Under review as a conference paper at ICLR 2021

ADAPTIVE NORMS FOR DEEP LEARNING WITH
REGULARIZED NEWTON METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the use of regularized Newton methods with adaptive norms for
optimizing neural networks. This approach can be seen as a second-order coun-
terpart of adaptive gradient methods, which we here show to be interpretable as
first-order trust region methods with ellipsoidal constraints. In particular, we prove
that the preconditioning matrix used in RMSProp and Adam satisfies the necessary
conditions for provable convergence of second-order trust region methods with
standard worst-case complexities on general non-convex objectives. Furthermore,
we run experiments across different neural architectures and datasets to find that
the ellipsoidal constraints constantly outperform their spherical counterpart both
in terms of number of backpropagations and asymptotic loss value. Finally, we
find comparable performance to state-of-the-art first-order methods in terms of
backpropagations, but further advances in hardware are needed to render Newton
methods competitive in terms of computational time.

1 INTRODUCTION

We consider finite-sum optimization problems of the form

weRd

min | £(w) ::ZE(f(W,Xi,yi)) , 1
i=1

which typically arise in neural network training, e.g. for empirical risk minimization over a set
of data points (x;,y;) € R x R°% j = 1,...,n. Here, £ : R x R°% — R¥ is a convex
loss function and f : R x R? — R°“ represents the neural network mapping parameterized
by the concatenation of the weight layers w € R?, which is non-convex due to its multiplicative
nature and potentially non-linear activation functions. We assume that £ is lower bounded and twice
differentiable, i.e. £ € C?(R? R) and consider finding a first- and second-order stationary point W
for which [VL(W)|| < €5 and Apin (VZL(W)) > —ep.

In the era of deep neural networks, stochastic gradient descent (SGD) is one of the most widely used
training algorithms (Bottoul 2010). What makes SGD so attractive is its simplicity and per-iteration
cost that is independent of the size of the training set (n) and scale linearly in the dimensionality (d).
However, gradient descent is known to be inadequate to optimize functions that are ill-conditioned
(Nesterovl, 2013 [Shalev-Shwartz et al., [2017) and thus adaptive gradient methods that employ
dynamic, coordinate-wise learning rates based on past gradients—including Adagrad (Duchi et al.,
2011), RMSprop (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2014)—have become a
popular alternative, often providing significant speed-ups over SGD.

From a theoretical perspective, Newton methods provide stronger convergence guarantees by appro-
priately transforming the gradient in ill-conditioned regions according to second-order derivatives. It
is precisely this Hessian information that allows regularized Newton methods to enjoy superlinear
local convergence as well as to provably escape saddle points (Conn et al.,|2000). While second-order
algorithms have a long-standing history even in the realm of neural network training (Hagan &
Menhaj, [1994; Becker et al.| [1988)), they were mostly considered as too computationally and memory
expensive for practical applications. Yet, the seminal work of [Martens| (2010) renewed interest for
their use in deep learning by proposing efficient Hessian-free methods that only access second-order
information via matrix-vector products which can be computed at the cost of an additional backprop-
agation (Pearlmutter} |1994; |Schraudolph, 2002). Among the class of regularized Newton methods,

Under review as a conference paper at ICLR 2021

trust region (Conn et al.,|2000) and cubic regularization algorithms (Cartis et al., 2011)) are the most
principled approaches in the sense that they yield the strongest convergence guarantees. Recently,
stochastic extensions have emerged (Xu et al., 2017b;|Yao et al., [2018}; [Kohler & Lucchi, 2017}
Gratton et al.,[2017), which suggest their applicability for deep learning.

We here propose a simple modification to make TR methods even more suitable for neural network
training. Particularly, we build upon the following alternative view on adaptive gradient methods:

While gradient descent can be interpreted as a spherically constrained first-order TR method, precon-
ditioned gradient methods—such as Adagrad—can be seen as first-order TR methods with ellipsoidal
trust region constraint.

This observation is particularly interesting since spherical constraints are blind to the underlying
geometry of the problem, but ellipsoids can adapt to local landscape characteristics, thereby allowing
for more suitable steps in regions that are ill-conditioned. We will leverage this analogy and investigate
the use of the Adagrad and RMSProp preconditioning matrices as ellipsoidal trust region shapes
within a stochastic second-order TR algorithm (Xu et al., 2017a}|Yao et al., 2018)). Since no ellipsoid
fits all objective functions, our main contribution lies in the identification of adequate matrix-induced
constraints that lead to provable convergence and significant practical speed-ups for the specific case
of deep learning. On the whole, our contribution is threefold:

e We provide a new perspective on adaptive gradient methods that contributes to a better
understanding of their inner-workings.

e We investigate the first application of ellipsoidal TR methods for deep learning. We show
that the RMSProp matrix can directly be applied as constraint inducing norm in second-order
TR algorithms while preserving all convergence guarantees (Theorem [I)).

e Finally, we provide an experimental benchmark across different real-world datasets and
architectures (Section 5). We compare second-order methods also to adaptive gradient
methods and show results in terms of backpropagations, epochs, and wall-clock time; a
comparison we were not able to find in the literature.

Our main empirical results demonstrate that ellipsoidal constraints prove to be a very effective
modification of the trust region method in the sense that they constantly outperform the spherical TR
method, both in terms of number of backprogations and asymptotic loss value on a variety of tasks.

2 RELATED WORK

First-order methods The prototypical method for optimizing Eq. (1)) is SGD (Robbins & Monrol
1951). The practical success of SGD in non-convex optimization is unquestioned and theoretical
explanations of this phenomenon are starting to appear. Recent findings suggest the ability of this
method to escape saddle points and reach local minima in polynomial time, but they either need to
artificially add noise to the iterates (Ge et al.,2015; |Lee et al.,2016) or make an assumption on the
inherent noise of SGD (Daneshmand et al., 2018)). For neural networks, a recent line of research
proclaims the effectiveness of SGD, but the results come at the cost of strong assumptions such as
heavy over-parametrization and Gaussian inputs (Du et al., 2017; |Brutzkus & Globerson, 2017} |Li &
Yuan, 2017;Du & Leel 2018; |Allen-Zhu et al.l 2018). Adaptive gradient methods (Duchi et al., 2011}
Tieleman & Hinton, |2012; [Kingma & Ba,|2014) build on the intuition that larger (smaller) learning
rates for smaller (larger) gradient components balance their respective influences and thereby the
methods behave as if optimizing a more isotropic surface. Such approaches have first been suggested
for neural nets by [LeCun et al.|(2012) and convergence guarantees are starting to appear (Ward et al.,
2018; Li & Orabona, [2018). However, these are not superior to the 0(6;2) worst-case complexity of
standard gradient descent (Cartis et al., |2012b)).

Regularized Newton methods The most principled class of regularized Newton methods are trust
region (TR) and adaptive cubic regularization algorithms (ARC) (Conn et al., 2000; (Cartis et al.,
2011)), which repeatedly optimize a local Taylor model of the objective while making sure that the step
does not travel too far such that the model stays accurate. While the former finds first-order stationary

points within O(e;2), ARC only takes at most 0(653/ %). However, simple modifications to the TR
framework allow these methods to obtain the same accelerated rate (Curtis et al.,[2017). Both methods

Under review as a conference paper at ICLR 2021

take at most 0(6;13) iterations to find an ey approximate second-order stationary point (Cartis et al.|
2012a). These rates are optimal for second-order Lipschitz continuous functions (Carmon et al.,
20175 Cartis et al., |2012a) and they can be retained even when only sub-sampled gradient and Hessian
information is used (Kohler & Lucchi, [2017;|Yao et al.| 2018} |Xu et al.,[2017b; Blanchet et al.| 2016;
Liu et al., 2018). Furthermore, the involved Hessian information can be computed solely based
on Hessian-vector products, which are implementable very efficiently (Pearlmutter, |1994). This
makes these methods particularly attractive for deep learning, but the empirical evidence of their
applicability is rather limited. We are only aware of the works of [Liu et al.[(2018) and Xu et al.
(2017a), which report promising first results but are by no means fully encompassing.

Gauss-Newton methods An interesting line of research proposes to replace the Hessian by (approx-
imations of) the generalized-Gauss-Newton matrix (GGN) within a Levenberg-Marquardt framewor
(LeCun et al., [2012; Martens}, 2010; [Martens & Grossel 2015). As the GGN matrix is always positive
semidefinite, these methods cannot leverage negative curvature to escape saddles and hence, there
exist no second-order convergence guarantees. Furthermore, there are cases in neural networks where
the Hessian is better conditioned than the GGN matrix (Mizutani & Dreyfus, [2008). Nevertheless,
the above works report promising preliminary results, most notably |Grosse & Martens|(2016) find
that K-FAC can be faster than SGD on a small convnet. On the other hand, recent findings report
performance at best comparable to SGD on the much larger ResNet architecture (Ma et al.,2019).
Moreover, |Xu et al.| (2017a)) reports many cases where TR and GGN algorithms perform similarly.
This line of work can be seen as complementary to our approach since it is straightforward to replace
the Hessian in the TR framework with the GGN matrix. Furthermore, the preconditioners used in
Martens| (2010) and (Chapelle & Erhan|(2011), namely diagonal estimates of the empirical Fisher and
Fisher matrix, respectively, can directly be used as matrix norms in our ellipsoidal TR framework.

3 AN ALTERNATIVE VIEW ON ADAPTIVE GRADIENT METHODS

Adaptively preconditioned gradient methods update iterates as w11 = wy — A, 1/2 g, where g,
is a stochastic estimate of V.£(w;) and A; is a positive definite symmetric pre-conditioning matrix.
In Adagrad, A 44, is the un-centered second moment matrix of the past gradients computed as

Aada,t = GtG;fr + EI, (2)

where € > 0, Iis the d x d identity matrix and G; = [g1, &2, - . -, &) Building up on the intuition
that past gradients might become obsolete in quickly changing non-convex landscapes, RMSprop
(and Adam) introduce an exponential weight decay leading to the preconditioning matrix

Arpsy = ((1 - B)Gdiag(',..., 8°)G]) + eI, (3)

where 8 € (0,1). In order to save computational efforts, the diagonal versions diag(A ,4,) and
diag(A.,.,.s) are more commonly applied in practice, which in turn gives rise to coordinate-wise
adaptive stepsizes that are enlarged (reduced) in coordinates that have seen past gradient components
with a smaller (larger) magnitude.

