Learning Graph Search Heuristics

A Discussion, Limitations, and Future Work

Injection from nodes and edges to features. As mentioned in Section 5.2, if multiple graph nodes
or edges have the same features, our heuristic learning method is challenging to apply. To ensure that
PHIL has a constant time complexity, we bound the number of neighbouring nodes used for graph
convolutions around new fringe nodes, and do not perform any graph convolutions on goal nodes.
However, if multiple graph nodes have the same features, or they perhaps do not have any features at
all, we may need to perform operations that are not constant in the size of the graph, such as sampling
anchor nodes as in position-aware GNN [48], or collecting more expressive Node2Vec [59] style
features. Since the time complexity of these methods are relatively high (e.g. position-aware GNN'’s
time complexity is O(]V'|?log? |V|) while the Dijkstra algorithm only runs in O(|V|log |V'| + | E|)),
we do not use them unless necessary. For use cases where injections from nodes & edges to features
are hard to guarantee, we encourage practitioners to increase n or potentially perform multiple
convolutions on fringe and goal nodes.

Restricted fringe evaluation. As explained in Section 4, PHIL only evaluates new fringe nodes
which are obtained after expanding a node. In practice, this means that once PHIL assigns a heuristic
value to a node, the value is never updated. While this approach is favorable in terms of the time-
complexity of heuristic computations, it does not allow PHIL to re-evaluate potentially promising
nodes for expansion, based on its updated belief about the POMDP state. We believe that methods
that predict the features of promising nodes to expand combined with locality-sensitive hashing or
approaches that incorporate node value uncertainty present promising avenues for future work.

Solutions not necessarily optimal. For a best-first search algorithm to find optimal solutions,
the used heuristics needs to be admissible [60]. In our approach, we do not guarantee the trained
heuristics to be itadmissible, which means that when combined with best-first search, PHIL would
not guarantee optimal final solutions. On the other hand, our approach is concerned with finding
satisficing solutions as quickly as possible, which is motivated by possible applications in Section 1.
As in [1], our learned heuristics can be easily incorporated into a framework such as multi-heuristic
A* [61], where any number of inadmissible heuristics can be used with a single admissible heuristic,
and the final solution cost sub-optimality is bounded. An interesting avenue for future work would
be to design heuristic learning loss functions that discourage models from over-estimating heuristic
values.

Full memory permutation invariance. As noted in Section 4, our memory module is invariant
to the permutation of nodes in V,.,,. However, due to how the GRU module is applied, we do
not guarantee that that the memory is permutation invariant with respect to the sequence in which
nodes are expanded, or equivalently the sequence of V,,.,, sets. It could be desirable to guarantee
such permutation invariance, as the observations are still nodes and edges of a graph, which may
not contain sequential inductive biases. Recent work by Cohen et al. [62] shows that a simple
regularization trick can help efficiently train permutation invariant RNNs. It would be interesting to
explore in which cases does full permutation invariance improve PHIL’s performance.

Directed graphs. As one may notice, most of the examples in this work include graphs that are
undirected. The main reason for this is that once we have directed edges in a graph, it may happen
that a particular node does not have a path toward the goal, which means that the oracle cost would
be effectively undefined. One option for avoiding this issue is adding parallel backward edges during
training, ensuring that paths to goals always exist (assuming that the start and goal nodes are parts of
the same connected component). This way, PHIL is correspondingly penalised for expanding a node
that does not immediately lie on a path to the goal.

Ethical considerations. Search algorithms with heuristics can be used within unethical systems.
However, our work is not tailored for any particular use cases, and hence we do not believe that it has
clear direct negative consequences.

B Practical implementation details

As noted in our abstract, at test time, the heuristic function obtained from PHIL can be directly used
as a heuristic in an algorithm such as A* or greedy best-first search. In practice, this means that we
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maintain a priority queue of nodes and distances predicted by the PHIL heuristic and greedily expand
the nodes which are predicted to be closest to the goal, as seen in Figure 7.

To ensure fast training in Algorithm 1, we maintain two priority queues, one for PHIL and one for
the oracle heuristic. On every expansion, we update both the PHIL queue and oracle queue. This
way, probabilistically blending the two greedy policies comes down to either popping from the PHIL
queue or the oracle queue.

