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Abstract

We consider the best-of-both-worlds problem for learning an episodic Markov
Decision Process through T episodes, with the goal of achieving Õ(

√
T ) regret

when the losses are adversarial and simultaneously O(polylog(T )) regret when
the losses are (almost) stochastic. Recent work by [Jin and Luo, 2020] achieves this
goal when the fixed transition is known, and leaves the case of unknown transition
as a major open question. In this work, we resolve this open problem by using the
same Follow-the-Regularized-Leader (FTRL) framework together with a set of
new techniques. Specifically, we first propose a loss-shifting trick in the FTRL
analysis, which greatly simplifies the approach of [Jin and Luo, 2020] and already
improves their results for the known transition case. Then, we extend this idea
to the unknown transition case and develop a novel analysis which upper bounds
the transition estimation error by (a fraction of) the regret itself in the stochastic
setting, a key property to ensure O(polylog(T )) regret.

1 Introduction

We study the problem of learning finite-horizon Markov Decision Processes (MDPs) with unknown
transition through T episodes. In each episode, the learner starts from a fixed initial state and repeats
the following for a fixed number of steps: select an available action, incur some loss, and transit
to the next state according to a fixed but unknown transition function. The goal of the learner is to
minimize her regret, which is the difference between her total loss and that of the optimal stationary
policy in hindsight.

When the losses are stochastically generated, [Simchowitz and Jamieson, 2019, Yang et al., 2021]
show that O(log T ) regret is achievable (ignoring dependence on some gap-dependent quantities for
simplicity). On the other hand, even when the losses are adversarially generated, [Rosenberg and
Mansour, 2019a, Jin et al., 2020] show that Õ(

√
T ) regret is achievable.1 Given that the existing

algorithms for these two worlds are substantially different, Jin and Luo [2020] asked the natural
question of whether one can achieve the best of both worlds, that is, enjoying (poly)logarithmic regret
in the stochastic world while simultaneously ensuring some worst-case robustness in the adversarial
world. Taking inspiration from the bandit literature and using the classic Follow-the-regularized-
Leader (FTRL) framework with a novel regularizer, they successfully achieved this goal, albeit under
a strong restriction that the transition has to be known ahead of time. Since it is highly unclear how

1Throughout the paper, we use Õ(·) to hide polylogarithmic terms.
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to ensure that the transition estimation error is only O(polylog(T )), extending their results to the
unknown transition case is highly challenging and was left as a key open question.

In this work, we resolve this open question and propose the first algorithm with such a best-of-both-
worlds guarantee under unknown transition. Specifically, our algorithm enjoys Õ(

√
T ) regret always,

and simultaneously O(log2 T ) regret if the losses are i.i.d. samples of a fixed distribution. More
generally, our polylogarithmic regret holds under a general condition similar to that of [Jin and Luo,
2020], which requires neither independence nor identical distributions. For example, it covers the
corrupted i.i.d. setting where our algorithm achieves Õ(

√
C) regret with C ≤ T being the total

amount of corruption.

Techniques Our results are achieved via three new techniques. First, we propose a new loss-shifting
trick for the FTRL analysis when applied to MDPs. While similar ideas have been used for the
special case of multi-armed bandits (e.g., [Wei and Luo, 2018, Zimmert and Seldin, 2019, Lee et al.,
2020b, Zimmert and Seldin, 2021]), its extension to MDPs has eluded researchers, which is also
the reason why [Jin and Luo, 2020] resorts to a different approach with a highly complex analysis
involving analyzing the inverse of the non-diagonal Hessian of a complicated regularizer. Instead,
inspired by the well-known performance difference lemma, we design a key shifting function in
the FTRL analysis, which helps reduce the variance of the stability term and eventually leads to an
adaptive bound with a certain self-bounding property known to be useful for the stochastic world.
To better illustrate this idea, we use the known transition case as a warm-up example in Section 3,
and show that the simple Tsallis entropy regularizer (with a diagonal Hessian) is already enough to
achieve the best-of-both-worlds guarantee. This not only greatly simplifies the approach of Jin and
Luo [2020] (paving the way for extension to unknown transition), but also leads to bounds with better
dependence on some parameters, which on its own is a notable result already.

Our second technique is a new framework to deal with unknown transition under adversarial losses,
which is important for incorporating the loss-shifting trick mentioned above. Specifically, when the
transition is unknown, prior works [Rosenberg and Mansour, 2019a,b, Jin et al., 2020, Lee et al.,
2020a] perform FTRL over the set of all plausible occupancy measures according to a confident set
of the true transition, which can be seen as a form of optimism encouraging exploration. Since our
loss-shifting trick requires a fixed transition, we propose to move the optimism from the decision
set of FTRL to the losses fed to FTRL. More specifically, we perform FTRL over the empirical
transition in some doubling epoch schedule, and add (negative) bonuses to the loss functions so that
the algorithm is optimistic and never underestimates the quality of a policy, an idea often used in the
stochastic setting (e.g., [Azar et al., 2017]). See Section 4 for the details of our algorithm.

Finally, we develop a new analysis to show that the transition estimation error of our algorithm is
only polylogarithmic in T , overcoming the most critical obstacle in achieving best-of-both-worlds.
An important aspect of our analysis is to make use of the amount of underestimation of the optimal
policy, a term that is often ignored since it is nonpositive for optimistic algorithms. We do so by
proposing a novel decomposition of the regret inspired by the work of Simchowitz and Jamieson
[2019], and show that in the stochastic world, every term in this decomposition can be bounded by a
fraction of the regret itself plus some polylogarithmic terms, which is enough to conclude the final
polylogarithmic regret bound. See Section 5 for a formal summary of this idea.

Related work For earlier results in each of the two worlds, we refer the readers to the systematic
surveys in [Simchowitz and Jamieson, 2019, Yang et al., 2021, Jin et al., 2020]. The work closest to
ours is [Jin and Luo, 2020] which assumes known transition, and as mentioned, we strictly improve
their bounds and more importantly extend their results to the unknown transition case.

Two recent works [Lykouris et al., 2021, Chen et al., 2021] also consider the corrupted stochastic
setting, where both the losses and the transition function can be corrupted by a total amount of C.
This is more general than our results since we assume a fixed transition and only allow the losses to
be corrupted. On the other hand, their bounds are worse than ours when specified to our setting —
[Lykouris et al., 2021] ensures a gap-dependent polylogarithmic regret bound of O(C log3 T + C2),
while [Chen et al., 2021] achievesO(log3 T +C) but with a potentially larger gap-dependent quantity.
Therefore, neither result provides a meaningful guarantee in the adversarial world when C = T ,
while our algorithm always ensures a robustness guarantee with Õ(

√
T ) regret. Their algorithms are

also very different from ours and are not based on FTRL.

2



The question of achieving best-of-both-worlds guarantees for the special case of multi-armed bandits
was first proposed in [Bubeck and Slivkins, 2012]. Since then, many improvements using different
approaches have been established over the years [Seldin and Slivkins, 2014, Auer and Chiang, 2016,
Seldin and Lugosi, 2017, Wei and Luo, 2018, Lykouris et al., 2018, Gupta et al., 2019, Zimmert et al.,
2019, Zimmert and Seldin, 2021, Lee et al., 2021]. One notable and perhaps surprising approach is to
use the FTRL framework, originally designed only for the adversarial settings but later found to be
able to automatically adapt to the stochastic settings as long as certain regularizers are applied [Wei
and Luo, 2018, Zimmert et al., 2019, Zimmert and Seldin, 2021]. Our approach falls into this category,
and our regularizer design is also based on these prior works. As mentioned, however, obtaining
our results requires the new loss-shifting technique as well as the novel analysis on controlling the
estimation error, both of which are critical to address the extra challenges presented in MDPs.

2 Preliminaries

We consider the problem of learning an episodic MDP through T episodes, where the MDP is
formally defined by a tuple (S,A,L, P, {`t}Tt=1) with S being a finite state set, A being a finite
action set, L being the horizon, `t : S × A → [0, 1] being the loss function of episode t, and
P : S ×A× S → [0, 1] being the transition function so that P (s′|s, a) is the probability of moving
to state s′ after executing action a at state s.

Without loss of generality [Jin et al., 2020], the MDP is assumed to have a layer structure, that is,
the state set S is partitioned into L+ 1 subsets S0, S1, . . . , SL such that the state transition is only
possible from one layer to the next layer (in other words, P (s′|s, a) must be zero unless s ∈ Sk and
s′ ∈ Sk+1 for some k ∈ {0, . . . , L− 1}). Moreover, S0 contains s0 only (the initial state), and SL
contains sL only (the terminal state). We use k(s) to represent the layer to which state s belongs.

Ahead of time, the environment decides an MDP with P and {`t}Tt=1 unknown to the learner.
The interaction proceeds through T episodes. In episode t, the learner selects a stochastic policy
πt : S×A→ [0, 1] where πt(a|s) denotes the probability of taking action a at state s.2 Starting from
the initial state st0 = s0, the learner then repeatedly selects an action atk drawn from πt (· |stk ), suffers
loss `t(stk, a

t
k), and transits to the next state stk+1 ∈ Sk+1 for k = 0, . . . , L− 1, until reaching the

terminal state sL. At the end of the episode, the learner receives some feedback on the loss function
`t. In the full-information setting, the learner observes the entire loss function `t, while in the more
challenging bandit feedback setting, the learner only observes the losses of those visited state-action
pairs, that is, `t(st0, a

t
0), . . . , `t(s

t
L−1, a

t
L−1).