3.1 ADAPTIVE PRECONDITIONING AS ELLIPSOIDAL TRUST REGION

Starting from the fact that adaptive methods employ coordinate-wise stepsizes, one can take a
principled view on these methods. Namely, their update steps arise from minimizing a first-order
Taylor model of the function £ within an ellipsoidal search space around the current iterate w;, where
the diameter of the ellipsoid along a particular coordinate is implicitly given by n; and ||g:|| A7l
Correspondingly, vanilla (S)GD optimizes the same first-order model within a spherical constraint.
FigureI] (top) illustrates this effect by showing not only the iterates of GD and Adagrad but also the
implicit trust regions within which the local models were optimized at each stepE]

It is well known that GD struggles to progress towards the minimizer of quadratics along low-
curvature directions (see e.g., (Goh| (2017)). While this effect is negligible for well-conditioned
objectives (Fig. [T} left), it leads to a drastic slow-down when the problem is ill-conditioned (Fig. [T}

!This algorithm is a simplified TR method, initially tailored for non-linear least squares problems (Nocedal
& Wright, [2006)
“We only plot every other trust region. Since the models are linear, the minimizer is always on the boundary.

Under review as a conference paper at ICLR 2021

a a
e GD e GD ° GD
Adagrad Adagrad Adagrad
2 e Adagrad_full

100 — GD 0 — 6D o — GD
Adagrad Adagrad

Adagrad AN
10° 10! —— Adagrad_ful
10°

K =2 r =20 k=20

Figure 1: Top: Iterates and implicit trust regions of GD and Adagrad on quadratic objectives with different
condition number . Bottom: Average log suboptimality over iterations as well as 90% confidence intervals of

30 runs with random initialization

center). Particularly, once the method has reached the bottom of the valley, it struggles to make
progress along the horizontal axis. Here is precisely where the advantage of adaptive stepsize methods
comes into play. As illustrated by the dashed lines, Adagrad’s search space is damped along the
direction of high curvature (vertical axis) and elongated along the low curvature direction (horizontal
axis). This allows the method to move further horizontally early on to enter the valley with a smaller
distance to the optimizer w* along the low curvature direction which accelerates convergence.

Let us now formally establish the result that allows us to re-interpret adaptive gradient methods from
the trust region perspective introduced above.
Lemma 1 (Preconditioned gradient methods as TR). A preconditioned gradient step

Wil — Wy = 8¢ 1= *mAt_lgt @

with stepsize 1, > 0, symmetric positive definite preconditioner A, € R*? and g, # 0
minimizes a first-order model around w, € R® in an ellipsoid given by A, in the sense that

Sy := arg ;161]%2 [mtl(s) =L(w,) +sTg], st |s]la, < 77t||gt||At—1. (5)
Corollary 1 (Rmsprop). The step Spmst = —ntA;,ijtgt minimizes a first-order Taylor model

around wy in an ellipsoid given by Aif,f&t (Eq.|3) in the sense that

Srms,t 1= argsrrel]g}l [m%(s) = L(w) +sTg], st HS”Aiffs,t < m”gt”A:ni/ft' (6)

Equivalent results can be established for Adam using gqqgm,: := (1 —03) ZZ:O Bt*g, as well as for
Adagrad by replacing the matrix A4, into the constraint in Eq. (6). Of course, the update procedure
in Eq. () is merely a reinterpretation of the original preconditioned update, and thus the employed
trust region radii are defined implicitly by the current gradient and stepsize.

3.2 DIAGONAL VERSUS FULL PRECONDITIONING

A closer look at Figure [T|reveals that the first two problems are perfectly axis-aligned, which makes
these objectives particularly attractive for diagonal preconditioning. For comparison, we report
another quadratic instance, where the Hessian is no longer zero on the off-diagonals (Fig. [T] right).
As can be seen, this introduces a tilt in the level sets and reduces the superiority of diagonal Adagrad

Under review as a conference paper at ICLR 2021

over plain GD. However, using the full preconditioner A, 4, re-establishes the original speed up. Yet,
non-diagonal preconditioning comes at the cost of taking the inverse square root of a large matrix,
which is why this approach has been relatively unexplored (see /Agarwal et al.| (2018) for an exception).
Interestingly, early results by Becker et al.|(1988]) on the curvature of neural nets report a strong
diagonal dominance of the Hessian matrix V2£(w). However, the reported numbers are only for tiny
networks of at most 256 parameters. We here take a first step towards generalizing these findings
to modern day networks. Furthermore, we contrast the diagonal dominance of real Hessians to the
expected behavior of random Wigner matricesE] For further evidence, we also compare Hessians of
Ordinary Least Squares (OLS) problems with random inputs. For this purpose, let j o define the ratio

of diagonal to overall mass of a matrix A, i.e. dp := % as in (Becker et al.,[1988).
i 2aj 14Xy

Proposition 1 (Diagonal share of Wigner matrix). For a random Gaussia Wigner matrix W (see
Egq.) the diagonal mass of the expected absolute matrix amounts to: Og[|w|] = Tz

o1
Thus, if we suppose the Hessian at any given point w were a random Wigner matrix we would expect
the share of diagonal mass to fall with O(1/d) as the network grows in size. In the following, we
derive a similar result for the large n limit in the case of OLS Hessians.

Proposition 2 (Diagonal share of OLS Hessian). Let X € R?*"™ and assume each X;,j s generated
i.i.d. with zero-mean and finite second moment o> > 0. Then the share of diagonal mass of the
n— 00 Vv

expected matrix E [|H,|| amounts to: 0gjp,,) — VTR

Empirical simulations suggest that this result holds already in small n settings (see Figure[D.2) and
finite n results can be likely derived under assumptions such as Gaussian data. As can be seen in
Figure 2| below, even for a practical batch size of n = 32 the diagonal mass g1 of neural networks
stays above both benchmarks for random inputs as well as with real-world data.

0 [300 l {

: [l 1 8
S E S 200
=20 2 l 1
'S I &
l 100
0 0
& S <~ RS > & S KN & S N
&NQQ 50\) g\bé éé& 6&& ~ S@ @O\/ Qb'é éé@ 5&& Q?}\
&’§ & ~ éé' < {zi”\ @ KN éé' <
Simple CNN (62k weights) MLP (411k weights)

Figure 2: Diagonal mass of neural network Hessian dx relative to dg[jw) and dgjm,,] of corresponding
dimensionality for random inputs as well as at random initialization, middle and after reaching 90% training
accuracy with RMSProp on CIFAR-10. Mean and 95% confidence interval over 10 independent runs.

These results are in line with [Becker et al.| (1988)) and suggest that full matrix preconditioning might
indeed not be worth the additional computational cost. We thus use diagonal preconditioning in
all of our experiments in Section [5]but note that further theoretical and empirical elaborations of
these findings are needed to assess the Hessian structure and hence effectiveness of full-matrix
pre-conditioning, which is out of the scope of the work at hand.

4 SECOND-ORDER TRUST REGION METHODS

Cubic regularization (Nesterov & Polyak, [2006; (Cartis et al., |2011) and trust region methods belong
to the family of globalized Newton methods. Both frameworks compute parameter updates by

30f course, Hessians do not have i.i.d. entries but the symmetry of Wigner matrices suggests that this baseline
is not completely off.
*The argument naturally extends to any distribution with positive expected absolute values.

Under review as a conference paper at ICLR 2021

optimizing regularized (former) or constrained (latter) second-order Taylor models of the objective £
around the current iterate th] In particular, in iteration ¢ the update step of the trust region algorithm
is computed as

1
min |[my(s) := L(w;) + gls+ =sTB;s|, s.t. [s]ja, < Ay, @)
scRd 2

where A; > 0 and g; and B; are either V£ (w;) and V2L(w;) or suitable approximations. The
matrix A, induces the shape of the constraint set. So far, the common choice for neural networks
is A; := I, Vt which gives rise to spherical trust regions (Xu et al.,[2017a}; [Liu et al., 2018). By
solving the constrained problem ([7), TR methods overcome the problem that pure Newton steps may
be ascending, attracted by saddles or not even computable. Please see Appendix B for more details.

Why ellipsoids? There are many sources for ill-conditioning in neural networks such as un-centered
and correlated inputs (LeCun et al., |2012)), saturated hidden units, and different weight scales in
different layers (Van Der Smagt & Hirzinger, [1998). While the quadratic term of model (7)) accounts
for such ill-conditioning to some extent, the spherical constraint is completely blind towards the
loss surface. Thus, it is advisable to instead measure distances in norms that reflect the underlying
geometry (see Chap. 7.7 in|Conn et al.|(2000)). The ellipsoids we propose are such that they allow for
longer steps along coordinates that have seen small gradient components in the past and vice versa.
Thereby the TR shape is adaptively adjusted to fit the current region of the loss landscape. This is not
only effective when the iterates are in an ill-conditioned neighborhood of a minimizer (Fig.[I), but it
also helps to escape elongated plateaus (see autoencoder in Sec. [3). Contrary to adaptive first-order
methods, the diameter (A;) is updated directly depending on whether or not the local Taylor model is
an adequate approximation at the current point.

4.1 CONVERGENCE OF ELLIPSOIDAL TRUST REGION METHODS

Inspired by the success of adaptive gradient methods, we investigate the use of their preconditioning
matrices as norm inducing matrices for second-order TR methods. The crucial condition for con-
vergence is that the applied norms are not degenerate during the entire minimization process in the
sense that the ellipsoids do not flatten out (or blow up) completely along any given direction. The
following definition formalizes this intuition.

Definition 1 (Uniformly equivalent norms). The norms ||w|a, := (WTAtw)l/2 induced by
symmetric positive definite matrices A; are called uniformly equivalent, if 3 > 1 such that
YweRIVE=1,2,...

1
LW lac < liwle < piwlla.. ®)

We now establish a result which shows that the RMSProp ellipsoid is indeed uniformly equivalent.