Candidate Priority Queue

Figure 7: PHIL is used as a heuristic to predict the distances of each node, similarly as a heuristic
function in best-first search. This figure illustrates a single queue ‘pop’ operation.

C Training, Baselines, Hyperparameters, and Datasets

Baselines. In our experiments we use a range of both learning-based and classical baselines. Our
baselines include:

¢ Neural A* [28]: Neural A* learns a differentiable version of A* search on two-dimensional
grid graphs. It cannot be straightforwardly adapted to general graphs, which is why we use it as
a baseline solely in Section 5.1.

e SAIL [1]: Imitation learning-based approach for learning search heuristics on grid graphs. SAIL
is adapted in Section 5.2 to not include robotics domain specific features presented in [1], as
these are not possible to compute for general graphs.

* Supervised Learning (SL): An MLP trained to predict distances between nodes conditioned on
node features. In Sections 5.2, Sections 5.3 the nodes are sampled from the graph uniformly at
random. In Section 5.1, an oracle policy is rolled out, and data points are collected by sampling
random actions during the roll-out as in SAIL. This is because in Section 5.1, the start-goal
distribution is not uniform.

* Deep Q Learning (QL) [63]: A DQN agent trained to explore the graphs such that [V, | is
minimized. The agent receives a negative reward of —1 until the goal node is reached in each
episode.

* Cross Entropy Method - Evolutionary Strategies (CEM) [64]: Derivative free optimization
of hy using evolutionary strategies. As explained in [1], the initial population of policies is
sampled using a batch size of 40. Then, each policy is evaluated on 5 graphs and assigned a
score based on the number of expanded nodes for the fitness function. After computing the
fitness function, 20% of best-performing policies are selected to be a part of the next population.

* Best-first width search (BFWS) [12]: BFWS adapts greedy best-first search with a generic
search history-based novelty metric, which allows it to escape search plateaus and explore
relevant nodes. We implement BFWS in experiments from Section 5.1 and 5.3. In Section
5.2, we extend BFWS with boundary-extension features [13], which allows us to apply it to
continuous feature spaces.

o Multi-heuristic A* (MHA*)[61]: Multi-heuristic A* using the Euclidean, Manhattan, and d s
heuristics in a round-robin fashion, where d,; is the distance of the closest uncovered obstacle
for a given node. This baseline is only used in Section 5.1, where all of these heuristics are
well-defined.

* A*search (A*): A* search algorithm using a Euclidean heuristic function on the node features.
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* Greedy best-first search (h,,,41,, hewc): Greedy best-first search using Manhattan and Euclidean
heuristics, respectively.

* Breadth-first-search (BFS): Vanilla breadth-first-search without any heuristic.

Datasets. Here, we provide more details about the datasets used in Section 5.2 and Section 5.3. For
more information about datasets used in Section 5.1, we refer the reader to Bhardwaj and Choudhury
etal. [1].

In our experiments using diverse graphs, as noted in Section 5.2, we use the node & edge features
provided in each dataset for training and testing. The three exceptions to this are the PPI, OSMnx
datasets, and citation networks. As discussed in Appendix A, we added node labels (i.e., 120
dimensional label vectors) as features in the PPI dataset because the default node features were not
unique. In the OSMnx networks, we did not use all the provided node and edge features, rather
only the geographical node coordinates. We further augmented the OSMnx node features with their
degree centrality and included Laplacian, modularity, and Bethe Hessian edge features. For citation
networks, we only used the first 128 features to make the search problem more challenging.

In static graphs (such as the OSMnx networks), it may be helpful to augment the graph with expressive
features that could be useful for heuristic computations, such as eigenvectors of the graph Laplacian
matrix. In non-static graphs, these operations would typically be too expensive to re-compute on
each pathfinding attempt. Note that computing more expressive features such as betweenness or
percolation centrality have higher time complexities than computing shortest path distances between
all pairs of nodes. Due to their time complexity, these features are impractical pre-compute, though
they would likely lead to superior search heuristics.

In Section 5.3, we built our environment using the CoppeliaSim simulator [57], and the Ivy framework
by Lenton er al. [58]. Figure 8 presents the environments which we refer to as room adversarial
and room simple in Table 3. The room simple environment is equivalent to the Ivy drone demo
environment — a single room with a table surrounded by chairs in the middle of the room and various
furniture close to the walls. The main difference between room simple and room adversarial is that
room simple only contains a single table in the middle of the room. In contrast, in room adversarial,
three tables span to a wall, this was creating a bottleneck for naive heuristics. Note that the drones
are not allowed to fly under furniture to make the environment more challenging.