With slight abuse of notation, we denote the expected loss of a policy π for episode t by `t(π) =

E
[∑L−1

k=0 `t(sk, ak)
∣∣∣P, π], where the trajectory {(sk, ak)}k=0,...,L−1 is the generated by executing

policy π under transition P . The regret of the learner against some policy π is then defined as
RegT (π) = E

[∑T
t=1 `t(πt)− `t(π)

]
, and we denote by π̊ one of the optimal policies in hindsight

such that RegT (̊π) = maxπ RegT (π).

Adversarial world versus stochastic world We consider two different setups depending on how
the loss functions `1, . . . , `T are generated. In the adversarial world, the environment decides the
loss functions arbitrarily with knowledge of the learner’s algorithm (but not her randomness). In this
case, the goal is to minimize the regret against the best policy RegT (̊π), with the best existing upper
bound being Õ(L|S|

√
|A|T ) [Rosenberg and Mansour, 2019a, Jin et al., 2020] and the best lower

bound being Ω(L
√
|S||A|T ) [Jin et al., 2018] (for both full-information and bandit feedback).

In the stochastic world, following [Jin and Luo, 2020] (which generalizes the bandit case of [Zimmert
and Seldin, 2019, 2021]), we assume that the loss functions satisfy the following condition: there
exists a deterministic policy π? : S → A, a gap function ∆ : S × A → R+ and a constant C > 0
such that

RegT (π?) ≥ E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)∆(s, a)

− C, (1)

2Note that πt(·|sL) is not meaningful since no action will be taken at sL. For conciseness, however, we
usually define functions over S ×A instead of (S \ {sL})×A.
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where qt(s, a) is the probability of the learner visiting (s, a) in episode t. This general condition
covers the heavily-studied i.i.d. setting where `1, . . . , `T are i.i.d. samples of a fixed distribution,
in which case C = 0, π? is simply the optimal policy, and ∆ is the gap function with respect to
the optimal Q-function. More generally, the condition also covers the corrupted i.i.d. setting with
C being the total amount of corruption. We refer the readers to [Jin and Luo, 2020] for detailed
explanation. In this stochastic world, our goal is to minimize regret against π?, that is, RegT (π?).3
With unknown transition, this general setup has not been studied before, but for specific examples
such as the i.i.d. setting, regret bounds of order O( log T

∆MIN
) where ∆MIN = mins,a6=π?(s) ∆(s, a) have

been derived [Simchowitz and Jamieson, 2019, Yang et al., 2021].

Occupancy measure and FTRL To solve this problem with online learning techniques, a com-
monly used concept is the occupancy measure. Specifically, an occupancy measure qP̄ ,π : S ×A→
[0, 1] associated with a policy π and a transition function P̄ is such that qP̄ ,π(s, a) equals the proba-
bility of visiting state-action pair (s, a) under the given policy π and transition P̄ . Our earlier notation
qt in Eq. (1) is thus simply a shorthand for qP,πt . Moreover, by definition, `t(π) can be rewritten as〈
qP,π, `t

〉
by naturally treating qP,π and `t as vectors in R|S|×|A|, and thus the regret RegT (π) can

be written as E
[∑T

t=1

〈
qt − qP,π, `t

〉]
, connecting the problem to online linear optimization.

Given a transition function P̄ , we denote by Ω(P̄ ) =
{
qP̄ ,π : π is a stochastic policy

}
the set of

all valid occupancy measures associated with the transition P̄ . It is known that Ω(P̄ ) is a simple
polytope with O(|S||A|) constraints [Zimin and Neu, 2013]. When P is unknown, our algorithm
uses an estimated transition P̄ as a proxy and searches for a “good” occupancy measure within Ω(P̄ ).
More specifically, this is done by the classic Follow-the-Regularized-Leader (FTRL) framework
which solves the following at the beginning of episode t:

q̂t = argmin
q∈Ω(P̄ )

〈
q,
∑
τ<t

̂̀
τ

〉
+ φt(q), (2)

where ̂̀τ is some estimator for `τ and φt is some regularizer. The learner’s policy πt is then defined
through πt(a|s) ∝ q̂t(s, a). Note that we have q̂t = qP̄ ,πt but not necessarily q̂t = qt unless P̄ = P .

3 Warm-up for Known Transition: A New Loss-shifting Technique

One of the key components of our approach is a new loss-shifting technique for analyzing FTRL
applied to MDPs. To illustrate the key idea in a clean manner, in this section we focus on the known
transition setting with bandit feedback, the same setting studied by Jin and Luo [2020]. As we will
show, our method not only improves their bounds, but also significantly simplifies the analysis, which
paves the way for extending the result to the unknown transition setting studied in following sections.

First note that when P is known, one can simply take P̄ = P (so that q̂t = qt) and use the standard
importance-weighted estimator ̂̀τ (s, a) = `τ (s, a)Iτ (s, a)/qτ (s, a) in the FTRL framework Eq. (2),
where Iτ (s, a) is 1 if (s, a) is visited in episode τ , and 0 otherwise. It remains to determine the
regularizer φt. While there are many choices of φt leading to

√
T -regret in the adversarial world,

obtaining logarithmic regret in the stochastic world requires some special property of the regularizer.
Specifically, generalizing the idea of [Zimmert and Seldin, 2019] for multi-armed bandits, [Jin and
Luo, 2020] shows that it suffices to find φt such that the following adaptive regret bound holds

RegT (̊π) . E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

√
qt(s, a)

t

 , (3)

which then automatically implies logarithmic regret under Eq. (1). This is because Eq. (3) admits a
self-bounding property under Eq. (1) — one can bound the right-hand side of Eq. (3) as follows using

3Some works (such as [Jin and Luo, 2020]) still consider minimizing RegT (̊π) as the goal in this case. More
discussions are deferred to the last paragraph of Section 4.1.
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AM-GM inequality (for any z > 0), which can then be related to the regret itself using Eq. (1):

E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)∆(s, a)

2z
+

z

2t∆(s, a)

 ≤ RegT (̊π) + C

2z
+ z

∑
s6=sL

∑
a6=π?(s)

log T

∆(s, a)
.

(4)
Rearranging and picking the optimal z then shows a logarithmic bound for RegT (̊π) (see Section 2
of Jin and Luo [2020] for detailed discussions).

To achieve Eq. (3), a natural candidate of φt would be a direct generalization of the Tsallis-entropy
regularizer of [Zimmert and Seldin, 2019], which takes the form φt(q) = − 1

ηt

∑
s,a

√
q(s, a) with

ηt = 1/
√
t. However, Jin and Luo [2020] argued that it is highly unclear how to achieve Eq. (3) with

this natural candidate, and instead, inspired by [Zimmert et al., 2019] they ended up using a different
regularizer with a complicated non-diagonal Hessian to achieve Eq. (3), which makes the analysis
extremely complex since it requires analyzing the inverse of this non-diagonal Hessian.

Our first key contribution is to show that this natural and simple candidate is in fact (almost) enough
to achieve Eq. (3) after all. To show this, we propose a new a loss-shifting technique in the analysis.
Similar techniques have been used for multi-armed bandits, but the extension to MDPs is much less
clear. Specifically, observe that for any shifting function gτ : S × A → R such that the value of
〈q, gτ 〉 is independent of q for any q ∈ Ω(P̄ ), we have

q̂t = argmin
q∈Ω(P̄ )

〈
q,
∑
τ<t

̂̀
τ

〉
+ φt(q) = argmin

q∈Ω(P̄ )

〈
q,
∑
τ<t

(̂̀τ + gτ )

〉
+ φt(q). (5)

Therefore, we can pretend that the learner is performing FTRL over the shifted loss sequence
{̂̀τ + gτ}τ<t (even when gτ is unknown to the learner). The advantage of analyzing FTRL over this
shifted loss sequence is usually that it helps reduce the variance of the loss functions.

For multi-armed bandits, prior works [Wei and Luo, 2018, Zimmert and Seldin, 2019] pick gτ to be a
constant such as the negative loss of the learner in episode τ . For MDPs, however, this is not enough
to show Eq. (3), as already pointed out by Jin and Luo [2020] (which is also the reason why they
resorted to a different approach). Instead, we propose the following shifting function:

gτ (s, a) = Q̂τ (s, a)− V̂τ (s)− ̂̀τ (s, a), ∀(s, a) ∈ S ×A, (6)

where Q̂τ and V̂τ are the state-action and state value functions with respect to the transition P̄ ,
the loss function ̂̀τ , and the policy πτ , that is: Q̂τ (s, a) = ̂̀

τ (s, a) + Es′∼P̄ (·|s,a)[V̂τ (s′)] and
V̂τ (s) = Ea∼πτ (·|s)[Q̂τ (s, a)] (with V̂τ (sL) = 0). This indeed satisfies the invariant condition
since using a well-known performance difference lemma one can show 〈q, gτ 〉 = −V̂τ (s0) for any
q ∈ Ω(P̄ ) (Lemma A.1.1). With this shifting function, the learner is equivalently running FTRL over
the “advantage” functions (Q̂τ (s, a)− V̂τ (s) is often called the advantage at (s, a) in the literature).