Lemma 2 (Uniform equivalence). Suppose ||g:||> < L% forall w; € R%,t = 1,2,... Then
there always exists € > 0 such that the proposed preconditioning matrices A s+ (Eq.|3) are
uniformly equivalent, i.e. Def.[I|holds. The same holds for the diagonal variant.

Consequently, the ellipsoids A.,.,,,s ¢ can directly be applied to any convergent TR framework without
losing the guarantee of convergence (Conn et al.| (2000), Theorem 6.6.8)E] In Theorem we extend
this result by showing the (to the best of our knowledge) first convergence rate for ellipsoidal TR
methods. Interestingly, similar results cannot be established for A .4, ¢, which reflects the widely
known vanishing stepsize problem that arises since squared gradients are continuously added to the
preconditioning matrix. At least partially, this effect inspired the development of RMSprop (Tieleman
& Hinton, 2012) and Adadelta (Zeiler, [2012).

3In the following we only treat TR methods, but we emphasize that the use of matrix induced norms can
directly be transferred to the cubic regularization framework.

SNote that the assumption of bounded batch gradients, i.e. smooth objectives, is common in the analysis of
stochastic algorithms (Allen-Zhu} 2017; |Detazio et al.||2014} Schmuidt et al., [2017; |Duchi et al.| 2011).

Under review as a conference paper at ICLR 2021

4.2 A STOCHASTIC ELLIPSOIDAL TR FRAMEWORK FOR NEURAL NETWORK TRAINING

Since neural network training often constitutes a large-scale learning problem in which the number of
datapoints n is high, we here opt for a stochastic TR framework in order to circumvent memory issues
and reduce the computational complexity. To obtain convergence without computing full derivative
information, we first need to assume sufficiently accurate gradient and Hessian estimates.

Assumption 1 (Sufficiently accurate derivatives). The approximations of the gradient and Hessian
at step t satisfy

gt — VL(wWe)|| < 0 and |By — V2L(wy)|| < 0,
where 6, < % and 6 < min{%, 1},fors0me 0<v<l

For finite-sum objectives such as Eq. (I)), the above condition can be met by random sub-sampling due
to classical concentration results for sums of random variables (Xu et al.,[2017b}; |[Kohler & Lucchil,
2017} [Tripuraneni et al., |2017). Following these references, we assume access to the full function
value in each iteration for our theoretical analysis but we note that convergence can be retained even
for fully stochastic trust region methods (Gratton et al.,|2017;|Chen et al., 2018; Blanchet et al.,[2016)
and indeed our experiments in Section [5|use sub-sampled function values due to memory constraints.
Secondly, we adapt the framework of |Yao et al.|(2018)); |Xu et al.| (2017b), which allows for cheap
inexact subproblem minimization, to the case of iteration-dependent constraint norms (Alg. [)).

Algorithm 1 Stochastic Ellipsoidal Trust Region Method

1: Input: wo € R4, v > 1,1>1n>0,40 >0
2: fort =0,1,...,until convergence do
3: Compute approximations g; and B;.

4 If g < eg,set g :=0.
5: SetAy:= A or Ay = diag (Apms) (see Eq. (3)).
6: Obtain s; by solving m;(s;) approximately.
L - L
7: Compute ratio of function over model decrease: p, = (we) (Wi +50)
m¢(0) — me(st)
8 Set
A if > w,+s, ifp > successful
Appg =050 Wpse 2w, = dWetse o= ()
Ayfy ifpse<n Wy otherwise (unsuccessful).

9: end for

Assumption 2 (Approximate model minimization). Each update step s, yields at least as much
model decrease as the Cauchy- and Eigenpoint simultaneously, i.e.my(s;) < my(s$) and my(s;) <
my(sF), where s¢ and sF are defined in Eq..

Given that the adaptive norms induced by A, ; satisfy uniform equivalence as shown in Lemma

2| the following Theorem establishes an O (max {¢, %¢;;", ;> }) worst-case iteration complexity
which effectively matches the one of Yao et al.[(2018)).

Theorem 1 (Convergence rate of Algorithm [1). Assume that L(w) is second-order smooth with
Lipschitz constants Ly and L. Furthermore, let Assumption E]and E] hold. Then Algorithm 1
finds an O(eg, €pr) first- and second-order stationary point in at most O (max {6;261_{1, 51_{3 })
iterations.

The proof of this statement is a straight-forward adaption of the proof for spherical constraints, taking
into account that the guaranteed model decrease changes when the computed step s; lies outside the
Trust Region. Due to the uniform equivalence established in Lemma[2] the altered diameter of the
trust region along that direction and hence the change factor is always strictly positive and finite.

Under review as a conference paper at ICLR 2021

ResNet18 MLP Autoencoder

— TR Uniform 63 —— TR Uniform
o — TR Adagrad —~ . \ — TR Adagrad
TR RMSprop 0 ~ 62 | TR RMSprop

log(loss)
DR
log(loss)

TR RMSprop

25 = aal \ - e —
e -4 S 5.6 B}

Fashion-MNIST

08 1.0 0 6 7 " 00 02 04 06 08 10 12 14

0.0 02 04 0.6 1 2 3 4 5
of backpropagations x10* # of backpropagations x10* # of backpropagations x10%

—— TR Uniform —— TR Uni
—— TR Adagrad -3.0 —— TR Adagrad
TR RMSprop TR RMSprop

log(loss)
log(loss)

CIFAR-10

! A

25 00 05 0 25 30

01000 2000 3000 4000 5000 6000 7000 8000 00 05 5 10 15 2 X
of backpropagations x10¢

10 15 20 30
of backpropagations # of backpropagations x10

Figure 3: Mean and 95% confidence interval of 10 runs. Green dotted line indicates 99% training accuracy.

5 EXPERIMENTS

To validate our claim that ellipsoidal TR methods yield improved performance over spherical ones, we
run a set of experiments on two image datasets and three types of network architectures. All methods
run on (almost) the same hyperparameters across all experiments (see Table [I|in Appendix B)As
depicted in Fig.[3] the ellipsoidal TR methods consistently outperform their spherical counterpart
in the sense that they reach full training accuracy substantially faster on all problems. Moreover,
their limit points are in all cases lower than those of the uniform method. Interestingly, this makes
an actual difference in the image reconstruction quality of autoencoders (see Figure [I2)), where the
spherically constrained TR method struggles to escape a saddle. We thus draw the clear conclusion
that the ellipsoidal constraints we propose are to be preferred over spherical ones when training neural
nets with second-order methods. More experimental and architectural details are provided in App. C.

To put the previous results into context, we also benchmark several state-of-the-art gradient methods.
For a fair comparison, we report results in terms of number of backpropagations, epochs and time.
All figures can be found in App. C. Our findings are mixed: For small nets such as the MLPs the
TR method with RMSProp ellipsoids is superior in all metrics, even when benchmarked in terms of
time. However, while Fig. [O]indicates that ellipsoidal TR methods are slightly superior in terms of
backpropagations even for ResNets and Autoencoders, a close look at Fig. [T0]and [TT|reveals that they
at best manage to keep pace with first-order methods in terms of epochs and are inferior in time.

6 CONCLUSION

We investigated the use of ellipsoidal trust region constraints for neural networks. We have shown that
the RMSProp matrix satisfies the necessary conditions for convergence and our experimental results
demonstrate that ellipsoidal TR methods outperform their spherical counterparts significantly across
a large set of experiments. We thus consider the development of further ellipsoids that can potentially
adapt even better to the loss landscape such as e.g. (block-) diagonal hessian approximations
(e.g.Bekas et al.|(2007)) or approximations of higher order derivatives as an interesting direction of
future research.

Interestingly, the gradient method benchmark indicates that the value of Hessian information for
neural network training is limited for mainly three reasons: 1) second-order methods rarely yield
better limit points, which suggests that saddles and spurious local minima are not a major obstacle
in modern day architectures; 2) The per-iteration time complexity is noticeably lower for first-order
methods (Figure [IT). The latter observations suggests that advances in distributed second-order
algorithms (e.g., |Osawa et al.| (2018])); Diinner et al.| (2018)) constitute a promising direction of
research towards the goal of a more widespread use of Newton-type methods in deep learning.

Under review as a conference paper at ICLR 2021

REFERENCES

Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril Zhang, and Yi Zhang.
The case for full-matrix adaptive regularization. arXiv preprint arXiv:1806.02958, 2018.

Guillaume Alain, Nicolas Le Roux, and Pierre-Antoine Manzagol. Negative eigenvalues of the
hessian in deep neural networks. 2018.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. The
Journal of Machine Learning Research, 18(1):8194-8244, 2017.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. arXiv preprint arXiv:1811.03962, 2018.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251-276,
1998.

Sue Becker, Yann Le Cun, et al. Improving the convergence of back-propagation learning with
second order methods. In Proceedings of the 1988 connectionist models summer school, pp. 29-37.
San Matteo, CA: Morgan Kaufmann, 1988.

Costas Bekas, Effrosyni Kokiopoulou, and Yousef Saad. An estimator for the diagonal of a matrix.
Applied numerical mathematics, 57(11-12):1214-1229, 2007.

Jose Blanchet, Coralia Cartis, Matt Menickelly, and Katya Scheinberg. Convergence rate analysis of
a stochastic trust region method for nonconvex optimization. arXiv preprint arXiv:1609.07428,
2016.

Leon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’ 2010, pp. 177-186. Springer, 2010.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223-311, 2018.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. arXiv preprint arXiv:1702.07966, 2017.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. arXiv preprint arXiv:1710.11606, 2017.

Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. Adaptive cubic regularisation methods for
unconstrained optimization. part i: motivation, convergence and numerical results. Mathematical
Programming, 127(2):245-295, 2011.

Coralia Cartis, Nicholas IM Gould, and Ph L Toint. Complexity bounds for second-order optimality
in unconstrained optimization. Journal of Complexity, 28(1):93-108, 2012a.

Coralia Cartis, Nicholas IM Gould, and Philippe L Toint. How Much Patience to You Have?: A
Worst-case Perspective on Smooth Noncovex Optimization. Science and Technology Facilities
Council Swindon, 2012b.

Olivier Chapelle and Dumitru Erhan. Improved preconditioner for hessian free optimization. In NIPS
Workshop on Deep Learning and Unsupervised Feature Learning, volume 201, 2011.

