187

up to 40⇥ worse.188

Recurrent GNN architecture. In each forward pass, h✓ obtains a set of new fringe nodes Vnew, the189

goal node vg, and the memory zt at time step t. We represent each node in Vnew using its features190

xi 2 RDv , and likewise the goal node vg using its features xg 2 RDv . Further, for each i 2 Vnew, we191

uniformly sample an n 2 N�0 bounded set of nodes present in the 1-hop neighborhood of i, calling192
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Figure 3: This figure demonstrates the core idea behind our IL algorithm. We present the roll-in
phase on the left-hand side, where our policy is rolled in for t steps to obtain state st and embedding
zt. On the right-hand side, we show the trajectory collection and training steps, where we aggregate
the trajectory for downstream training (green) and use truncated backpropagation through time on the
collected dataset (red).

this set Ni, with |Ni|  n. This sampling step produces a set of neighboring node features, where193

each j 2 Ni has features xj 2 RDv , and corresponding edge features eij 2 RDe .194

Algorithm 2: Heuristic func. (h✓) forward pass
Obtain xi, xj , eij , xg zt;
xi  f(xi, xg, DEUC(xi, xg), DCOS(xi, xg));
xj  f(xj , xg, DEUC(xj , xg), DCOS(xj , xg));
gi  �(xi,�j2Ni �(xi, xj , eij));
g0
i
, zi,t+1  GRU(gi, zt);

zt+1  zi,t+1;
ĥi  MLP(g0

i
, xg);

return ĥi, zt+1;

h✓ forward pass. Algorithm 2 presents195

a single forward pass of h✓. The forward196

pass outputs predicted distances of the new197

fringe nodes to the goal ĥi, together with an198

updated memory digest zt+1. In Algorithm199

2, f,�, �, GRU[45], MLP are each param-200

eterised differentiable functions, with �, �201

representing the update and message func-202

tions [46] of a graph neural network, re-203

spectively.204

In our forward pass, using the function f ,205

we first project xi, xj into a node embed-206

ding space, together with the goal features xg, and their Euclidean (DEUC) and cosine distances207

(DCOS). After that, using a 1-layer GNN, we perform a single convolution over each xi and the208

corresponding neighborhood Ni, to obtain gi. The specific GNN choice is a design decision left209

to the practitioner, and further analysis of GNN choices can be found in Appendix D. Our graph210

convolution processing step allows us to easily incorporate edge features and work with variable sizes211

of Ni. After the graph convolution, we apply the GRU module over each embedding gi to obtain212

hidden states zi,t+1, and new embeddings g0
i
. We compute the sample mean of zi,t+1 for each node213

i 2 Vnew to obtain a new hidden state zt+1, and process g0
i

with xg using an MLP to compute the214

distances between the graph nodes.215

Permutation invariant Vnew embedding. There is a trade-off between processing new fringe nodes216

in batch, as in Algorithm 2, and processing them sequentially. Namely, when we process the nodes in217

batch, we do not use the in-batch observations to predict batch node values, which means that zt is218

slightly outdated. On the other hand, in PHIL, batch processing allows us to compute the heuristic219

values of all v 2 Vnew in parallel on a GPU and preserves the memory’s permutation invariance220

with respect to nodes in Vnew. That is, because our observations are nodes & edges of a graph,221

the respective observation ordering usually does not contain inductive biases useful for predictions,222

which means that we can apply a permutation invariant operator such as the mean of all new states223

zi,t+1 to obtain an aggregated updated state. This approach provides additional scalability as we can224

process values in parallel and PHIL does not have to infer permutation invariance in Vnew from data.225

Runtime complexity. Since 8i 2 Vnew : |Ni|  n, Algorithm 2 together with neighborhood226

sampling runs in up to nc1 + (n + 1)c2 operations per each node i 2 Vnew, which is O(1) with227

respect to the size of the graph. Here, c1 is the maximal number of operations associated with228

evaluating a node, such as performing robot collision checks in dynamically constructed graphs, and229

c2 is the maximal count of total model operations (e.g., f & � operations) on the node set {i}[Ni. In230

general, we expect to learn a better search heuristic with increasing n (see Appendix D for ablations),231
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but in some use cases, c1 may dominate overall complexity, which means the hyperparameter n is232

helpful for practitioners to tune trade-offs between constant factors and search effort minimization.233