More importantly, it turns out that when seeing FTRL in this way, a standard analysis with some
direct calculation already shows Eq. (3). One caveat is that since Q̂τ (s, a)− V̂τ (s) can potentially
have a large magnitude, we also need to stabilize the algorithm by adding a small amount of the
so-called log-barrier regularizer to the Tsallis entropy regularizer, an idea that has appeared in several
prior works (see [Jin and Luo, 2020] and references therein). We defer all details including the
concrete algorithm and analysis to Appendix A, and show the final results below.
Theorem 3.1. When P is known, Algorithm 3 (with parameter γ = 1) ensures the optimal regret
RegT (̊π) = O(

√
L|S||A|T ) in the adversarial world, and simultaneously RegT (π?) ≤ RegT (̊π) =

O(U +
√
UC) where U = L|S| log T

∆MIN
+ L4

∑
s6=sL

∑
a6=π?(s)

log T
∆(s,a) in the stochastic world.

Our bound for the stochastic world is even better than [Jin and Luo, 2020] (their U has an extra |A|
factor in the first term and an extra L factor in the second term). By setting the parameter γ differently,
one can also improve L4 to L3, matching the best existing result from [Simchowitz and Jamieson,
2019] for the i.i.d. setting with C = 0 (this would worsen the adversarial bound though). Besides
this improvement, we emphasize again that the most important achievement of this approach is that it
significantly simplifies the analysis, making the extension to the unknown transition setting possible.
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4 Main Algorithms and Results

We are now ready to introduce our main algorithms and results for the unknown transition case,
with either full-information or bandit feedback. The complete pseudocode is shown in Algorithm 1,
which is built with two main components: a new framework to deal with unknown transitions and
adversarial losses (important for incorporating our loss-shifting technique), and special regularizers
for FTRL. We explain these two components in detail below.

A new framework for unknown transitions and adversarial losses When the transition is un-
known, a common practice (which we also follow) is to maintain an empirical transition along with
a shrinking confidence set of the true transition, usually updated in some doubling epoch schedule.
More specifically, a new epoch is started whenever the total number of visits to some state-action
pair is doubled (compared to the beginning of this epoch), thus resulting in at most O (|S||A| log T )
epochs. We denote by i(t) the epoch index to which episode t belongs. At the beginning of each
epoch i, we calculate the empirical transition P̄i (fixed through this epoch) as:

P̄i(s
′|s, a) =

mi(s, a, s
′)

mi(s, a)
, ∀(s, a, s′) ∈ Sk ×A× Sk+1, k = 0, . . . L− 1, (7)

where mi(s, a) and mi(s, a, s
′) are the total number of visits to (s, a) and (s, a, s′) respectively prior

to epoch i.4 The confidence set of the true transition for this epoch is then defined as

Pi =
{
P̂ :

∣∣∣P̂ (s′|s, a)− P̄i(s′|s, a)
∣∣∣ ≤ Bi(s, a, s′), ∀(s, a, s′) ∈ Sk ×A× Sk+1, k < L

}
,

where Bi is Bernstein-style confidence width (taken from Jin et al. [2020]):

Bi(s, a, s
′) = min

2

√√√√ P̄i(s′|s, a) ln
(
T |S||A|

δ

)
mi(s, a)

+
14 ln

(
T |S||A|

δ

)
3mi(s, a)

, 1

 (8)

for some confidence parameter δ ∈ (0, 1). As [Jin et al., 2020, Lemma 2] shows, the true transition
P is contained in the confidence set Pi for all epoch i with probably at least 1− 4δ.

When dealing with adversarial losses, prior works [Rosenberg and Mansour, 2019a,b, Jin et al., 2020,
Lee et al., 2020a] perform FTRL (or a similar algorithm called Online Mirror Descent) over the set
of all plausible occupancy measures Ω(Pi) = {q ∈ Ω(P̂ ) : P̂ ∈ Pi} during epoch i, which can be
seen as a form of optimism and encourages exploration. This framework, however, does not allow
us to apply the loss-shifting trick discussed in Section 3 — indeed, our key shifting function Eq. (6)
is defined in terms of some fixed transition P̄ , and the required invariant condition on 〈q, gτ 〉 only
holds for q ∈ Ω(P̄ ) but not q ∈ Ω(Pi).

Inspired by this observation, we propose the following new approach. First, to directly fix the issue
mentioned above, for each epoch i, we run a new instance of FTRL simply over Ω(P̄i). This is
implemented by keeping track of the epoch starting time ti and only using the cumulative loss∑t−1
τ=ti

̂̀
τ in the FTRL update (Eq. (10)). Therefore, in each epoch, we are pretending to deal with a

known transition problem, making the same loss-shifting technique discussed in Section 3 applicable.

However, this removes the critical optimism in the algorithm and does not admit enough exploration.
To fix this, our second modification is to feed FTRL with optimistic losses constructed by adding
some (negative) bonus term, an idea often used in the stochastic setting. More specifically, we subtract
L ·Bi(s, a) from the loss for each (s, a) pair, where Bi(s, a) = min

{
1,
∑
s′∈Sk(s)+1

Bi(s, a, s
′)
}

;

see Eq. (11). In the full-information setting, this means using ̂̀t(s, a) = `t(s, a)− L ·Bi(s, a). In
the bandit setting, note that the importance-weighted estimator discussed in Section 3 is no longer
applicable since the transition is unknown (making qt also unknown), and [Jin et al., 2020] proposes
to use `t(s,a)·It(s,a)

ut(s,a) instead, where It(s, a) is again the indicator of whether (s, a) is visited during
episode t, and ut(s, a) is the so-called upper occupancy measure defined as

ut(s, a) = max
P̂∈Pi(t)

qP̂ ,πt(s, a) (9)

4When mi(s, a) = 0, we simply let P̄i(·|s, a) be an arbitrary distribution.
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Algorithm 1 Best-of-both-worlds for Episodic MDPs with Unknown Transition
Input: confidence parameter δ.
Initialize: epoch index i = 1 and epoch starting time ti = 1.
Initialize: ∀(s, a, s′), set counters m1(s, a) = m1(s, a, s′) = m0(s, a) = m0(s, a, s′) = 0.
Initialize: empirical transition P̄1 and confidence width B1 based on Eq. (7) and Eq. (8).
for t = 1, . . . , T do

Let φt be Eq. (13) for full-information feedback or Eq. (12) for bandit feedback, and compute

q̂t = argmin
q∈Ω(P̄i)

〈
q,

t−1∑
τ=ti

̂̀
τ

〉
+ φt(q). (10)

Compute policy πt from q̂t such that πt(a|s) ∝ q̂t(s, a).5
Execute policy πt and obtain trajectory (stk, a

t
k) for k = 0, . . . , L− 1.

Construct adjusted loss estimator ̂̀t such that

̂̀
t(s, a) =

{
`t(s, a)− L ·Bi(s, a), for full-information feedback,
`t(s,a)·It(s,a)

ut(s,a) − L ·Bi(s, a), for bandit feedback,
(11)

where Bi(s, a) = min
{

1,
∑
s′∈Sk(s)+1

Bi(s, a, s
′)
}

, It(s, a) = I{∃k, (s, a) = (stk, a
t
k)}, and

ut is the upper occupancy measure defined in Eq. (9).
Increment counters: for each k < L, mi(s

t
k, a

t
k, s

t
k+1)

+← 1, mi(s
t
k, a

t
k)

+← 1.6

if ∃k, mi(s
t
k, a

t
k) ≥ max{1, 2mi−1(stk, a

t
k)} then . entering a new epoch

Increment epoch index i +← 1 and set new epoch starting time ti = t+ 1.
Initialize new counters: ∀(s, a, s′), mi(s, a, s

′) = mi−1(s, a, s′),mi(s, a) = mi−1(s, a).
Update empirical transition P̄i and confidence width Bi based on Eq. (7) and Eq. (8).

and can be efficiently computed via the COMP-UOB procedure of [Jin et al., 2020]. Our final adjusted
loss estimator is then ̂̀t(s, a) = `t(s,a)·It(s,a)

ut(s,a) − L · Bi(s, a). In our analysis, we show that these
adjusted loss estimators indeed make sure that we only underestimate the loss of each policy, which
encourages exploration.

With this new framework, it is not difficult to show
√
T -regret in the adversarial world using many

standard choices of the regularizer φt (which recovers the results of [Rosenberg and Mansour, 2019a,
Jin et al., 2020] with a different approach). To further ensure polylogarithmic regret in the stochastic
world, however, we need some carefully designed regularizers discussed next.