Ruobing Chen, Matt Menickelly, and Katya Scheinberg. Stochastic optimization using a trust-region
method and random models. Mathematical Programming, 169(2):447-487, 2018.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. STAM, 2000.

Frank E Curtis and Daniel P Robinson. Exploiting negative curvature in deterministic and stochastic
optimization. arXiv preprint arXiv:1703.00412, 2017.

Frank E Curtis, Daniel P Robinson, and Mohammadreza Samadi. A trust region algorithm with a
worst-case iteration complexity of O(e3~2) for nonconvex optimization. Mathematical Program-
ming, 162(1-2):1-32, 2017.

Under review as a conference paper at ICLR 2021

Hadi Daneshmand, Jonas Kohler, Aurelien Lucchi, and Thomas Hofmann. Escaping saddles with
stochastic gradients. arXiv preprint arXiv:1803.05999, 2018.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization. In Advances in neural information processing systems, pp. 2933-2941, 2014.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in neural information
processing systems, pp. 1646-1654, 2014.

Simon S Du and Jason D Lee. On the power of over-parametrization in neural networks with quadratic
activation. arXiv preprint arXiv:1803.01206, 2018.

Simon S Du, Chi Jin, Jason D Lee, Michael I Jordan, Aarti Singh, and Barnabas Poczos. Gradient
descent can take exponential time to escape saddle points. In Advances in Neural Information
Processing Systems, pp. 1067-1077, 2017.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159, 2011.

Celestine Diinner, Aurelien Lucchi, Matilde Gargiani, An Bian, Thomas Hofmann, and Martin Jaggi.
A distributed second-order algorithm you can trust. arXiv preprint arXiv:1806.07569, 2018.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points-online stochastic
gradient for tensor decomposition. In COLT, pp. 797-842, 2015.

Gabriel Goh. Why momentum really works. Distill, 2017. doi: 10.23915/distill.00006. URL
http://distill.pub/2017/momentum.

Serge Gratton, Clément W Royer, Luis N Vicente, and Zaikun Zhang. Complexity and global rates
of trust-region methods based on probabilistic models. IMA Journal of Numerical Analysis, 2017.

Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573-582, 2016.

Martin T Hagan and Mohammad B Menhaj. Training feedforward networks with the marquardt
algorithm. IEEE transactions on Neural Networks, 5(6):989-993, 1994.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504-507, 2006.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio,
and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623,
2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex opti-
mization. In International Conference on Machine Learning, 2017.

Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Miiller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9—48. Springer, 2012.

Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent only
converges to minimizers. In Conference on Learning Theory, pp. 12461257, 2016.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. arXiv preprint arXiv:1805.08114, 2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation.
In Advances in Neural Information Processing Systems, pp. 597-607, 2017.

10

http://distill.pub/2017/momentum

Under review as a conference paper at ICLR 2021

Liu Liu, Xuanqing Liu, Cho-Jui Hsieh, and Dacheng Tao. Stochastic second-order methods for
non-convex optimization with inexact hessian and gradient. arXiv preprint arXiv:1809.09853,
2018.

Linjian Ma, Gabe Montague, Jiayu Ye, Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W
Mahoney. Inefficiency of k-fac for large batch size training. arXiv preprint arXiv:1903.06237,
2019.

James Martens. Deep learning via hessian-free optimization. In /ICML, volume 27, pp. 735-742,
2010.

James Martens. New insights and perspectives on the natural gradient method. arXiv preprint
arXiv:1412.1193,2014.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408-2417, 2015.

Dominic Masters and Carlo Luschi. Revisiting small batch training for deep neural networks. arXiv
preprint arXiv:1804.07612, 2018.

Eiji Mizutani and Stuart E Dreyfus. Second-order stagewise backpropagation for hessian-matrix
analyses and investigation of negative curvature. Neural Networks, 21(2-3):193-203, 2008.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global performance.
Mathematical Programming, 108(1):177-205, 2006.

Jorge Nocedal and Stephen J Wright. Numerical optimization, 2nd Edition. Springer, 2006.

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Second-order optimization method for large mini-batch: Training resnet-50 on imagenet in 35
epochs. arXiv preprint arXiv:1811.12019, 2018.

Razvan Pascanu and Yoshua Bengio. Revisiting natural gradient for deep networks. arXiv preprint
arXiv:1301.3584, 2013.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Luca Desmaison, Alban aComplexity bounds for second-order optimality in unconstrained
optimizationnd Antiga, and Adam Lerer. Automatic differentiation in pytorch. 2017.

Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147-160,
1994.

Herbert Robbins and Sutton Monro. A stochastic approximation method. In The Annals of Mathe-
matical Statistics - Volume 22, Number 3. Institute of Mathematical Statistics, 1951.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83-112, 2017.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723-1738, 2002.

Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammabh. Failures of gradient-based deep learning.
arXiv preprint arXiv:1703.07950, 2017.

Trond Steihaug. The conjugate gradient method and trust regions in large scale optimization. SIAM
Journal on Numerical Analysis, 20(3):626-637, 1983.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26-31,
2012.

11

Under review as a conference paper at ICLR 2021

Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan. Stochastic cubic
regularization for fast nonconvex optimization. arXiv preprint arXiv:1711.02838, 2017.

Patrick Van Der Smagt and Gerd Hirzinger. Solving the ill-conditioning in neural network learning.
In Neural networks: tricks of the trade, pp. 193-206. Springer, 1998.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes, from any initialization. arXiv preprint arXiv:1806.01811, 2018.

Eugene P Wigner. Characteristic vectors of bordered matrices with infinite dimensions i. In The
Collected Works of Eugene Paul Wigner, pp. 524-540. Springer, 1993.

Peng Xu, Farbod Roosta-Khorasan, and Michael W Mahoney. Second-order optimization for non-
convex machine learning: An empirical study. arXiv preprint arXiv:1708.07827, 2017a.

Peng Xu, Farbod Roosta-Khorasani, and Michael W Mahoney. Newton-type methods for non-convex
optimization under inexact hessian information. arXiv preprint arXiv:1708.07164, 2017b.

Zhewei Yao, Peng Xu, Farbod Roosta-Khorasani, and Michael W Mahoney. Inexact non-convex
newton-type methods. arXiv preprint arXiv:1802.06925, 2018.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

12

Under review as a conference paper at ICLR 2021

Appendix A: Proofs

A NOTATION

Throughout this work, scalars are denoted by regular lower case letters, vectors by bold lower case
letters and matrices as well as tensors by bold upper case letters. By || - || we denote an arbitrary norm.

For a symmetric positive definite matrix A we introduce the compact notation |w|| o = (w7 Aw)l/ 2,
where w € RY.

B EQUIVALENCE OF PRECONDITIONED GRADIENT DESCENT AND
FIRST-ORDER TRUST REGION METHODS

Theorem 2 (Theorem 1 restated). A preconditioned gradient step
Wil — W =5 = — A g ©
with stepsize 1, > 0, symmetric positive definite preconditioner A, € R*? and g, # 0

minimizes a first-order local model around w; € R in an ellipsoid given by A; in the sense that

St ::arg;rel]%}l [mtl(s) = L(wy) + sTgt] , st|s|a, < 77tHgt||At—1. (10)

Proof. We start the proof by noting that the optimization problem in Eq. (I0) is convex. For 1, > 0
the constraint satisfies the Slater condition since 0 is a strictly feasible point. As a result, any KKT
point is a feasible minimizer and vice versa.

Let L(s, \) denote the Lagrange dual of Eq.

L(s,) i= £lowe) + 57+ A (lslla — il). (11

Any point s is a KKT point if and only if the following system of equations is satisfied

Val(s, X) = g+ o ” =0 (12)
A(lslla, - mngtnA;l) - 0. (13)
Islla. — mllgella <0 (14)

A>0. (15)

For s; as given in Eq. (@) we have that

Istlla, = \/tht DTAA g = e AL e = nellgell o (16)

and thus|13|and |14} hold with equality such that any A > 0 is feasible. Furthermore,
T Aust gt — ntLAtAflgt =8t — #gt
77t||gt||A;1 ||gtHA;1
' a7
is zero for A = ||g¢/[a-1 > 0. As aresult, s, is a KKT point of the convex problem|[5| which proves
the assertion.

VSL(St,)\) = Vf(wt) || f”A

O

To illustrate this theoretical result we run gradient descent and Adagrad as well as the two corre-
sponding first-order TR method{] on an ill-conditioned quadratic problem. While the method 1st TR

"Essentially Algorithm!with my based on a first order Taylor expansion, i.e. m; (s) as in Eq. .

13

Under review as a conference paper at ICLR 2021

optimizes a linear model within a ball in each iteration, 1st TR,q4, optimizes the same model over the
ellipsoid given by the Adagrad matrix A ,4,. The results in Figure [show that the methods behave
very similarly to their constant stepsize analogues.

4
e GD 10° = GD
-
) Adagrad L\ Adagrad
e 1stTR ada 10! > — = 1st TR
e 1stTR = = 1st TR_ada
0 ° 1
I ﬂ 10
. . ~
-2 | 103 A} So
. o \ So
[| ° \\ SS
—a 107 X SO
o . ~ So
*——v—o 1077 \\ Sa
-6
- >y \ \
\ L) 107 1 L
-8 1 I
1 I

-8 -6 -4 -2 0 2 4 6 8 0 50 100 150 200 250

Figure 4: Tterates (left) and log suboptimality (right) of GD, Adagrad and two full-featured first-order TR
algorithms of which one (1st TR) is spherically constraint and the other (1st TRyqa) uses A g4, as ellispoid.

C CONVERGENCE OF ELLIPSOIDAL TR METHODS

C.1 PROOF SKETCH

At a high level, the proof can be divided into two steps: 1) establish that each update decreases the
model value and 2) relate the model decrease to the function decrease, therefore proving that the
function decreases.

Based on Assumption [2]the proof first relates the model decrease in each iteration to the gradient
norm ||g;|| and the magnitude of the smallest eigenvalue | Amin (B;)| as well as A;. In the case of
interior solutions (||s¢||+ < A), nothing changes compared to spherical Trust Region methods. When
the computed step s; lies outside the Trust Region, however, the guaranteed model decrease changes
by a constant factor, which accounts for the altered diameter of the trust region along that direction.
Due to the uniform equivalence established in[I] this factor is always strictly positive and finite.