5 Experiments234

In our experiments, we evaluate PHIL both on benchmark heuristic learning datasets [1] (Section235

5.1) as well on a diverse set of graph datasets (Section 5.2). Finally, we show that PHIL can be236

applied to efficient planning in the context of drone flight (Section 5.3). Our main goal is to assess237

how PHIL compares to baseline methods in terms of necessary expansions before the goal node is238

reached. Please refer to the supplementary material for information about baselines, an ablation study,239

and additional experiment details.240

5.1 Heuristic search in grids241

Figure 4: Example of PHIL
escaping local search minima.

In Section 5.1, we evaluate PHIL on 8, 200⇥ 200 8-connected grid242

graph-based datasets by Bhardwaj et al. [1]. These datasets present243

challenging obstacle configurations for naive greedy planning heuris-244

tics, especially when vs is in the bottom-left of the grid, and vg in the245

top-right. Each dataset contains 200 training graphs, 70 validation246

graphs, and 100 test graphs. Example graphs from each dataset can247

be found in Table 1.248

We train PHIL with a hyperparameter configuration of T = 128,249

t⌧ = 32, �0 = 0.7, n = 8, and using rolled-in zt states as ini-250

tial states for training. We use a 3-layer MLP of width 128 with251

LeakyReLU activations, followed by a DeeperGCN [47] graph con-252

volution with softmax aggregation. Our memory’s embedding di-253

mensionality is 64. See Appendix C for an overview of our baselines254

and datasets.255

Dataset Graph Examples SAIL SL CEM QL heuc hman A* MHA* BFWS Neural A* PHIL

Alternating gaps 0.039 0.432 0.042 1.000 1.000 1.000 1.000 1.000 0.34 0.546 0.024

Single Bugtrap 0.158 0.214 0.057 1.000 0.184 0.192 1.000 0.286 0.099 0.394 0.077

Shifting gaps 0.104 0.464 1.000 1.000 0.506 0.589 1.000 0.804 0.206 0.563 0.027

Forest 0.036 0.043 0.048 0.121 0.041 0.043 1.000 0.075 0.039 0.399 0.027

Bugtrap+Forest 0.147 0.384 0.182 1.000 0.410 0.337 1.000 3.177 0.149 0.651 0.135

Gaps+Forest 0.221 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.401 0.580 0.039

Mazes 0.103 0.238 0.479 0.399 0.185 0.171 1.000 0.279 0.095 1.000 0.069

Multiple Bugtraps 0.479 0.480 1.000 0.835 0.648 0.617 1.000 0.876 0.169 0.331 0.136

Table 1: The number of expanded graph nodes of PHIL with respect to SAIL. We can observe that
out of all baselines, SAIL performs best. PHIL outperforms SAIL by 58.5% on average over all
datasets, with a maximal search effort reduction of 82.3% in the Gaps+Forest dataset.

Discussion. As we can see in Table 1, PHIL outperforms the best baseline (SAIL) on all datasets,256

with an average reduction of explored nodes before vg is found of 58.5%. Qualitatively, observing257

Figure 5, we can attribute these results to PHIL’s ability to reduce the redundancy in explored258

nodes during a search. Further, PHIL is also capable of escaping local minima, which is illustrated259

in Figure 4. However, note that we occasionally observe failure cases in practice, where PHIL gets260

stuck in a bug trap-like structure. We discuss possible remedies and opportunities for future work in261

the supplementary material.262

Runtime & convergence speed. PHIL converges in up to N = 36 iterations, with m = 1, t⌧ = 32263