Special regularizers for FTRL Due to the new structure of our algorithm which uses a fixed
transition P̄i during epoch i, the design of the regularizers is basically the same as in the known
transition case. Specifically, in the bandit case, we use the same Tsallis entropy regularizer:

φt(q) = − 1

ηt

∑
s 6=sL

∑
a∈A

√
q(s, a) + β

∑
s 6=sL

∑
a∈A

ln
1

q(s, a)
, (12)

where ηt = 1/
√
t−ti(t)+1 and β = 128L4. As discussed in Section 3, the small amount of log-barrier

in the second part of Eq. (12) is used to stabilize the algorithm, similarly to [Jin and Luo, 2020].

In the full-information case, while we can still use Eq. (12) since the bandit setting is only more
difficult, this leads to extra dependence on some parameters. Instead, we use the following Shannon
entropy regularizer:

φt(q) =
1

ηt

∑
s6=sL

∑
a∈A

q(s, a) · ln q(s, a). (13)

5If
∑

b∈A q̂t(s, b) = 0, we let πt to be the uniform distribution.
6We use x +← y as a shorthand for the increment operation x← x+ y.
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Although this is a standard choice for the full-information setting, the tuning of the learning rate ηt
requires some careful thoughts. In the special case of MDPs with one layer (known as the expert
problem [Freund and Schapire, 1997]), it has been shown that choosing ηt to be of order 1/

√
t

ensures best-of-both-worlds [Mourtada and Gaïffas, 2019, Amir et al., 2020]. However, in our general
case, due to the use of the loss-shifting trick, we need to use the following data-dependent tuning

(with i denoting i(t) for simplicity): ηt =
√

L ln(|S||A|)
64L5 ln(|S||A|)+Mt

where

Mt =

t−1∑
τ=ti

min

∑
s6=sL

∑
a∈A

q̂τ (s, a)̂̀τ (s, a)2,
∑
s 6=sL

∑
a∈A

q̂τ (s, a)
(
Q̂τ (s, a)− V̂τ (s)

)2

 ,

and similar to the discussion in Section 3, Q̂τ and V̂τ are the state-action and state value functions
with respect to the transition P̄i, the adjusted loss function ̂̀τ , and the policy πτ , that is: Q̂τ (s, a) =̂̀
τ (s, a)+Es′∼P̄i(·|s,a)[V̂τ (s′)] and V̂τ (s) = Ea∼πτ (·|s)[Q̂τ (s, a)] (with V̂τ (sL) = 0). This particular

tuning makes sure that FTRL enjoys some adaptive regret bound with a self-bounding property akin
to Eq. (3), which is again the key to ensure polylogarithmic regret in the stochastic world. This
concludes all the algorithm design; see Algorithm 1 again for the complete pseudocode.

4.1 Main Best-of-both-worlds Results

We now present our main best-of-both-worlds results. As mentioned, proving
√
T -regret in the

adversarial world is relatively straightforward. However, proving polylogarithmic regret bounds for
the stochastic world is much more challenging due to the transition estimation error, which is usually
of order

√
T . Fortunately, we are able to develop a new analysis that upper bounds some transition

estimation related terms by the regret itself, establishing a self-bounding property again. We defer the
proof sketch to Section 5, and state the main results in the following theorems.7

Theorem 4.1.1. In the full-information setting, Algorithm 1 with δ = 1
T 2 guarantees RegT (̊π) =

Õ
(
L|S|

√
|A|T

)
always, and simultaneously RegT (π?) = O

(
U +

√
UC
)

under Condition (1),

where U = O
(

(L6|S|2+L5|S||A| log(|S||A|)) log T

∆MIN
+
∑
s6=sL

∑
a6=π?(s)

L6|S| log T
∆(s,a)

)
.

Theorem 4.1.2. In the bandit feedback setting, Algorithm 1 with δ = 1
T 3 guarantees RegT (̊π) =

Õ
(

(L+
√
|A|)|S|

√
|A|T

)
always, and simultaneously RegT (π?) = O

(
U +

√
UC
)

under Con-

dition (1), where U = O
(

(L6|S|2+L3|S|2|A|) log2 T

∆MIN
+
∑
s 6=sL

∑
a6=π?(s)

(L6|S|+L4|S||A|) log2 T

∆(s,a)

)
.

While our bounds have some extra dependence on the parameters L, |S|, and |A| compared to the
best existing bounds in each of the two worlds, we emphasize that our algorithm is the first to be
able to adapt to these two worlds simultaneously and achieve Õ(

√
T ) and O(polylog(T )) regret

respectively. In fact, with some extra twists (such as treating differently the state-action pairs that are
visited often enough and those that are not), we can improve the dependence on these parameters, but
we omit these details since they make the algorithms much more complicated.

Also, while [Jin and Luo, 2020] is able to obtainO(log T ) regret for the stronger benchmark RegT (̊π)
under Condition (1) and known transition (same as our Theorem 3.1), here we only achieve so for
RegT (π?) due to some technical difficulty (see Section 5). However, recall that for the most interesting
i.i.d. case, one simply has RegT (π?) = RegT (̊π) as discussed in Section 2; even for the corrupted
i.i.d. case, since RegT (̊π) is at most C + RegT (π?), our algorithms ensure RegT (̊π) = O(U + C)

(note
√
UC ≤ U + C). Therefore, our bounds on RegT (π?) are meaningful and strong.

5 Analysis Sketch

In this section, we provide a proof sketch for the full-information setting (which is simpler but enough
to illustrate our key ideas). The complete proofs can be found in Appendix B (full-information) and

7For simplicity, for bounds in the stochastic world, we omit some Õ(1) terms that are independent of the gap
function, but they can be found in the full proof.
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Appendix C (bandit). We start with the following straightforward regret decomposition:

RegT (π) = E

[
T∑
t=1

V πtt (s0)− V̂ πtt (s0)︸ ︷︷ ︸
ERR1

+

T∑
t=1

V̂ πtt (s0)− V̂ πt (s0)︸ ︷︷ ︸
ESTREG

+

T∑
t=1

V̂ πt (s0)− V πt (s0)︸ ︷︷ ︸
ERR2

]
(14)

for an arbitrary benchmark π, where V πt is the state value function associated with the true transition
P , the true loss `t, and policy π, while V̂ πt is the state value function associated with the empirical
transition P̄i(t), the adjusted loss ̂̀t, and policy π. Define the corresponding state-action value
functions Qπt and Q̂πt similarly (our earlier notations V̂t and Q̂t are thus shorthands for V̂ πtt and Q̂πtt ).

In the adversarial world, we bound each of the three terms in Eq. (14) as follows (see Proposition B.1
for details). First, E [ERR1] measures the estimation error of the loss of the learner’s policy πt, which
can be bounded by Õ(L|S|

√
|A|T ) following the analysis of Jin et al. [2020]. Second, as mentioned,

our adjusted losses are optimistic in the sense that it underestimates the loss of all policies (with high
probability), making E [ERR2] an O (1) term only. Finally, E [ESTREG] is the regret measured with
P̄i(t) and ̂̀t, which is controlled by the FTRL procedure and of order Õ(L

√
|S||A|T ). Put together,

this proves the Õ(L|S|
√
|A|T ) regret shown in Theorem 4.1.1.

In the stochastic world, we fix the benchmark π = π?. To obtain polylogarithmic regret, an important
observation is that we now have to make use of the potentially negative term ERR2 instead of
simply bounding it by O (1) (in expectation). Specifically, inspired by [Simchowitz and Jamieson,
2019], we propose a new decomposition on ERR1 and ERR2 jointly as follows (see Appendix D.1):
ERR1 + ERR2 = ERRSUB + ERROPT + OCCDIFF + BIAS. Here,

• ERRSUB =
∑T
t=1

∑
s6=sL

∑
a6=π?(s) qt(s, a)Êπ

?

t (s, a) measures some estimation error con-

tributed by the suboptimal actions, where Êπ
?

t (s, a) = `t(s, a) + Es′∼P (·|s,a)

[
V̂ π

?

t (s′)
]
−

Q̂π
?

t (s, a) is a “surplus” function (a term taken from [Simchowitz and Jamieson, 2019]);

• ERROPT =
∑T
t=1

∑
s6=sL

∑
a=π?(s) (qt(s, a)− q?t (s, a)) Êπ

?

t (s, a) measures some estimation
error contributed by the optimal action, where q?t (s, a) is the probability of visiting a trajectory
of the form (s0, π

?(s0)), (s1, π
?(s1)), . . . , (sk(s)−1, π

?(sk(s)−1)), (s, a) when executing policy
πt;

• OCCDIFF =
∑T
t=1

∑
s 6=sL

∑
a∈A (qt(s, a)− q̂t(s, a))

(
Q̂π

?

t (s, a)− V̂ π?t (s)
)

measures the
occupancy measure difference between qt and q̂t;

• BIAS =
∑T
t=1

∑
s6=sL

∑
a6=π?(s) q

?
t (s, a)

(
V̂ π

?

t (s)− V π?t (s)
)

measures some estimation error
for π?, which, similar to ERR2, is of order O(1) in expectation due to optimism.