More specifically, the first step of the proof relies on Assumption [2]in order to relate the model
decrease at each iteration ¢ to three quantities of interest: i) the gradient norm ||g;||, ii) the magnitude
of the smallest eigenvalue |Apin (B:)], and iii) the trust region radius A;. In the case of interior
solutions (||s¢||: < A), the model decrease is shown as in the spherical Trust Region methods. When
the computed step s; lies outside the Trust Region, however, the guaranteed model decrease changes
by a constant factor, which accounts for the altered diameter of the trust region along that direction.
Due to the uniform equivalence established in Lemma [2] this factor is always strictly positive and
finite.

From here on, the proof proceeds in a standard fashion (see e.g. Yao et al.|(2018))). That is, a lower
bound on A, is established which (i) upper bounds the number of unsuccessful steps and (ii) lower
bounds the guaranteed model decrease introduced above, which in turn allows to bound the overall
number of successful steps as a fraction of the initial suboptimality in £. Assumption] together with
the smoothness assumptions on £ allow to finally relate the progress of each successful step to the
actual function decrease. Finally, since the function decreases and because it is lower bounded, there
is a finite number of steps which we can upper bound.

C.2 PROOF

In order to prove convergence results for ellipsoidal Trust Region methods one must ensure that the
applied norms are coherent during the complete minimization process in the sense that the ellipsoids
do not flatten out (or blow up) completely along any given direction. This intuition is formalized in
Assumption[T] which we restate here for the sake of clarity.

14

Under review as a conference paper at ICLR 2021

Definition 2 (Definition [I|restated). There exists a constant 1 > 1 such that

1
ﬂwhaﬂwhéMmmw vt vw € R (18)

Towards this end, |Conn et al.|(2000) identify the following sufficient condition on the basis of which
we will prove that our proposed ellipsoid A..,,s is indeed uniformly equivalent under some mild
assumptions.

Lemma 3 (Theorem 6.7.1 in|Conn et al.|(2000)). Suppose that there exists a constant { > 1 such
that
1
Z S Omin (At) S Omax (Af) S C Vta (19)
then Definition[I| holds.

Having uniformly equivalent norms is sufficient to prove convergence of ellipsoidal TR methods (se
AN.1 and Theorem 6.6.8 in (Conn et al.| 2000)). However, it is so far unknown how the ellipsoidal
constraints influence the convergence rate itself. We here prove that the specific ellipsoidal TR method
presented in Algorithm [T] preserves the rate of its spherically-constrained counterpart proposed in
Yao et al| (2018) (see Theorem[I]below).

First, we show that the proposed A, + ellipsoid satisfies Definition 1.

Lemma 4 (Lemmarestated). Suppose ||g:||?> < L% forall w, € R4, t = 1,2,... Then
there always exists € > 0 such that the proposed preconditioning matrices A5+ (Eq.[3) are
uniformly equivalent, i.e. Def.|l|holds. The same holds for the diagonal variant.

Proof. The basic building block of our ellipsoid matrix consists of the current and past stochastic
gradients Gy := [g1, 82, ..., 8]

We consider A,.,,,s which is built up as followﬁ

Arms = | (1= B)Gdiag(8", 8 7,...,8°) GT | 4L (20)

=D

From the construction of A, . it directly follows that for any unit length vector u € R4 \
{0}, |lul]2 = 1 we have

u’ ((1 - pB)GDGT +el)u
(1 - A)uTGD'/A(D/2)TGTu + e|ul}
=(1-9) (DY37Gma)" ((DV3)TGTu) + |l
>e >0,

21

which proves the lower bound for ¢ = 1/e. Now, let us consider the upper end of the spectrum of
A, s+ Towards this end, recall the geometric series expansion

t

N s
> BT=2 B =5 (22)

=0 1=0

and the fact that GG " is a sum of exponentially weighted rank-one positive semi-definite matrices
of the form g;g. Thus

)\max(gzg;r) = Tr(gzg;r) = ||ng||2 S L%—Iv

8This is a generalization of the diagonal variant proposed by Tieleman & Hinton| (2012)), which preconditions
the gradient step by an elementwise division with the square-root of the following estimate g+ = (1 — 8)g:—1 +
B \ 4 (Wt) 2 .

15

Under review as a conference paper at ICLR 2021

where the latter inequality holds per assumption for any sample size |.S|. Combining these facts we
get that

u’ ((1-38)GDGT +el)u
=(1 - B)uTGDGTu + €||u|3
¢

=1-p5)) B 'uTgiglu+e|ul3
; ’ 23)

t

<=5 B L3+ elul3

=0
=(1- "L +e

As a result we have that

€ S)\mzn (Arms,t) S >\maz (Arms,t) S (]- - 5t+1) L%[+ € (24)

Finally, to achieve uniform equivalence we need the r.h.s. of to be bounded by 1/¢. This gives
rise to a quadratic equation in €, namely

E4+(1-p)Lye—1<0 (25)

which holds for any ¢ and any 8 € (0, 1) as long as

1
0<e< 5(,/lequzl—Lir). (26)

Such an € always exists but one needs to choose smaller and smaller values as the upper bound on the
gradient norm grows. For example, the usual value ¢ = 1078 is valid for all L%, < 9.9 - 107. All of
the above arguments naturally extend to the diagonal preconditioner diag(A.,.,,s)-

O

Second, we note that it is no necessary to compute the update step by minimizing Eq. (7)) to global
optimality. Instead, it suffices to do better than the Cauchy- and Eigenpoint simultaneously (Conn
et al., |2000; |Yao et al., |2018)). We here adapt this assumption for the case of iteration dependent
norms (compare (Conn et al., 2000) Chapter 6). restate this assumption here

Assumption 3 (Approximate model minimization). [A.E] restated] Each update step s, yields at least
as much model decrease as the Cauchy- and Eigenpoint simultaneously, i.e.

my(se) < m(sy) and mi(se) < ma(sy), @7
where
s¢ := arg min m, (—« 81) and sP :=argminm,(auy), (28)
0<a<A, gt loe| <A,

where u; is an approximation to the corresponding negative curvature direction, i.e., for some

2
O<v<luHu<v ([|) Amin(B) and |ugll; = 1.

fluelle

In practice, improving upon the Cauchy point is easily satisfied by any Krylov subspace method such
as Conjugate Gradients, which ensures convergence to first order critical points. However, while the
Steihaug-Toint CG solver can exploit negative curvature, it does not explicitly search for the most
curved eigendirection and hence fails to guarantee m;(s;) < mq(sZ). Thus more elaborate Krylov
descent methods such as Lanczos method might have to be employed for second-order criticality
(See also Appendix [B.2]and [Conn et al.| (2000) Chapter 7).

We now restate two results from [Conn et al.| (2000) that precisely quantify the model decrease
guaranteed by Assumption

16

Under review as a conference paper at ICLR 2021

Lemma 5 (Model decrease: Cauchy Point (Theorem 6.3.1. in Conn et al.[{(2000))). Suppose that s?
is computed as in Eq. (28). Then

llg: |l gl
{ 7At }
L+ |[Bel llgels

Lemma 6 (Model decrease: Eigenpoint (Theorem 6.6.1 in |Conn et al.| (2000))). Suppose that
Amin(Bt) < 0 and sF is computed as in Eq. (@) Then

2
EVAmin(Bt) < ”utH) A? (30)

2 e s

me(0) — my(sy) > *HgtH (29

my(0) —my(sf’) > —

We are now ready to prove the final convergence results. Towards this end, we closely follow the
line of arguments developed in|Yao et al.|(2018). First, we restate the following lemma which holds
independent of the trust region constraint choice.

Lemma 7 (Yao et al. (2018)). Assume that L(w) is second-order smooth with Lipschitz constants
Ly and L. Furthermore, let Assumption|l|hold. Then

1 1
F(Xt + St) — F(Xt) — mt(xt) < S;r (VF(Xt) — gt) + 56}1”5,5”2 + §LH||StH3 (31)

Second, we show that any iterate of Algorithm|I]is eventually successful as long as either the gradient
norm or the smallest eigenvalue are above (below) the critical values €, and €7 .

Lemma 8 (Eventually successful iteration - ||g:|| > €,). Assume that L(w) is second-order smooth
with Lipschitz constants Ly and Ly. Furthermore, let Assumption|l| land I 2| hold and suppose that
llgtll > €4 as well as

1—mn . pie (I—n)eg 1 (1—mn)e
1) ——€y, A; < g g _— g 32
g < 4/,&2 €9, t S Iin 1+ Lg7 12LH ,U/4, 3#4) ()
then the step s, is successful.
Proof. First, by Assumption 2} Lemmal3} ||g¢| > e, and Lemmal[2] we have
1 . gl HgtH
—1m(st) 2 5@/ min{ }
1+ HB I’ ||g [
Hgt||
>3 ||gtH min{ }
> el minf 2 Af}
> ~||g:/| min
1+ HB I’
1A
= 3¢ o

where the last equality uses the above assumed upper bound on A; of Eq. (32)). Using this result
together with Lemma|7]and the fact that |[s;||2 < p[|s¢||: < pA; due to Lemmal]2] we find

E(Wt + St) - ,C(Wt) — mt(st)

I—p = . (34)
5 gAep+ 505 AT p? + S Ly AP
A, 35)
2€g [L‘
dy 1)
=229,2 4 hAu +—A24 (36)
€g Eg
1- 5
<=1y (HAt + A?) pt, 37)
2 €g €g

17

Under review as a conference paper at ICLR 2021

where the last inequality makes use of the upper bound assumed on J,. Now, we re-use the
result of Lemma 10 in [Yao et al. (2018), which states that (‘i—”At + I;—”Af) < an for

A; < min {\/ %, (1;7)6“’} to conclude that (%At + %’Af) pt < 1_7" for our assumed
bound on A, in Eq. (32). As a result, Eq. (34) yields - |

1-=pt<1-n,
which implies that the iteration ¢ is successful. O

Lemma 9 (Eventually successful iteration - Ay, (Bt) < —€g). Assume that L(w) is second-order
smooth with Lipschitz constants Ly and L. Furthermore, let Assumption (l|and (2| hold and suppose
that ||| < eg and Apin(By) < —eg. If

1- 1-
ey, < () v

then iteration t is successful.