Figure 8: We present two CoppeliaSim environments used for our UAV flight experiments. On the
left, we have the adversarial room environment, on the right, we present the room simple environment.

Hyperparameters in diverse graphs. With regards to the diverse graph experiments (Section
5.2), there are in-practice three parameters that we can tune for each dataset: n, ¢, T'. Recall that
the hyperparameter n is the maximal size of the 1-hop neighborhood around the new fringe nodes
sampled during training. We found that a rule of thumb of setting n to the minimum of 8 and the
average node degree in the given graph dataset worked reasonably well. In practice, n should be
tuned to optimize the search effort & wall-clock performance trade-off. In terms of 7', it is advisable
to set it such that the algorithm can reach target nodes during training. Hence, we found that setting
T roughly to the largest graph diameter is a suitable choice. In terms of ¢, we train each sequence
using the stored old rolled-in states, and for larger graphs (> 10, 000 nodes), we use ¢, = 128, while
for smaller graphs (between 10, 000 and 5, 000 nodes), we use ¢, = 64, and otherwise we use a rule
of thumb of taking ¢, ~ T x 0.2.

Grid graphs & drone flight hyperparameters. In our grid graph experiments (Section 5.1), we
use T' = 256, t. = 32, By = 0.7, n = 8. Finally, in our drone flight experiments, we use the same
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configuration as in the grid graph experiments. The only differences are that we setn = 4, t, = 64,
and we randomize start and goal nodes both during training and testing.

Optimization. PHIL is generally trained using the Adam optimizer with a learning rate of 0.001
and a batch size of 32. Once we sample ¢t ~ U(0,...,T — t,) for a roll-in, it can happen that the
target is reached in less than ¢ 4 ¢, steps. In such cases, we continue the sequence until we reach ¢,
steps or all the graph nodes are explored, in which case we end the episode. Another approach would
be to end episodes once the goal node is reached. In practice, we did not find significant performance
differences between the two methods.

D Ablation studies

For the ablation studies, we use three, 4-connected versions of down-scaled datasets provided in
Bhardwaj et al. [1]: Gaps+Forest, Forest, and Alternating gaps. We downscale each dataset 5, to
dimensions 40 x 40. While the Gaps+ Forest dataset presents a more challenging environment with
multiple planning bottlenecks and obstacles, Forest and Alternating gaps are simpler environments
with more straightforward heuristics. Figure 9 present example graphs from the down-scaled datasets

Gaps+Forest, Forest, and Alternating gaps.
e
]
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|

Figure 9: This figure presents the down-scaled datasets used for the ablation experiments. We have
Gaps+Forest (left), Forest (centre), and Alternating gaps (right).

In each ablation experiment, unless stated otherwise, we use a batch size of 8, the Adam optimizer
with a learning rate of 0.01, and up to 20 roll-in steps. The MLP in PHIL has 3 layers of width 128,
LeakyReLU activations, and the memory state has d = 64 dimensions. 2D grid coordinates are used
as node features, similarly as in Section 5.1. We report the number of explored nodes with respect
to A* or with respect to the optimal number of expansions (i.e., the shortest path distances between
nodes). All experiments are performed across 3 random seeds, and standard deviations are used for
error bars.

D.1 Zeroed-out states vs. Rolled-in states

There is a trade-off between using rolled-in states for downstream training using backpropagation
through time (i.e., storing z; after each roll-in) and using zeroed-out states (i.e., storing zeroed-out
initial states). Namely, past rolled-in states z; are out-of-distribution for optimized versions of hg, but
PHIL may use these embeddings for inferring initial node distances because z; contains information
about the rolled-in graph. On the other hand, zeroed-out states are always in-distribution for hy, but
the algorithm is constrained to start from an initial state of 0 in regions where this may never be the
case at test time. Our goal is to gain insight into when one method is preferable over to the other in
this ablation.