The next key step is to show that the terms ERRSUB, ERROPT,OCCDIFF, and ESTREG can all
be upper bounded by some quantities that admit a certain self-bounding property similarly to the
right-hand side of Eq. (3). We identify four such quantities and present them using functions G1, G2,
G3, and G4, whose definitions are deferred to Appendix D.2 due to space limit. Combining these
bounds for each term, we obtain the following important lemma.

Lemma 5.1. With δ = 1
T 2 , Algorithm 1 ensures that RegT (π?) is at mostO(L4|S|3|A|2 ln2 T ) plus:

E

[
O

(
G1

(
L4|S| lnT

)︸ ︷︷ ︸
from ERRSUB

+G2

(
L4|S| lnT

)︸ ︷︷ ︸
from ERROPT

+G3

(
L4 lnT

)︸ ︷︷ ︸
from OCCDIFF

+G4

(
L5|S||A| lnT ln(|S||A|)

)︸ ︷︷ ︸
from ESTREG

)]
.

Finally, as mentioned, each of the G1, G2, G3, and G4 functions can be shown to admit the following
self-bounding property, such that similarly to what we argue in Eq. (4), picking the optimal values of
α and β and rearranging leads to the polylogarithmic regret bound shown in Theorem 4.1.1.
Lemma 5.2 (Self-bounding property). Under Condition (1), we have for any α, β ∈ (0, 1),

E [G1(J)] ≤ α · (RegT (π?) + C) +O
(

1
α ·
∑
s6=sL

∑
a 6=π?(s)

J
∆(s,a)

)
,
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E [G2(J)] ≤ β · (RegT (π?) + C) +O
(

1
β ·

L|S|J
∆MIN

)
,

E [G3(J)] ≤ (α+ β) · (RegT (π?) + C) +O
(

1
α ·
∑
s6=sL

∑
a 6=π?(s)

L2|S|J
∆(s,a)

)
+O

(
1
β ·

L2|S|2J
∆MIN

)
,

E [G4(J)] ≤ β · (RegT (π?) + C) +O
(

1
β ·

J
∆MIN

)
.

We emphasize again that the proposed joint decomposition on ERR1 + ERR2 plays a crucial rule
in this analysis and addresses the key challenge on how to bound the transition estimation error by
something better than

√
T . We also point out that in this analysis, only ESTREG is related to the

FTRL procedure, while the other three terms are purely based on our new framework to handle
unknown transition. In fact, the reason that we can only derive a polylog(T ) bound on RegT (π?) but
not directly on RegT (̊π) is also due to these three terms — they can be related to the right-hand side
of Condition (1) only when we use the benchmark π = π? but not when π = π̊. This is not the case
for ESTREG, which is the reason why Jin and Luo [2020] are able to derive a bound on RegT (̊π)
directly when the transition is known. Whether this issue can be addressed is left as a future direction.

6 Conclusions

In this work, we propose an algorithm for learning episodic MDPs which achieves favorable regret
guarantees simultaneously in the stochastic and adversarial worlds with unknown transition. We
start from the known transition setting and propose a loss-shifting trick for FTRL applied to MDPs,
which simplifies the method of Jin and Luo [2020] and improves their results. Then, we design a new
framework to extend our known transition algorithm to the unknown transition case, which is critical
for the application of the loss-shifting trick. Finally, we develop a novel analysis which carefully
upper bounds the transition estimation error by (a fraction of) the regret itself plus a gap-dependent
poly-logarithmic term in the stochastic setting, resulting in our final best-of-both-worlds result.

Besides the open questions discussed earlier (such as improving our bounds in Theorem 4.1.1 and
Theorem 4.1.2), one other key future direction is to remove the assumption that there exists a unique
optimal action for each state, which appears to be challenging despite the recent progress for the
bandit case [Ito, 2021], since the occupancy measure computed from Eq. (10) has a very complicated
structure. Another interesting direction would be to extend the sub-optimality gap function to other
fine-grained gap functions, such as that of Dann et al. [2021].
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An important convention Note that the value of mi(s, a) is changing in the algorithm. For the
entire analysis, we see mi(s, a) as its initial value, which is the number of visits to (s, a) from epoch
1 to epoch i−1. In this sense, if we letN be the total number of epochs, thenmN+1(s, a) is naturally
defined as the total number of visits to (s, a) within T episodes.

A Best of Both Worlds for MDPs with Known Transition

In this section, we show how to extend the loss-shifting technique to MDPs with known transition
and obtain best-of-both-worlds results.

A.1 Loss-shifting Technique

First of all, we introduce a general invariant condition with a fixed transition in Lemma A.1.1

Lemma A.1.1. Fix the transition function P . For any policy π and loss function ˚̀: S × A → R,
define invariant function g ∈ S ×A→ R as:

gP,π,̊`(s, a) ,
(
QP,π,̊`(s, a)− V P,π,̊`(s)− ˚̀(s, a)

)
, (15)

where QP,π,̊` and V P,π,̊` are state-action value and state value functions associated with ˚̀and the
fixed policy π. Then, it holds for any policy π′ that〈

qP,π
′
, gP,π,̊`

〉
,
∑
s6=sL

∑
a∈A

qP,π
′
(s, a) · gP,π,̊`(s, a) = −V P,π,̊`(s0)

where V P,π,̊`(s0) only depends on π and ˚̀(but not π′).

Proof. For notational convenience, we drop the superscripts for fixed transition P and loss function
˚̀. By the standard performance difference lemma [Kakade, 2003, Theorem 5.2.1], it holds for any
policy π′ that

V π
′
(s0)− V π(s0) =

∑
s 6=sL

∑
a∈A

qπ
′
(s, a) (Qπ(s, a)− V π(s)) . (16)

On the other hand, it also holds that

V π
′
(s0) =

∑
s6=sL

∑
a∈A

qπ
′
(s, a)˚̀(s, a). (17)

Therefore, subtracting V π
′
(s0) from Eq. (16) yields that

−V π(s0) =
∑
s6=sL

∑
a∈A

qπ
′
(s, a)

(
Qπ(s, a)− V π(s)− ˚̀(s, a)

)
which completes the proof after putting back the superscripts for P and ˚̀.

As discussed in Section 3, the invariant function gP,π,̊` defined in Eq. (15) allows us to treat FTRL
as dealing with a hypothesized loss sequence, as restated below.

Corollary A.1.2. Consider the selected occupancy measure q̂t via FTRL with respect to a regularizer
φt(·) and loss sequence {̂̀τ}τ<t (on the decision set Ω(P̄ )), then it holds that

q̂t = argmin
q∈Ω(P̄ )

〈
q,
∑
τ<t

̂̀
τ

〉
+ φt(q) = argmin

q∈Ω(P̄ )

〈
q,
∑
τ<t

(̂̀τ + gτ )

〉
+ φt(q).

for any invariant function sequence {gτ}τ<t which are constructed with hypothesized losses {˚̀τ}τ<t
and policies {π′τ}τ<t.
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Proof. By Lemma A.1.1, one can verify that〈
q,
∑
τ<t

gτ

〉
= −

∑
τ<t

V P̄ ,π
′
τ ,̊`τ (s0)

for any occupancy measure q ∈ Ω(P̄ ). Therefore, this term does not affect the optimization.

Then, we consider the “loss-shifting function” defined in Eq. (6), that is, constructing gt via the loss
estimator ̂̀t and the policy πt selected at episode t. Importantly, in the known transition setting where
q̂t = qt, ̂̀t is inverse propensity weighted estimator, in other words, ̂̀t(s, a) = It(s,a)`t(s,a)/qt(s,a).
More specifically, we have

gt(s, a) = Q̂t(s, a)− V̂t(s)− ̂̀t(s, a),

where

Q̂t(s, a) = ̂̀
t(s, a) +

∑
s′∈Sk(s)+1

P̄ (s′|s, a)V̂t(s), V̂t(s) =
∑
a∈A

πt(a|s)Q̂t(s, a)

(with V̂t(sL) = 0). Below we show several useful properties, which are key to achieve the best-of-
both-worlds guarantee in the known transition setting.
Lemma A.1.3. With P̄ = P being the true transition function (therefore, q̂t = qt), we have

• qt(s, a)Q̂t(s, a) ≤ L,

• qt(s)V̂t(s) ≤ L,

• Et
[(
Q̂t(s, a)− V̂t(s)

)2
]
≤ 2L2(1−πt(a|s))

qt(s,a) ,

for all state-action pairs (s, a) (where Et denotes the conditional expectation given everything before
episode t).

Proof. Denote by qt(s′, a′|s, a) the probability of visiting (s′, a′) after taking action a at state s and
following πt afterwards. Then we have Q̂t(s, a) =

∑L−1
k=k(s)

∑
s′∈Sk

∑
a′∈A qt(s

′, a′|s, a)̂̀t(s′, a′).

Therefore, plugging in the definition of ̂̀t(s, a), we verify the following:

qt(s, a)Q̂t(s, a) =

L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

qt(s, a)qt(s
′, a′|s, a)

qt(s′, a′)
It(s′, a′)`t(s′, a′)

≤
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

It(s′, a′) ≤ L,

where the inequality is by qt(s, a)qt(s
′, a′|s, a) ≤ qt(s′, a′) and `t(s′, a′) ∈ [0, 1]. This also proves

qt(s)V̂t(s) ≤ L using the definition of V̂t(s).