Proof. First, recall Eq. @) and note that, since both s; and —s; are viable search directions, we can
assume s] VF(w;) < 0 w.Lo.g.. Then

1 1
Lwi+s0) = L(wi) = my(wi) < o ls]® + 5 Lalls: |l

Therefore, recalling Eq. l) as well as the fact that 1212 </, and Istll2 < pllsell: < pAy due to

L ol luelle =
emma
£(Wt + St) — ﬁ(wt) — mt(st)

—my(sy)
30mllse® + 3 Lurllse|®
5 Amin (Be)| A7

30ullsel® + 3 Lurllse|®

%GHA%M2 (39)
%(5HA§M2 + %LHAf;ﬁ

senAip?
O n LA
vey ver
<1l-—mn,

1—Pt:

<

<

IA

where the last second inequality is due to the conditions in Eq. (38). Therefore, p, > 7 and the
iteration is successful. O

Together, these two results allow us to establish a lower bound on the trust region radius A;.

Lemma 10. Assume that L(w) is second-order smooth with Lipschitz constants Ly and L. Fur-
thermore, let Assumption|[l|and 2 hold. Suppose

1-— 1-—
dg < Tneg, 0p < min{ 5 nV6H7 1}.
then for Algorithm[I|we have
1 1-— 1-— 1-—
A s tmind Gt JUZme (mme (omven | g,y)
5 1+ L, 120 g 8 3ul 2 Ly

Proof. The proof follows directly from A; > A;_1 /7 as well as the fact that any step is successful

as soon as A\, falls below min { lfﬁ‘gg, \/ 51222)25;, (151269, (12_:) ”{5} due to LemmaandH O

18

Under review as a conference paper at ICLR 2021

Lemma 11 (Number of successful iterations). Under the same setting as Lemma the number of
successful iterations taken by Algorithm|l|is upper bounded by

L(xo) = £(x)
Cegmin{e2, e3;}’

| Tsucc

— : 1 1 R V;tz : 2 2 I

where C' := nmin{C,Cy}, C; = 2mm{—l_’_Lg,Cg}, Cy = =5 mln{C’g,CH},Cg =
3 EgH (I-m)eg (I1—m)eg o (=1 vey
mm{1+Lg7 V 12Lnps 3pt Cn o= 2% L

Proof. Suppose Algorithm [1|does not terminate at iteration ¢. Then either ||g:|| > €4 or Apin(B) <
—en. If ||g¢|| > €4, according to (29) and Lemma[2] we have

\/

1

“m(s) 2 5 e mm{m’

2
> Creg min{ey, EH}.

1
> egmm{ + ,Coeq, Cren}

Similarly, in the second case Ayin (B:) < —€p,, from Lemmaand@we have
1
_mt(st) > 2 ‘)\mm(Bt”A ,M > Chey mln{e }

Let Ty, denote the number of successful iterations. Since £(w) is monotonically decreasing, we
have

£(> ZE Wt Wt+1)

> Z L(wy) — L(Wi41)
t€Tuce

> Z —my(s¢)n
t€Tguee

> Z CeHmin{eg,e?{}
tETsucc

> |Tsucc|CfH min{ez, 6%1}7

which proves the assertion. O

We are now ready to prove the final result. Particularly, given the lower bound on A; established in
Lemma[I0|we find an upper bound on the number of un-successful iterations, which combined with
the result of Lemma [IT|on the number of successful iterations yields the total iteration complexity of
Algorithm 1]

Theorem 3 (Theorem I restated). Assume that L(w) is second-order smooth with Lipschitz
constants Ly and Ly. Furthermore, let Assumption|]] Iand I 2| hold. Then Algorlthm 1 finds an

O(eg, eH)ﬁrst- and second-order stationary point in at most O (max {e eHl € }) iterations.

Proof. The result follows by combining the lemmas [I0] and [T1] as in Theorem 1 of Xu et al.
(2017a). Specifically, suppose that Algorithm [I] terminates at iteration T. Then the total num-
ber of iterations T = Tyee + Tunsuce and Ay = Ag - yTwe=Timwee - From Lemma [10| we have

. [(1— 1— _
AT > %mln { 1?551’ §2L2)2g7 : 3:269’ (12M71) V[ZI{} = Ainf- Hence, (Tsucc - Tunsucc) IOg(’V) >

log(Ains/Aop), which implies

19

Under review as a conference paper at ICLR 2021

log(Ao/Ainy)

+ TS’MCC . (4])
log(7)

Tunsucc =

Finally, combining Eq.] with the upper bound on successful steps from Lemma [T] yields

log(AO/Ainf) 9 E(Xo) — E(X*)

T<
- log(vy) Cegmin{eZ, 3}

€ O (max {e;Zel_Jl, 6;13})

D DIAGONAL DOMINANCE IN NEURAL NETWORKS

In the following, we make statements about the diagonal share of random matrices. As E[%] might
not exist for a random variable x, we cannot compute the expectation of the diagonal share but rather
of for computing the diagonal share of the expectation of the random matrix in absolute terms. Note
that this notion is still meaningful, as the average of many non-diagonally dominated matrices with
positive entries cannot become diagonally dominated.

D.1 PROOF OF PROPOSITION[]]

Proposition 3 (Proposition [T|restated). For random Gaussian Wigner matrix W formed as

~N(0,0%), i<

~N(0,03), i =, @

Wi,j = Wj,i = {

where ~ stands for i.i.d. draws (Wigner,|1993)), the diagonal mass of the expected absolute matrix
amounts to

1) = 1 (43)

EIWI = 7 (d—1)22"

o1

Proof.

Sew = dZZ:liE (IWirll dE [[W14]]
’ e S E([Wyy] dE[IWia]4d(d — 1)E[[W]
B dol\/2/77r B 1
= do/2/m + d(d—)oa/2/m - 1+ d(d—1)o2+/2/7 (44)

do1v/2/m

7 1
1+ (d-1)2

o1

which simplifies to é if the diagonal and off-diagonal elements come from the same Gaussian
distribution (o1 = 09). O]

For the sake of simplicity we only consider Gaussian Wigner matrices but the above argument
naturally extends to any distribution with positive expected absolute values, i.e. we only exclude the
Dirac delta function as probability density.

20

Under review as a conference paper at ICLR 2021

CONV MLP
20.0 T '|' 50 T
! 1
15.0 40
3 S 30 T
3100 T 3
20)
5.0
10
ol— - o
Wigner start during end Wigner start during end

Figure 5: Share of diagonal mass of the Hessian dy relative to dw of the corresponding Wigner
matrix at random initialization, after 50% iterations and at the end of training with RMSprop on
MNIST. Average and 95% confidence interval over 10 runs. See Figure 2] for CIFAR-10 results.

D.2 OLS BASELINE

When considering regression tasks, a direct competitor to neural network models is the classical
Ordinary Least Squares (OLS) regression, which minimizes a quadratic loss over a linear model.
In this case the Hessian simply amounts to the input-covariance matrix H, := XT7X, where
X € R?X™, We here show that the diagonal share of the expected matrix itself also decays in d, when
n grows to infinity. However, empirical simulations suggest the validity of this result even for much
smaller values of n (see Figure[D.2) and it is likely that finite n results can be derived when adding
assumptions such as Gaussian data.

1.0 —— 6¢, 015 (empirical)

0.9 VAT + (d = 1)V 2/m)
0.8

0.7

value

0.6
0.5
0.4 N

0.3

0.2

T T T
20 30 40
n

Figure 6: Validity of Proposition[Z]in the small regime for Gaussian data (mean and 94% confidence
interval of 50 independent samples for each value of n.

Proposition 4 (Propositionrestated). Let X € R™*? and assume each X; i, Is generated i.i.d. with
zero-mean finite second moment o> > 0. Then the share of diagonal mass of the expected matrix
E [|H,|] amounts to

Vn

n—oo

OB[lEL,)] — (45)
Vi (d-1),/2
Proof.
d S E | 1]
e = Dokt Ell(Ho)wwl] k=1 i=17%ik
N ZZ=1 Zld:1 E [|(Hots) k1] Zi=1 Z;l=1 E [220 xikxi,1] (46)

_ dy; ,E [X?,l}
Ay ExF]+ d(d = DE[[Y0 xi,1%2]

Where we used the fact that all x; j, are i.i.d. variables. Per assumption, we have E [xil} = o2, Vi.
Furthermore, the products x; 1X; o are i.i.d with expectation 0 and variance ot By the central limit

21

Under review as a conference paper at ICLR 2021

theorem

1 n
ZN = — Xi1Xi2 — Z

due to the independence assumption. Then E (|Zn]| 1z, >r) < E(|Zn|?/R) < o*/R. This
implies that

in law, with Z ~ N(0,04), since B [22] = LE [(1 xi1%i2)°| = & X, Bl JE[x2,] = o

B (1zn)) B(2) =/ 20°

As a result, we have that in the limit of large n

n— 00 dTLU2 1 n
e A = v (47)

_ 2:
dno? + d(d — 1)y 202 1+% Vit (d-1)/2

Appendix B: Background on second-order
optimization

A NEWTON’S METHOD

The canonical second-order method is Newton’s methods. This algorithm uses the inverse Hessian as
a scaling matrix and thus has updates of the form

W1 = w, — V2L(w,) IV L(wy), (48)

which is equivalent to optimizing the local quadratic model

my(we) == L(wy) + VL(we)Ts + %sTvzﬁ(wt)s (49)

to first-order stationarity. Using curvature information to rescale the steepest descent direction gives
Newton’s method the useful property of being linearly scale invariant. This gives rise to a problem
independent local convergence rate that is super-linear and even quadratic in the case of Lipschitz
continuous Hessians (see Nocedal & Wright| (2006) Theorem 3.5), whereas gradient descent at best
achieves linear local convergence (Nesterov, [2013)).