We train two versions of PHIL, one with zeroed-out initial states for TBTT on each trajectory
(PHIL-zero), and one with initial states stored from roll-ins of the past versions of PHIL (PHIL-roll).
Both versions are trained for ¢, = 0, 8, 16, 32, 64 TBTT steps using the Gaps+Forest graph dataset.
Figure 10 illustrates the performance progress across TBTT steps of both of these approaches. Firstly,
we observe that up to around ¢, = 16 steps; both approaches positively benefit from performing more
backpropagation steps through time, reinforcing that the memory module brings overall performance
benefits. Further, we may see the performance difference of PHIL-roll and PHIL-zero at O steps. In
this region, PHIL-roll outperforms PHIL-zero by about 3%, which is following the intuition of the
rolled-in states containing useful information about the embeddings of rolled-in graphs. Secondly,
we can notice that the performance of PHIL-zero plateaus after 16 steps. This plateau suggests that
the graph may not contain useful information for inferring node distances beyond 16 backpropagated
steps. Finally, the performance of PHIL-roll decreases much steeper than that of PHIL-zero once it
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Figure 10: This plot illustrates the performance of PHIL with zeroed-out initial states vs. stored
rolled-in initial states during training across multiple TBTT steps.

starts deteriorating after 16 steps, which could mean that there is some form of error compounding
once PHIL makes predictions from a wrongly initialised state during training.

Conclusion. The main takeaway of this ablation experiment is that if one would like to perform only
a few TBTT steps (i.e., low ), using rolled-in states will likely provide some performance benefits.
On the other hand, as £, increases, it is preferable to use zeroed-out initial states. Practitioners can
determine this choice on a per-problem basis.

D.2 Effect of GNN choice

In this ablation we assess what effects do different graph neural networks have on the performance
of PHIL. Namely, we train the PHIL-zero from the previous ablation, using ¢, = 16, n = 4 and
five different GNNs: GAT (Velickovi¢ et al. [65]), MPNN (max), MPNN (sum) (Gilmer et al. [46]),
DeeperGCN (softmax), and DeeperGCN (power) (Li et al. [47]). We report the ratio of explored
nodes with respect to A* in Table 4.

GNN Alternating gaps Forest Gaps+Forest
GAT 0.077+0.0110  0.065+0.0013  0.154 + 0.0112
MPNN (max) 0.071+£0.0834  0.064 + 0.0004 0.158 £0.0143
MPNN (sum) 0.095 +0.0487 0.07 £0.0085 0.187 £0.0135

DeeperGCN (softmax) ~ 0.069 £0.0008  0.064 £ 0.0030 0.164 +0.0113
DeeperGCN (power) 0.076 + 0.0027 0.07+£0.0101  0.19 +0.0037

Table 4: This table presents the results obtained using different graph convolutions in the three graph
datasets from the ablation study. We can observe that maximisation-based aggregation performs
better on average, while attention can provide performance benefits in the challenging Gaps+ Forest
graphs.

In general, we find that maximisation-based aggregation
approaches tend to perform better than other approaches
by 1.57% on average. Note that this comparison only in-
cludes the MPNN and DeeperGCN GNNs. DeeperGCN
(softmax) achieves the best results on both the Alternating
gaps and Forest datasets. Further, using DeeperGCN (soft-
max), PHIL learned the optimal strategy for finding the
goal in the Alternating gaps dataset, which is to follow the
path along the bottleneck wall, as seen in Figure 11.

Figure 11: This figure illustrates PHIL
using the DeeperGCN (softmax) GNN
learning the optimal heuristic strategy in
the Alternating gaps dataset.

GAT outperforms other approaches on the Gaps+ Forest
dataset, which is also the most complex of the three
datasets. This finding suggests that forms of attention
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could be useful for learning heuristics in more complex

graphs. In Figure 12, we can see a side-by-side comparison of GAT, DeeperGCN (softmax), and
MPNN (sum) in the Gaps+ Forest graph dataset. We may observe that the GAT-based and DeeperGCN-
based heuristics find strategies that are close to optimal, while MPNN (sum) performs a similar
strategy, but with slightly more expansions.

Figure 12: We compare the solutions of PHIL trained with a GAT (left), DeeperGCN (softmax)
(middle), and MPNN (sum) (right). Results demonstrate that MPNN (sum) makes several redundant
expansions while the other two methods expand paths close to optimally.