To prove the last statement, we first note that

Et
[(
Q̂t(s, a)− V̂t(s)

)2
]
≤ 2Et

(1− πt(a|s))2
Q̂t(s, a)2 +

∑
b6=a

πt(b|s)Q̂t(s, b)

2
 (18)

by the fact (x− y)
2 ≤ 2x2 + 2y2 for all x, y ∈ R.

For the first term in Eq. (18), we have:

Et
[
Q̂t(s, a)2

]
= Et


 L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

qt(s
′, a′|s, a)

qt(s′, a′)
It(s′, a′)`t(s′, a′)

2

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≤ L · Et

 L−1∑
k=k(s)

(∑
s′∈Sk

∑
a′∈A

qt(s
′, a′|s, a)

qt(s′, a′)
It(s′, a′)`t(s′, a′)

)2


≤ L · Et

 L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

qt(s
′, a′|s, a)2

qt(s′, a′)2
It(s′, a′)


= L ·

L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

qt(s
′, a′|s, a)2

qt(s′, a′)

=
L

qt(s, a)
·
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

qt(s, a)qt(s
′, a′|s, a)

qt(s′, a′)
· qt(s′, a′|s, a)

≤ L

qt(s, a)
·
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

qt(s
′, a′|s, a) ≤ L2

qt(s, a)
,

where the second line uses the Cauchy-Schwartz inequality; the third line follows from the fact
It(s, a)It(s′, a′) = 0 for all (s, a), (s′, a′) ∈ Sk ×A such that (s, a) 6= (s′, a′); the fourth line uses
Et[It(s′, a′)] = qt(s

′, a′); and the last line follows from the fact qt(s, a)qt(s
′, a′|s, a) ≤ qt(s′, a′).

Repeating the similar arguments, we bound the second term as

Et


∑
b6=a

πt(b|s)Q̂t(s, b)

2
 = Et


 L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b 6=a

πt(b|s)qt(s′, a′|s, b)

 ̂̀
t(s
′, a′)

2


≤ L · Et

 L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b6=a

πt(b|s)qt(s′, a′|s, b)

 ̂̀
t(s
′, a′)

2


(Cauchy-Schwarz inequality)

≤ L · Et

 L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b 6=a

πt(b|s)qt(s′, a′|s, b)

2

It(s′, a′)
qt(s′, a′)2


(It(s, a)It(s′, a′) = 0 for (s, a) 6= (s′, a′))

= L ·
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

(∑
b6=a πt(b|s)qt(s′, a′|s, b)

qt(s′, a′)

)
·

∑
b 6=a

πt(b|s) · qt(s′, a′|s, b)


=

L

qt(s)
·
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

(∑
b6=a qt(s, b)qt(s

′, a′|s, b)
qt(s′, a′)

)
·

∑
b6=a

πt(b|s) · qt(s′, a′|s, b)


≤ L

qt(s)
·
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b 6=a

πt(b|s) · qt(s′, a′|s, b)


=

L

qt(s)
·
∑
b 6=a

πt(b|s) ·

 L−1∑
k=k(s)

(∑
s′∈Sk

∑
a′∈A

qt(s
′, a′|s, b)

)
≤ L2

qt(s)
·
∑
b 6=a

πt(b|s) =
L2 (1− πt(a|s))

qt(s)
.

Plugging these bounds into Eq. (18) concludes the proof:

Et
[(
Q̂t(s, a)− V̂t(s)

)2
]
≤ 2L2

(
(1− πt(a|s))2

qt(s, a)
+

1− πt(a|s)
qt(s)

)
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Algorithm 2 Best-of-both-worlds for MDPs with Known Transition and Full-information Feedback
for t = 1 to T do

Compute qt = argminq∈Ω(P )

〈
q,
∑
τ<t `τ

〉
+ φt(q) where φt(q) is defined in Eq. (20).

Execute policy πt where πt(a|s) = qt(s, a)/qt(s).
Observe the entire loss function `t.

= 2L2 (1− πt(a|s))
(

1− πt(a|s)
qt(s, a)

+
1

qt(s)

)
=

2L2 (1− πt(a|s))
qt(s, a)

.

A.2 Known Transition and Full-information Feedback: FTRL with Shannon Entropy

Although not mentioned in the main text, in this section, we discuss a simple application of the
loss-shifting technique: achieving the best-of-both-worlds in the full-information feedback setting
with known transition via the FTRL framework with the Shannon entropy regularizer. Some of
the lemmas in this section are useful for proving similar results for the unknown transition case in
Appendix B.

Therefore, the specific state-action and state value functions defined in Lemma A.1.3 are now
constructed based on the received loss vector `t, instead of the loss estimator ̂̀t. In other words, the
loss-shifting function gt is defined as gt(s, a) = Q̂(s, a)− V̂ (s)− `t(s, a) where

Q̂t(s, a) = `t(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)V̂t(s), V̂t(s) =
∑
a∈A

πt(a|s)Q̂t(s, a). (19)

Our goal is to show that, using an adaptive time-varying learning rate schedule, FTRL with Shannon
entropy is able to attain a self-bounding regret guarantee with full-information feedback. This idea
will be further discussed in Appendix B to address the unknown transition setting.

In particular, the algorithm uses following regularizer for episode t:

φt(q) =
1

ηt

∑
s6=sL

∑
a∈A

q(s, a) ln q(s, a) =
1

ηt
φ(q), (20)

where the adaptive learning rate ηt is defined as ηt =
√

L ln(|S||A|)
Mt−1+64L3 ln(|S||A|) with

Mt =

t∑
τ=1

min

∑
s6=sL

∑
a∈A

qτ (s, a)
(
Q̂τ (s, a)− V̂τ (s)

)2

,
∑
s6=sL

∑
a∈A

qτ (s, a)`τ (s, a)2

 .

The pseudocode of our algorithm is presented in Algorithm 2.

In the known transition setting, we assume the loss functions satisfy a more general condition
compared to Condition (1): there exists a deterministic policy π? : S → A, a gap function ∆ :
S ×A→ R+ and a constant C > 0 such that

RegT (̊π) ≥ E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)∆(s, a)− C

 . (21)

Note that this is only weaker than Condition (1) since RegT (̊π) ≥ RegT (π?).

Then, we show that Algorithm 2 ensures a worst-case guarantee RegT (̊π) = Õ(L
√
T ), and simul-

taneously an adaptive regret bound which further leads to logarithmic regret under Condition (21)
(Corollary A.2.2). Importantly, the worst-case regret bound matches the lower bound of learning
MDPs with known transition and full-information feedback [Zimin and Neu, 2013].
Theorem A.2.1. Algorithm 2 ensures that RegT (̊π) is bounded by

O


√√√√√min

L2T, L3E

 T∑
t=1

∑
s 6=sL

∑
a 6=π(s)

qt(s, a)

 ln(|S||A|) + L2 ln(|S||A|)

 (22)
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for any mapping π : S → A.

Proof. Due to the invariant property (that 〈q, gt〉 is independent of q ∈ Ω(P )), we can apply
Lemma A.2.3 with ̂̀t being either `t or `t + gt for any t — note that the condition ηt ̂̀t(s, a) ≥ −1 is
always satisfied since `t(s, a) ∈ [0, 1] and Q̂t(s, a)− V̂t(s) ∈ [−L,L]. Therefore, we have for any
u ∈ Ω(P ),

T∑
t=1

〈qt − u, `t〉 ≤
L ln(|S||A|)

ηT+1

+

T∑
t=1

ηt min

∑
s6=sL

∑
a∈A

qt(s, a)
(
Q̂t(s, a)− V̂t(s)

)2

,
∑
s6=sL

∑
a∈A

qt(s, a)`t(s, a)2


=
L ln(|S||A|)

ηT+1
+

T∑
t=1

ηt (Mt −Mt−1) , (definition of Mt)

=
L ln(|S||A|)

ηT+1
+

T∑
t=1

ηt

(√
Mt +

√
Mt−1

)(√
Mt −

√
Mt−1

)
,

≤ L ln(|S||A|)
ηT+1

+ 2

T∑
t=1

ηt
√
Mt−1 + L

(√
Mt −

√
Mt−1

)
. (Mt ≤Mt−1 + L)

Further plugging in the definition of ηt and taking expectation, we arrive at

RegT (̊π) ≤ E

[
L ln(|S||A|)

ηT+1
+ 2
√
L ln(|S||A|)

T∑
t=1

(√
Mt −

√
Mt−1

)]
= E

[√
L ln(|S||A|) (MT + 64L3 ln |S||A|) + 2

√
LMT ln(|S||A|)

]
= O

(√
LE [MT ] ln(|S||A|) + L2 ln(|S||A|)

)
.