(i.e., after observing less than N ⇤ t⌧ ⇤max(|Vnew|) ⇡ 9, 216 shortest path distances, where we264

take max(|Vnew|) = 8 as the maximal size of Vnew). According to figures reported in [1], this is265

approximately 5⇥ less data than it takes for SAIL to converge.266
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(a) Shifting gaps (SAIL left, PHIL right) (b) Gaps+Forest (SAIL left, PHIL right)

(c) Mazes (SAIL left, PHIL right) (d) Forest (SAIL left, PHIL right)

Figure 5: In each image pair of this figure, we provide a qualitative comparison with the SAIL
method. In particular, we show comparisons on the Shifting gaps, Gaps+Forest, Mazes, and Forest
datasets. We can observe that PHIL (right) learns the appropriate heuristics for the given dataset and
makes fewer redundant expansions than SAIL (left).

5.2 Search in real-life graphs of different structures267

In this experiment, our goal is to demonstrate the general applicability of PHIL to various graphs. We268

train PHIL on 4 different groups of graph datasets: citation networks, biological networks, abstract269

syntax trees (ASTs), and road networks. We use the same graph for citation networks and road270

networks for training and evaluation, and we use 100 random vs, vg pairs for testing. In the case of271

biological networks and ASTs, we usually have train/validation/test splits of 80/10/10, and in the272

case of the OGB [48] datasets, we use the provided splits.273

Dataset |D| ¯|V| ¯|E| SL A* heuc BFS SAIL BFWS PHIL

Citation Networks

Cora (Sen et al. [49]) 1 2,708 5,429 2.201 2.067 1.000 4.001 0.669 1.378 0.475
PubMed (Sen et al. [49])) 1 19,717 44,338 2.157 2.983 1.000 3.853 1.196 1.000 0.745
CiteSeer (Sen et al. [49])) 1 3,327 4,732 1.636 1.487 1.000 2.190 1.062 0.951 0.599

Coauthor (cs) (Schur et al. [50]) 1 18,333 81,894 1.571 1.069 1.000 2.820 1.941 1.026 0.835
Coauthor (physics) (Schur et al. [50]) 1 34,493 247,962 4.076 1.081 1.000 4.523 � 1.012 0.964

Biological Networks

OGBG-Molhiv (Hu et al. [48]) 41,127 25.5 27.5 1.086 1.065 1.000 1.267 1.104 1.146 1.016
PPI (Zitnik et al. [51]) 24 2,372.67 34,113.16 0.772 0.831 1.000 5.618 1.746 3.941 0.658

Proteins (Full) (Morris et al. [52]) 1,113 39.06 72.82 0.995 0.997 1.000 2.645 0.891 0.966 0.831
Enzymes (Morris et al. [52]) 600 32.63 62.14 1.073 1.007 1.000 1.358 1.036 0.992 0.757

ASTs OGBG-Code2 (Hu et al. [48]) 452,741 125.2 124.2 1.196 1.013 1.000 1.267 1.029 0.817 1.219

Road Networks OSMnx - Modena (Boeing [53]) 1 29,324 38,309 2.904 3.085 1.000 3.493 1.182 0.997 0.489
OSMnx - New York (Boeing [53]) 1 54,128 89,618 39.424 36.529 1.000 63.352 1.583 1.013 0.962

Table 2: Comparison of PHIL with baseline approaches on 4 groups of datasets: citation networks,
biological networks, abstract syntax trees, and road networks. "�" denotes being out of a 4-day’s
training time limit. We can observe that, on average across all datasets, PHIL outperforms the best
baseline per dataset by 13.4%. Discounting the OGBG datasets, this number becomes 19.5%.