Conclusion. The GNN ablation demonstrates that maximisation-based aggregation performs better,
with an average reduction of explored nodes by 1.57%. This finding is consistent with Veli¢kovi¢
et al. [66], where GNNs are applied to execute graph algorithms. While the problem solved by
Velickovic et al. [66] is different, its nature is similar: train a GNN to select which node to explore
next in order to imitate a reference graph algorithm. In PHIL, scores are assigned to nodes rather
than nodes being selected, but the downstream operation is node selection. Further, these experiments
also suggest that attention can be helpful in more complex graphs, with GAT outperforming other
approaches in the Gaps+Forest graphs.

D.3 Increasing neighborhood size

As explained in the approach (Section 4), for each new fringe node we uniformly sample an n € N>q
bounded neighborhood of nodes, which we then use for graph convolutions. We hypothesized that
with increasing n, the performance of PHIL will improve. In Figure 13, we validate this hypothesis
on Alternating gaps, Forest, and Gaps+Forest datasets, by gradually setting n = 0, 1,2, 4. We train
PHIL using a DeeperGCN (softmax) graph convolution, ¢, = 16, and with otherwise the same set
of hyperparameters as in the Zeroed-out states vs. Rolled-in states (Appendix D.1) experiment. In
Figure 13, we report the explored node ratio of each method with respect to the optimal number of
explored nodes, that is, the shortest paths between start & goal pairs.
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Figure 13: This plot illustrates the performance of PHIL with increasing n = |A;| through 0,1, 2,4
for each evaluated fringe node .

Conclusion. In Figure 13, we may observe that on all datasets the performance of PHIL improves
with increasing n = || until n = 2, after which it plateaus. These results suggest that PHIL can
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benefit from additional nodes sampled from the neighbourhoods of evaluated fringe nodes, even if
this sampling is performed uniformly at random.

D.4 Increasing memory capacity

In the final ablation experiment, we consider what effects changing the capacity of memory (d) has on
the overall performance of PHIL. We alter d = 1, 16, 32, 64, 128, 256 across all datasets. In Figure
14, the ratio of explored nodes is presented with respect to the shortest path length, which is the
optimal baseline.

Focusing on the Gaps+ Forest dataset, in Figure 14 we can observe that the performance of PHIL
generally improves until about d = 32 by approximately 40% with respect to d = 1, after which it
starts getting worse. Hence, we can conclude that additional memory capacity can be helpful for
PHIL to learn representations better suited for inferring distances of newly added fringe nodes. Note
that we trained PHIL for a fixed number of iterations (N = 36) in all cases, which means that the
decrease in performance after d = 32 could also be due to the GRU module having more parameters
to optimise, which may take longer to converge. However, it could also easily be that the memory
module starts overfitting to samples in the aggregated dataset during training. In the case of the
simpler Alternating gaps and Forest datasets, the differences between different amounts of memory
capacity are marginal. These findings are supported by approaches such as SAIL [1] achieving good
performances in simpler environments. By implication, performance decrease in the Gaps+ Forest
dataset for larger values of d is more likely due to overfitting than optimisation difficulties.
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Figure 14: This plot illustrates the performance of PHIL with increasing d through
1,16, 32,64, 128, 256 on the three ablation datasets.

Conclusion. Additional memory capacity is crucial for PHIL to learn useful representations in
more challenging graphs, while the importance of additional memory decreases as the graphs are
simpler. However, a certain amount of overfitting is observed for larger values of d, which means that
d should be tuned on a per problem basis.



Learning Graph Search Heuristics

E Architecture

Figure 15: This figure illustrates the computation performed in a single forward pass of hy. In the
case of this figure, we would have |V,,c,| = n = 3, with g; representing the convolved embeddings,

and h; the output heuristic values. Horizontally, we illustrate the update of memory z; to z;4;. This
figure is adapted from [67].

F Qualitative Examples
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Figure 16: This figure illustrates the road network of Modena, Italy. We contrast the search effort of
PHIL (left) and A* (right). We can observe that PHIL expands (shown in green) considerably fewer
nodes searching for the goal v,.
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Figure 17: This figure presents representative examples of PHIL runs in datasets from Section 5.1
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Figure 18: Timing experiments on grid search datasets [1].

We evaluate runtimes of 7 approaches during inference on all the datasets in Section 5.1. Each
approach’s runtime are averaged by number of nodes it visited. The runtime experiments are
conducted on a machine with a RTX5000 GPU and a Intel Xeon 5222 CPU.
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