It remains to bound MT . First, we note that

MT =

T∑
t=1

min

∑
s6=sL

∑
a∈A

qt(s, a)
(
Q̂t(s, a)− V̂t(s)

)2

,
∑
s6=sL

∑
a∈A

qt(s, a)`t(s, a)2


≤ min


T∑
t=1

∑
s6=sL

∑
a∈A

qt(s, a)
(
Q̂t(s, a)− V̂t(s)

)2

,

T∑
t=1

∑
s 6=sL

∑
a∈A

qt(s, a)`t(s, a)2


≤ min


T∑
t=1

∑
s6=sL

∑
a∈A

qt(s, a)
(
Q̂t(s, a)− V̂t(s)

)2

, LT

 .

where the second line follows from the fact min {a, b}+ min {c, d} ≤ min {a+ c, b+ d}, and the
third line uses the property 0 ≤ `t(s, a) ≤ 1 for all state-action pairs (s, a).

On the other hand, we have

(
Q̂t(s, a)− V̂t(s)

)2

≤ 2

(1− πt(a|s))2
Q̂t(s, a)2 +

∑
b6=a

πt(b|s)Q̂t(s, b)

2


≤ 2L2 ·
[
(1− πt(a|s))2

+ (1− πt(a|s))2
]

≤ 4L2 (1− πt(a|s)) , (23)
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where we use the facts (a− b)2 ≤ 2(a2 + b2) and 0 ≤ Q̂t(s, a) ≤ L for all state-action pairs (s, a).
Therefore, we have for any mapping π : S → A,

T∑
t=1

∑
s6=sL

∑
a∈A

qt(s, a)
(
Q̂t(s, a)− V̂t(s)

)2

≤ 4L2 ·
T∑
t=1

∑
s6=sL

∑
a∈A

qt(s, a) (1− πt(a|s))

≤ 4L2 ·
T∑
t=1

∑
s6=sL

qt(s) · (1− πt(π(s)|s)) +
∑

a6=π(s)

qt(s, a)


= 8L2 ·

T∑
t=1

∑
s6=sL

∑
a6=π(s)

qt(s, a), (24)

which finishes the proof.

Corollary A.2.2. Suppose Condition (21) holds. Algorithm 2 guarantees that:

RegT (̊π) = O
(
U +

√
CU
)
, where U =

L3 ln(|S||A|)
∆MIN

.

Proof. By Theorem A.2.1, RegT (̊π) is bounded by

κ ·


√√√√√L3 ln(|S||A|) · E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)

+ L2 ln(|S||A|)


where κ ≥ 1 is a universal constant, and π? is the mapping specified in Condition (21).

For any z > 1, RegT (̊π) is bounded by

κ

√√√√√L3 ln(|S||A|) · E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)

+ κL2 ln(|S||A|)

=

√√√√√zκ2L3 ln(|S||A|)
2∆MIN

·

2

z
· E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)∆MIN

+ κL2 ln(|S||A|)

≤ RegT (̊π) + C

z
+
zκ2L3 ln(|S||A|)

4∆MIN
+ κL2 ln(|S||A|)

≤ RegT (̊π) + C

z
+ z · 2κ2U,

where the third line uses the AM-GM inequality and Eq. (21), and the last line uses the shorthand U
and the facts κ, z > 1 and ∆MIN ≤ 1.

Therefore, by defining x = z − 1 > 0, we can rearrange and arrive at

RegT (̊π) ≤ C

z − 1
+

z2

z − 1
· 2κ2U

=
C

x
+

(x+ 1)2

x
·
(
2κ2U

)
=

1

x
·
(
C + 2κ2U

)
+ x ·

(
2κ2U

)
+ 4κ2U,

where we replace all z’s in the second line. Picking the optimal x =
√

C+2κ2U
2κ2U gives

RegT (̊π) ≤ 2
√

(C + 2κ2U) · (2κ2U) + 4κ2U
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≤ 8κ2U + 2
√

2κ ·
√
CU

= O
(
U +

√
UC
)
,

where the second line follows from the fact
√
x+ y ≤

√
x+
√
y.

Lemma A.2.3. Suppose qt = argminq∈Ω(P )

〈
q,
∑
τ<t

̂̀
τ

〉
+φt(q), where φt(q) = 1

ηt
φ(q) for some

ηt > 0, φ(q) =
∑
s6=sL

∑
a∈A q(s, a) ln q(s, a), and ηt ̂̀t(s, a) ≥ −1 holds for all t and (s, a). Then

T∑
t=1

〈
qt − u, ̂̀t〉 ≤ L ln(|S||A|)

ηT+1
+

T∑
t=1

ηt ·
∑
s6=sL

∑
a∈A

qt(s, a)̂̀t(s, a)2,

holds for any u ∈ Ω(P ).

Proof. Let Φt = minq∈Ω(P )

〈
q,
∑t−1
τ=1

̂̀
τ

〉
+ φt(q) and DF (u, v) being the Bregman divergence

with convex function F , that is, DF (u, v) = F (u)− F (v)− 〈u− v,∇F (v)〉.
Then, we have

Φt =

〈
qt,

t−1∑
τ=1

̂̀
τ

〉
+ φt(qt)

=

〈
qt+1,

t−1∑
τ=1

̂̀
τ

〉
+ φt(qt+1)−

(〈
qt+1 − qt,

t−1∑
τ=1

̂̀
τ

〉
+ φt(qt+1)− φt(qt)

)

≤

〈
qt+1,

t−1∑
τ=1

̂̀
τ

〉
+ φt(qt+1)− (−〈qt+1 − qt,∇φt(qt)〉+ φt(qt+1)− φt(qt))

=

〈
qt+1,

t−1∑
τ=1

̂̀
τ

〉
+ φt(qt+1)−Dφt(qt+1, qt)

= Φt+1 −
〈
qt+1, ̂̀t〉− (φt+1(qt+1)− φt(qt+1))−Dφt(qt+1, qt),

where the third line follows from the first order optimality condition of qt, that is,〈
qt+1 − qt,∇φt(qt) +

∑t−1
τ=1

̂̀
τ

〉
≥ 0.

Taking the summation over all episodes gives

Φ1 = ΦT+1 −
T∑
t=1

〈
qt+1, ̂̀t〉− T∑

t=1

(φt+1(qt+1)− φt(qt+1))−
T∑
t=1

Dφt(qt+1, qt).

Therefore, we have
T∑
t=1

〈
qt − u, ̂̀t〉

=

T∑
t=1

〈
qt − u, ̂̀t〉+ ΦT+1 − Φ1 −

T∑
t=1

〈
qt+1, ̂̀t〉− T∑

t=1

(φt+1(qt+1)− φt(qt+1))−
T∑
t=1

Dφt(qt+1, qt)

=

T∑
t=1

(〈
qt − qt+1, ̂̀t〉−Dφt(qt+1, qt)

)
−

T∑
t=1

〈
u, ̂̀t〉+ ΦT+1 − Φ1 −

T∑
t=1

(φt+1(qt+1)− φt(qt+1))

≤
T∑
t=1

(〈
qt − qt+1, ̂̀t〉−Dφt(qt+1, qt)

)
︸ ︷︷ ︸

STABILITY

+φT+1(u)− φ1(q1)−
T∑
t=1

(φt+1(qt+1)− φt(qt+1))︸ ︷︷ ︸
PENALTY

where the last line follows from the optimality condition ΦT+1 ≤
∑T
t=1

〈
u, ̂̀t〉+ φT+1(u).
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To bound the stability term, we first consider relaxing the constraint and taking the maximum as:〈
qt − qt+1, ̂̀t〉−Dφt(qt+1, qt) ≤ max

q∈RS×A+

〈
qt − q, ̂̀t〉−Dφt(q, qt).

Denote by q̃t the maximizer of the right hand side. Setting the gradient to zero yields the
equality ∇φt(qt) − ∇φt(q̃t) = ̂̀

t. By direction calculation, one can verify that q̃t(s, a) =

qt(s, a) · exp
(
−ηt · ̂̀t(s, a)

)
for all state-action pairs, and the following inequality that〈

qt − qt+1, ̂̀t〉−Dφt(qt+1, qt) ≤
〈
qt − q̃t, ̂̀t〉−Dφt(q̃t, qt)

=
〈
qt − q̃t, ̂̀t〉− φt(q̃t) + φt(qt)− 〈q̃t − qt,∇φt(qt)〉

= Dφt(qt, q̃t)

where the second equality uses the equality∇φt(qt)−∇φt(q̃t) = ̂̀
t.

Moreover, the term Dφt(qt, q̃t) can be bounded as:

Dφt(qt, q̃t) =
1

ηt

∑
s6=sL

∑
a∈A

(
qt(s, a) ln

(
qt(s, a)

q̃t(s, a)

)
− qt(s, a) + q̃t(s, a)

)
=

1

ηt

∑
s6=sL

∑
a∈A

qt(s, a) ·
(
ηt ̂̀t(s, a)− 1 + exp

(
−ηt · ̂̀t(s, a)

))
≤ ηt

∑
s6=sL

∑
a∈A

qt(s, a)̂̀t(s, a)2

where the last inequality follows from the facts y − 1 + e−y ≤ y2 for y > −1 and ηt · ̂̀t(s, a) ≥ −1
for all sate-action pairs.