However, there are certain drawbacks associated with applying classical Newton’s method. First of
all, the Hessian matrix may be singular and thus not invertible. Secondly, even if it is invertible the
local quadratic model (Eq. that is minimized in each NM iteration may simply be an inadequate
approximation of the true objective. As a result, the Newton step is not necessarily a descent step. It
may hence approximate arbitrary critical points (including local maxima) or even diverge. Finally,
the cost of forming and inverting the Hessian sum up to O(nd? + d*) and are thus prohibitively high
for applications in large dimensional problems.

B TRUST REGION METHODS

B.1 OUTER ITERATIONS

Trust region methods are among the most principled approaches to overcome the above mentioned
issues. These methods also construct a quadratic model m, but constrain the subproblem in such a

22

Under review as a conference paper at ICLR 2021

way that the stepsize is restricted to stay within a certain radius A; within which the model is trusted
to be sufficiently adequate

1
m%{n my(s) = L(wy) + VL(wy)Ts + §STV2£(W2§)S, st ||s]] < Ay (50)
s€Rd

Hence, contrary to line-search methods this approach finds the step s; and its length ||s;|| si-
multaneously by optimizing (50). Subsequently the actual decrease L(w;) — L(w; + s¢) is
compared to the predicted decrease m;(0) — m;(s;) and the step is only accepted if the ratio
p = L(wy) — L(wy + 8¢)/(me(0) — my(s¢)) exceeds some predefined success threshold 77 > 0.
Furthermore, the trust region radius is decreased whenever p falls below 7; and it is increased
whenever p exceeds the ”very successful” threshold 720. Thereby, the algorithm adaptively measures
the accuracy of the second-order Taylor model — which may change drastically over the parameter
space depending on the behaviour of the higher-order derivativeﬂg— and adapts the effective length
along which the model is trusted accordingly. See|Conn et al.|(2000) for more details.

As a consequence, the plain Newton step sy ; = — (V2£t) ! VL, is only taken if it lies within the
trust region radius and yields a certain amount of decrease in the objective value. Since many functions
look somehow quadratic close to a minimizer the radius can be shown to grow asymptotically under
mild assumptions such that eventually full Newton steps are taken in every iteration which retains the
local quadratic convergence rate (Conn et al., 2000).

2.0

2.0 X Wopt Wopt
15) ¥V Wsaddie 15 v Wsaddie
Ve wo < o Wo
i i 1.0
1.0 i ° \ Whewton Whewton

Wrr

e WwWp
h;§ 05

0.5

0.0 X v 0.0

-0.5 -05

-10 10

-15

-2.0

-3 -2 -1 0 1 2 3 -2 -1 0 1 2

Figure 7: Level sets of the non-convex, coercive objective function f(w) = 0.5wg + 0.25wi — 0.5w5.
Newton’s Method makes a local quadratic model (blue dashed lines) and steps to its critical point. It may be
thus be ascending (left) or attracted by a saddle point (right). TR methods relieve this issue by stepping to the
minimizer of that model within a certain region (green dashed line).

B.2 SUBPROBLEM SOLVER

Interestingly, there is no need to optimize Eq. (50) to global optimality to retain the remarkable
global convergence properties of TR algorithms. Instead, it suffices to do better than the Cauchy- and
Eigenpoinl@] simultaneously. One popular approach is to minimize m.(s) in nested Krylov subspaces.
These subspaces naturally include the gradient direction as well as increasingly accurate estimates of
the leading eigendirection

Span{gtaBtgtangta"'7B‘tjgt} (51)
until (for example) the stopping criterion

IVme(s;)ll < [VL(we) | min{rr, [VL(w) [}, #x < 1,6 >0 (52)

is met, which requires increased accuracy as the underlying trust region algorithm approaches
criticality. Conjugate gradients and Lanczos method are two iterative routines that implicitly build up
a conjugate and orthogonal basis for such a Krylov space respectively and they converge linearly on
quadratic objectives with a square-root dependency on the condition number of the Hessian (Conn

“Note that the second-order Taylor models assume constant curvature.
""which are the model minimizers along the gradient and the eigendirection associated with its smallest
eigenvalue, respectively.

23

Under review as a conference paper at ICLR 2021

et al., [2000). We here employ the preconditionied Steihaug-Toint CG method (Steihaug, |1983)) in
order to cope with possible boundary solutions of (50) but similar techniques exist for the Lanczos
solver as well for which we also provide code. As preconditioning matrix for CG we use the same
matrix as for the ellipsoidal constraint.

C DAMPED (GAUSS-)NEWTON METHODS

An alternative approach to actively constraining the region within which the model is trusted is to
instead penalize the step norm in each iteration in a Lagrangian manner. This is done by so-called
damped Newton methods that add a A > 0 multiple of the identity matrix to the second-order term in
the model, which leads to the update step

min me(s) = L(wy) + VL(wy)Ts + %ST(VQE(Wt) + AD)s
seR . (53)
= L(wy) + VL(wy)Ts + §STV2£(Wt)S + Alls||?.

This can also be solved hessian-free by conjugate gradients (or other Krylov subspace methods). The
penalty parameter) is acting inversely to the trust region radius A and it is often updated accordingly.
Such algorithms are commonly known as Levenberg-Marquardt algorithms and they were originally
tailored towards solving non-linear least squares problems (Nocedal & Wright, |2006) but they have
been proposed for neural network training already early on (Hagan & Menhaj, [1994).

Many algorithms in the existing literature replace the use of V2£(w;) in with the Generalized
Gauss Newton matrix (Martens| 2010; (Chapelle & Erhan, [2011)) or an approximation of the latter
(Martens & Grossel 2015)). This matrix constitutes the first part of the well-known Gauss-Newton
decomposition

VEL() = = S CGOIVEOTAOT Y CRO)VERE) 54
i=1 i=1

=AcgcnN

where I’ and I are the first and second derivative of [: R°“* — RT assuming that out = 1 (binary
classification and regression task) for simplicity here.

It is interesting to note that the GGN matrix A gy of neural networks is equivalent to the Fisher
matrix used in natural gradient descent (Amari, |1998) in many cases like linear activation function
and squared error as well as sigmoid and cross-entropy or softmax and negative log-likelihood for
which the extended Gauss-Newton is defined (Pascanu & Bengiol [2013). As can be seen in (B_Z[)
the matrix Aggn is positive semidefinite (and low rank if n < d). As a result, there exist no
second-order convergence guarantees for such methods on general non-convex problems. On the
other end of the spectrum, the GGN also drops possibly positive terms from the Hessian (see [54)).
Hence it is not guaranteed to be an upper bound on the latter in the PSD sense. Essentially, GGN
approximations assume that the network is piece-wise linear and thus the GGN and Hessian matrices
only coincide in the case of linear and ReLU activations or non-curved loss functions. For any other
activation the GGN matrix may approximate the Hessian only asymptotically and if the ¢'(f;(-))
terms in 54| go to zero for all ¢ € {1,...,n}. In non-linear least squares such problems are called
zero-residual problems and GN methods can be shown to have quadratic local convergence there. In
any other case the convergence rate does not exceed the linear local convergence bound of gradient
descent. In practice however there are cases where deep neural nets do show negative curvature in the
neighborhood of a minimizer (Bottou et al., |2018)).Finally, Dauphin et al.| (2014) propose the use of
the absolute Hessian instead of the GGN matrix in a framework similar to[33] This method has been
termed saddle-free Newton even though its manifold of attraction to a given saddle is non—empt

Tt is the same as that for GD, which renders the method unable to escape e.g. when initialized right on a
saddle point. To be fair, the manifold of attraction for GD constitutes a measure zero set (Lee et al.} 2016).

24

Under review as a conference paper at ICLR 2021

Figure 8: Both, the GGN method and saddle-free Newton method make a positive definite quadratic model
around the current iterate and thereby overcome the abstractedness of pure Newton towards the saddle (compare
Figure[7). However, (i) none of these methods can escape the saddle once they are in the gradient manifold
of attraction and (ii) as reported in Mizutani & Dreyfus| (2008)) the GN matrix can be significantly less well
conditioned than the absolute Hessian (here kgn = 49'487'554 and k| = 1.03 so we had to add a damping
factor of A = 0.1 to make the GN step fit the plot.

C.1 COMPARISON TO TRUST REGION

Contrary to TR methods, the Levenberg-Marquardt methods never take plain Newton steps since the
regularization is always on (A > 0). Furthermore, if a positive-definite Hessian approximation like
the Generalized Gauss Newton matrix is used, this algorithm is not capable of exploiting negative
curvature and there are cases in neural network training where the Hessian is much better conditioned
than the Gauss-Newton matrix (Mizutani & Dreyfus| 2008) (also see Figure E]) While some scholars
believe that positive-definiteness is a desirable feature (Martens, [2010; Chapelle & Erhan| 2011}, we
want to point out that following negative curvature directions is necessarily needed to escape saddle
points and it can also be meaningful to follow directions of negative eigenvalue A outside a saddle
since they guarantee O(|\|?) progress, whereas a gradient descent step yields at least ||V f(w)||?
progress (both under certain stepsize conditions) and one cannot conclude a-priori which one is better
in general (Curtis & Robinson| 2017} |Alain et al.| 2018). Despite these theoretical considerations,
many methods based on GGN matrices have been applied to neural network training (see Martens
(2014) and references therein) and particularly the hessian-free implementations of (Martens} 2010;
Chapelle & Erhanl 2011)) can be implemented very cheaply (Schraudolph| |[2002).

D USING HESSTIAN INFORMATION IN NEURAL NETWORKS

While many theoretical arguments suggest the superiority of regularized Newton methods over
gradient based algorithms, several practical considerations cast doubt on this theoretical superiority
when it comes to neural network training. Answers to the following questions are particularly
unclear: Are saddles even an issue in deep learning? Is superlinear local convergence a desirable
feature in machine learning applications (test error)? Are second-order methods more “vulnerable” to
sub-sampling noise? Do worst-case iteration complexities even matter in real-world settings? As a
result, the value of Hessian information in neural network training is somewhat unclear a-priori and
so far a conclusive empirical study is still missing.