Similarly as in Section 5.1, our MLP has four layers of width 128 with LeakyReLU activations and274

we use a DeeperGCN [47] graph convolution with softmax aggregation. The utilized node and edge275

features are the provided features in each dataset, except for a few minor modifications which are276

discussed in Appendix A & Appendix C. We train an MLP of depth 5 and width 256 using supervised277

learning (SL) for our learning-based baseline method.278

Discussion. The results presented in Table 2 suggest that PHIL can learn superior search heuristics279

compared with baseline methods, outperforming top baselines per dataset in terms of visited nodes280

during a search by 13.4% on average. Two datasets where PHIL fell short compared to other281

baselines are the OGBG-Molhiv and OGBG-Code2 datasets. The OGBG-Code2 dataset adopts a282

project split [54] and OGBG-Mohliv adopts a scaffold split [55], both of which ensure that graphs of283

different structure are present in the training & test sets. Although PHIL improved upon uninformed284

search (BFS) in the OGB datasets, structural graph consistency is explicitly discouraged in the285
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above-mentioned OGBG splits. Without the OGBG datasets, PHIL improves on the top baselines per286

dataset by 19.5% on average, and upon the Euclidean node feature heuristic (heuc) by 20.4%. Note287

that we trained PHIL up to N = 60 iterations, which means that it only encountered a small subset288

of the pathfinding problems in the single graph setting, which means that PHIL had to generalize to289

learn useful heuristics. Even in Cora, the |D| = 1 dataset with least number of nodes, PHIL observed290

roughly 6, 000 node distances during training, which is less than 0.2% of total distances in the Cora291

graph.292

5.3 Planning for drone flight293

Figure 6: This figure illustrates the room
adversarial environment with an exam-
ple planning problem (red) and the ex-
panded graph by PHIL (blue).

In our final experiment, we use PHIL to plan collision-294

free paths in a practical drone flight use case within an295

indoor environment. We built our environment using the296

CoppeliaSim simulator [56], and the Ivy framework [57].297

Figure 6 presents the environment which we refer to as298

room adversarial in Table 3. For more detail about each299

environment, please refer to the supplementary material.300

We discretize the environments into 3D grid graphs of size301

50⇥50⇥25, and randomly remove 5 sub-graphs of size 5⇥302

5⇥ 5 both during training and testing, this way simulating303

real-life planning scenarios with random obstacles. The304

hyperparameter configuration and the specific architecture305

we utilize are equivalent to Section 5.1, but with n = 4.306

Likewise, the node features are 3D grid coordinates, and307

the baselines include supervised learning (SL), heuc, A*,308

and BFS, similarly as in Sections 5.1, 5.2. In Table 3 we309

report the ratio of expanded nodes with respect to heuc.310

Video demo. We provide a video demonstration of PHIL running in room adversarial: https:311

//cutt.ly/eniu5ax.

Dataset SL A* heuc BFS SAIL BFWS PHIL Shortest path
Room simple 1.124 76.052 1.000 291.888 0.973 1.286 0.785 0.782

Room adversarial 2.022 67.215 1.000 238.768 0.944 1.583 0.895 0.853

Table 3: Results of PHIL in the context of planning for indoor UAV flight. PHIL outperforms
all baselines in both the room simple and room adversarial environments while remaining close
performance-wise to the optimal number of expansions.

312
Discussion. As we can observe in Table 3, PHIL outperforms all baselines in both environments.313

Interestingly, PHIL expands only approximately 0.3% more nodes in the simple room than least314

possible and 4.9% more in the adversarial room case. The same figures for the greedy method (heuc)315

are 27.8% and 17.2%, respectively. These results indicate that PHIL is capable of learning planning316

strategies that are close to optimal in both simple and adversarial graphs, while the performance of317

naive heuristics degrades.318

5.4 Runtime Analysis319

We summarize test run-times of different approaches in Appendix G. PHIL runs 57.9% faster than320

BFWS and 32.2% faster than SAIL, and not much slower than traditional A* (34.7%) and hman321

(18.3%). Although Neural A* is 71.0% faster than PHIL due to the fact that it casts the whole search322

process into matrix operations on images, it cannot be employed in a generic search setting.323

6 Conclusion324

In our work, we consider the problem of learning to search for feasible paths in graphs325

efficiently. We propose a model and a training procedure to learn search heuristics that326

can be easily deployed across diverse graphs, with tuneable trade-off parameters between327

constant factors and performance. Our results demonstrate that PHIL outperforms cur-328

rent state-of-the-art approaches and can be applied to various graphs with practical use329

cases.330
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