Our empirical findings indicate that the net value of Hessian information for neural network training
is indeed somewhat limited for mainly three reasons: 1) second-order methods rarely yield better limit
points, which suggests that saddles and spurious local minima are not a major obstacle; 2) gradient
methods can indeed run on smaller batch sizes which is beneficial in terms of epoch and when
memory is limited; 3) The per-iteration time complexity is noticeably lower for first-order methods.
In summary, these observations suggest that advances in hardware and distributed second-order
algorithms (e.g., |Osawa et al,| (2018); Diinner et al.| (2018))) will be needed before Newton-type
methods can replace (stochastic) gradient methods in deep learning.

25

Under review as a conference paper at ICLR 2021

Appendix C: Experiment details

A ELLIPSOIDAL TRUST REGION VS. FIRST-ORDER OPTIMIZERS

To put the previous results into context, we also benchmark several state-of-the-art gradient methods.
We fix their sample size to 32 (as advocated e.g. in Masters & Luschi| (2018))) but grid search
the stepsize, since it is the ratio of these two quantities that effectively determines the level of
stochasticity (Jastrzebski et al., 2017). The TR methods use a batch size of 128 for the ResNet
architecture and 512 otherwisd'?l For a fair comparison, we thus report results in terms of number of
backpropagations, epochs and time . The findings are mixed: For small nets such as the MLPs the
TR method with RMSProp ellipsoids is superior in all metrics, even when benchmarked in terms of
time. However, while Fig. [9]indicates that ellipsoidal TR methods are slightly superior in terms of
backpropagations even for bigger nets (ResNets and Autoencoders), a close look at the Figures|[10]
and[TT] (App. C) reveals that they at best manage to keep pace with first-order methods in terms of
epochs and are inferior in time. Furthermore, only the autoencoders give rise to a saddle point, which
adaptive gradient methods escape faster than vanilla SGD, just like it was the case for second-order
methods (see Fig. 3).

MLP ResNet Autoencoder
1
————— Adagrad 1.0 Adagrad Adagrad
RMSprop | N - RMSprop
5 62
0 SGD 05 | z(l\fl;pmp g SGD
TR RMSprop 00l | hos TR RMSprop
01 Adam)
-1 —os| L TR RMSprop | 7 &0

log(loss)
log(loss)

Fashiorll—(ll\/II)\IIST
og(loss

00 02 04 06 08 10 12 14 00 02 04 06 08 10 T 1.0 20 2 3.0
- s # of backpropagations x10¢ 5 ‘ 5o
of backpropagations X105 f backpropagation: # of backpropagations X104
2
0.8 -3.0
1
0.6 ol -3
o -4.0
— 2 - Adagrad
MI g 04 _g -1 2 45| | RMSprop
®) . =3 \ SGD
< £ 02 °-2 Adagrad 250 \ TR RMSprop
[y RMSprop
5 Adagrad -3 SGD -55
0.0 g(’?‘f"m]’ . Adam .
SG - - -6
02 TR RMSprop TR RMSprop .
- -65
00 02 04 06 08 10 0 2000 4000 6000 8000 0 1 2 3 4 5
of backpropagations x10° # of backpropagations # of backpropagations x10*

Figure 9: Log loss over backpropagations. Same setting as Figure See Figurefor epoch results.

12We observed weaker performance when running with smaller batches, presumably because second-order
methods are likely to “overfit” noise in small batches in any given iteration as they extract more information of
each batch per step by computing curvature.

26

Under review as a conference paper at ICLR 2021

2
L Adagrad o Adagrad
1] | RMSprop ! RMSprop -3.0
\ SGD SGD 5
o . - Adam 5 TR RMS; -5
(e] . 0.6 . Sprop
— ﬁ\““\. TR RMSprop — -
= = i — B I Adagrad
g 8 RMSprop
% % -2 745 N - SGD
o) T -3 2 50 S TR RMSprop
-5 0.0 6.0
0 2 4 6 8 10 0 100 200 300 400 500 600 0 20 40 60 80 100
epoch epoch epoch
1.0 1
| - Adagrad - Adagrad Adagrad
= oosl| RMSprop RMSprop 62 RMSprop
wnn { -~ SGD o SGD SGD
— 00f | - Adam TR RMSprop TR RMSprop
Z ol | TRRMSprop | 60
Hg-10 =, 2
LE H Eso
-15
9 -3
= o0 5.6
A R
-25 -
< 4
ST 54
0 5 10 15 20 25 30 35 0 50 100 150 200 250 300 350 0 10 20 30 40 50 60 70 80
epoch epoch epoch

Figure 10: Experiment comparing TR and gradient methods in terms of epochs. Average log loss as
well as 95% confidence interval shown.

ResNet18 Fully-Connected Autoencoder
2 -
o 0.8 Adagrad I I Adagrad
RMSprop \ RMSprop
o - 0.6 SGD i - SGD
= L TR RMSprop Zal TR RMSprop
< -6 = =
=3])
2 2 0. S -5
Lﬁ 8 — - [Adagrad 02
— -10 T RMSprop B
@) SGD 0.0 »
i Adam
1 TRRMSprop | —0.2
0 05 o 15 20 0 250 500 750 1000 1250 0 100 200 300 100
time x10t time time
1.0 1
| - Adagrad | 1 agrad | |1
= osl | Moo Adagrad Adagrad
n Son ol b RMSprop 6.2 RMSprop
—_ oo | Adem | | b SGD i - sGD
; Spre TR RMSproj | TR RMS,
z,,_q,r, TRRMSprop | _ prop | ool prop
; %—1 o %_2 -]
S50 £ goe
o -
= 20 3
= o 5.6
% -25 -4
B o 0 500 1000 1500 2000 2500 3000 3500 0 100 200 300 400 500 600 0 25 50 75 100 125 150
time time time

Figure 11: Experiment comparing TR and gradient methods in terms of wall-clock time. Average log
loss as well as 95% confidence interval shown. The advantage of extremely low-iteration costs of
first-order methods is particularly notable in the ResNet18 architecture due to the large network size.

B DEFAULT PARAMETERS, ARCHITECTURES AND DATASETS

Parameters Table|[I|reports the default parameters we consider. Only for the larger ResNet18 on
CIFAR-10, we adapted the batch size to 128 due to memory constraints.

‘ 1Sol Ao Amax T 72 1Y kg (krylov tol.)

TRy | 512 107% 10 107%* 095 1.1 15 0.1
TRua | 512 107% 10 107% 095 1.1 15 0.1
TRy | 512 107% 10 107* 095 1.1 1.75 0.1

Table 1: Default parameters

Datasets We use two real-world datasets for image classification, namely CIFAR-10 and Fashion-
MNISTE While Fashion-MNIST consists of greyscale 28 x 28 images, CIFAR-10 are colored

3Both datasets were accessed from https://www.tensorflow.org/api_docs/python/tf/keras/datasets

27

Under review as a conference paper at ICLR 2021

images of size 32 x 32. Both datasets have a fixed training-test split consisting of 60,000 and 10,000
images, respectively.

Network architectures The MLP architectures are simple. For MNIST and Fashion-MNIST we
use a 784 — 128 — 10 network with tanh activations and a cross entropy loss. The networks has
101’770 parameters. For the CIFAR-10 MLP we use a 3072 — 128 — 128 — 10 architecture also with
tanh activations and cross entropy loss. This network has 410’880 parameters.

The Fashion-MNIST autoencoder has the same architecture as the one used in/Hinton & Salakhutdinov
(2006)); Xu et al| (20174); [Martens (2010); Martens & Grosse] (2015). The encoder structure is
784 — 1000 — 500 — 250 — 30 and the decoder is mirrored. Sigmoid activations are used in all
but the central layer. The reconstructed images are fed pixelwise into a binary cross entropy loss.
The network has a total of 2/833’000 parameters. The CIFAR-10 autoencoder is taken from the
implementation of https://github.com/jellycsc/PyTorch-CIFAR-10-autoencoder.

For the ResNet18, we used the implementation from torchvision for CIFAR-10 as well as a mod-
ification| of it for Fashion-MNIST that adapts the first convolution to account for the single input
channel.

In all of our experiments each method was run on one Tesla P100 GPU using the PyTorch (Paszke|
2017) library.

C RECONSTRUCTED IMAGES FROM AUTOENCODERS

Uni

g
B
—
~
>

Original SGD Adagrad dagrad

o]
2
3
3

=
<
2
]
=
o
o

T

111
113

™

EEEEN»

HEOK
0 o i
MEICESORNEE
EEARERNw
OO00O0O0080|z
COOA000a0a08

BEEaK
DEEOO00O808
B } (]S |m(]D|==
B2 0 0 Y R T

q2

e d

=

=
At

3

2B
LO0OBR 00080

INOEENENe
REICEAEOREAE
]} (]| (mE0|==|=d
] b (][50 {oa|50|==|ud

0|
/]
|2
El
|
5|
a
7]
7|
4]

Al
A

b
=
™

01

Figure 12: Original and reconstructed MNIST digits (left), Fashion-MNIST items (middle), and CIFAR-10
classes (right) for different optimization methods after convergence.

]
b
=
™
=
™

28

dNNIsMItwnIN[of=
e [B] } [DS [me{E0]=]md
B 2 I B

https://pytorch.org/docs/stable/torchvision/models.html
https://zablo.net/blog/post/using-resnet-for-mnist-in-pytorch-tutorial/
https://zablo.net/blog/post/using-resnet-for-mnist-in-pytorch-tutorial/

	Introduction
	Related work
	An alternative view on adaptive gradient methods
	Adaptive preconditioning as ellipsoidal Trust Region
	Diagonal versus full preconditioning

	Second-order Trust Region Methods
	Convergence of ellipsoidal Trust Region methods
	A stochastic ellipsoidal TR framework for neural network training

	Experiments
	Conclusion
	Notation
	Equivalence of Preconditioned Gradient Descent and first-order Trust Region Methods
	Convergence of ellipsoidal TR methods
	Proof sketch
	Proof
	Diagonal Dominance in Neural Networks
	Proof of Proposition 1
	OLS Baseline

	Newton's Method

	Trust Region Methods
	Outer iterations
	Subproblem solver

	Damped (Gauss-)Newton methods
	Comparison to trust region
	Using Hessian information in Neural Networks
	Ellipsoidal Trust Region vs. First-order Optimizers
	Default parameters, architectures and datasets
	Reconstructed Images from Autoencoders