On the other hand, the penalty term is at most

φT+1(u)− φ1(q1)−
T∑
t=1

(φt+1(qt+1)− φt(qt+1)) ≤ −φ(q1)

η1
−

T∑
t=1

(
1

ηt+1
− 1

ηt

)
φ(qt),

since φ(u) ≤ 0. Moreover, note that for any valid occupancy measure q, it holds that

φ(q) =

L−1∑
k=0

∑
s∈Sk

∑
a∈A

q(s, a) ≥ −
L−1∑
k=0

ln(|Sk||A|) ≥ −L ln(|S||A|).

Therefore, the penalty term is bounded by

− φ(q1)

η1
−

T∑
t=1

(
1

ηt+1
− 1

ηt

)
φ(qt)

≤ L ln(|S||A|) ·

(
1

η1
+

T∑
t=1

(
1

ηt+1
− 1

ηt

))
=
L ln(|S||A|)

ηT+1
.

Finally, combining the bounds for the stability and penalty terms finishes the proof.

A.3 Known Transition and Bandit Feedback: FTRL with Tsallis Entropy

In this section, we consider the bandit feedback setting with known transition. We use the following
hybrid regularizer with learning rate ηt = γ/

√
t for episode t:

φt(q) =
φH(q)

ηt
+ β

∑
s6=sL

∑
a∈A

log
1

q(s, a)︸ ︷︷ ︸
=φL(q)

, (25)
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Algorithm 3 Best-of-both-worlds for MDPs with Known Transition and Bandit Feedback
for t = 1 to T do

compute qt = argminq∈Ω

〈
q,
∑
τ<t

̂̀
τ

〉
+ φt(q) where φt(q) is defined in Eq. (25).

execute policy πt where πt(a|s) = qt(s, a)/qt(s).
observe (s0, a0, `t(s0, a0)), . . . , (sL−1, aL−1, `t(sL−1, aL−1)).
construct estimator ̂̀t such that: ∀(s, a), ̂̀t(s, a) = `t(s,a)

qt(s,a) I
{
sk(s) = s, ak(s) = a

}
.

where φL is a fixed log-barrier regularizer, and φH(q) is the 1/2-Tsallis entorpy:

φH(q) = −
∑
s6=sL

∑
a∈A

√
q(s, a).

We present the pseudocode of our algorithm in Algorithm 3, and show the ensured guarantees in
Theorem A.3.1, which is a more detailed version of Theorem 3.1. In particular, the adaptive regret
bound Eq. (26) is a strict improvement of [Jin and Luo, 2020, Theorem 1] and leads to the best-of-
both-worlds guarantee automatically. We emphasize that the key to achieve such a guarantees is the
loss-shifting function defined in Eq. (6).
Theorem A.3.1. With β = 64L and γ = 1, Algorithm 3 ensures that RegT (̊π) is bounded by

T∑
t=1

Õ

min

E

B ∑
s 6=sL

∑
a 6=π(s)

√
qt(s, a)

t
+D

√√√√∑
s6=sL

∑
a6=π(s)

qt(s, a) + q̊(s, a)

t

 ,√L|S||A|
t




(26)
for any mapping π : S → A, where B = L2 and D =

√
L|S|. Therefore, the regret of Algorithm 3

is always bounded as RegT (̊π) = Õ
(√

L|S||A|T
)

. Moreover, under Condition (21), RegT (̊π) is

bounded by O
(
U +

√
UC
)

where U = L|S| log T
∆MIN

+
∑
s6=sL

∑
a6=π?(a)

L4 log T
∆(s,a) + L|S||A| log T.

Proof. By [Jin and Luo, 2020, Lemma 5], with a sufficiently large log-barrier component (in particular,
β = 64L suffices), the regret can be decomposed and bounded as:

E

[
T∑
t=1

〈
qt − q̊, ̂̀t〉] ≤ T∑

t=1

(
1

ηt
− 1

ηt−1

)
E [φH(q̊)− φH(qt)]︸ ︷︷ ︸

PENALTY

+ 8

T∑
t=1

ηtE
[ ∥∥∥̂̀t∥∥∥2

∇−2φ(qt)

]
︸ ︷︷ ︸

STABILITY

+O (L|S||A| log T ) .

where q̊ is the occupancy measure of an deterministic optimal policy π̊ : S → A. Moreover, with the
help of Corollary A.1.2, we can in fact bound RegT (̊π) as

RegT (̊π) ≤
T∑
t=1

(
1

ηt
− 1

ηt−1

)
E [φH(q̊)− φH(qt)]︸ ︷︷ ︸

PENALTY

+O (L|S||A| log T )

+ 8

T∑
t=1

ηtE

[
min

{
Et
[ ∥∥∥̂̀t∥∥∥2

∇−2φ(qt)

]
,Et
[ ∥∥∥̂̀t + gt

∥∥∥2

∇−2φ(qt)

]}]
︸ ︷︷ ︸

STABILITY

.

(27)

where gt is the specific loss-shifting function defined in Eq. (6). This is again because adding the
loss-shifting function gt does not influence the outcomes of FTRL and thus in the analysis, one can
decide whether to add gt or not for episode t in hindsight to establish a tighter adaptive regret bound.

Before analyzing the stability term, we point out that φH(q̊)− φH(qt) can be bounded as

(φH(q̊)− φH(qt)) ≤
∑
s6=sL

∑
a 6=π(s)

√
qt(s, a) + 2

√
|S|L

∑
s6=sL

∑
a6=π(s)

qt(s, a) + q̊(s, a) (28)
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for any mapping π : S → A according to [Jin and Luo, 2020, Lemma 6] (take α in their lemma to
be 0). On the other hand, we also have φH(q̊)− φH(qt) ≤ −φH(qt) ≤

√
L|S||A| by the Cauchy-

Schwarz inequality. Combining these two cases and the fact 1
ηt
− 1
ηt−1

= 1
γ ·
(√
t−
√
t− 1

)
≤ 1

γ ·
1√
t
,

the penalty term is bounded by

1

γ

T∑
t=1

E

min


√
L|S||A|

t
,

∑
s6=sL

∑
a6=π(s)

√
qt(s, a)

t

+ 2

√√√√|S|L ∑
s6=sL

∑
a 6=π(s)

qt(s, a) + q̊(s, a)

t




We now bound the stability term. By direct calculation, we have

Et
[∥∥∥̂̀t + gt

∥∥∥2

∇−2φ(qt)

]
=
∑
s6=sL

∑
a∈A

qt(s, a)
3/2Et

[(̂̀
t(s, a) + gt(s, a)

)2
]

≤ 2L2
∑
s6=sL

∑
a∈A

√
qt(s, a) · (1− πt(a|s)) , (29)

where the second line applies the properties of the loss-shifting function in Lemma A.1.3.

For any mapping π : S → A, we can further bound Eq. (29) as

2L2
∑
s 6=sL

∑
a∈A

√
qt(s, a) · (1− πt(a|s))

≤ 2L2
∑
s6=sL

∑
a6=π(s)

√
qt(s, a) + 2L2

∑
s6=sL

√
qt(s) ·

 ∑
a6=π(s)

πt(a|s)


≤ 4L2

∑
s6=sL

∑
a6=π(s)

√
qt(s, a),

where the third line follows from the fact x ≤
√
x for x ∈ [0, 1].

Therefore, for any mapping π : S → A, the stability term is bounded by

T∑
t=1

8ηtE
[∥∥∥̂̀t + gt

∥∥∥2

∇−2φ(qt)

]
≤ 32L2 ·

T∑
t=1

ηtE

∑
s6=sL

∑
a6=π(s)

√
qt(s, a)

 . (30)

On the other hand, without the loss-shifting function, the stability term is simultaneously bounded as

T∑
t=1

8ηtE
[∥∥∥̂̀t∥∥∥2

∇−2φ(qt)

]
=

T∑
t=1

8ηtE

∑
s 6=sL

∑
a∈A

qt(s, a)
3/2 · ̂̀t(s, a)2


≤

T∑
t=1

8ηtE

∑
s6=sL

∑
a∈A

√
qt(s, a)

 ≤ T∑
t=1

8ηt
√
L|S||A|. (Cauchy-Schwarz inequality)

Plugging Eq. (28) and Eq. (30) into the Eq. (27) shows that Algorithm 3 ensures the following
self-bounding regret bound for RegT (̊π):

1

γ

T∑
t=1

E

min


√
L|S||A|

t
,

∑
s6=sL

∑
a6=π(s)

√
qt(s, a)

t

+ 2

√√√√|S|L ∑
s6=sL

∑
a 6=π(s)

qt(s, a) + q̊(s, a)

t




32γ ·
T∑
t=1

E

min


√
L|S||A|

t
, L2

∑
s6=sL

∑
a6=π(s)

√
qt(s, a)

t


+O (L|S||A| log T )

(31)

for any mapping π : S → A. Picking γ = 1 and using min {a, b}+min {c, d} ≤ min {a+ c, b+ d}
proves Eq. (26).
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The (optimal) worst-case bound RegT (̊π) = Õ(
√
L|S||A|T ) can be obtained by using the second

argument of the min operator in Eq. (26), while the logarithmic regret bound under Condition (21) is
obtained by using the first argument of the min operator and the exact same reasoning as in [Jin and
Luo, 2020, Appendix A.1].

We point out that with a different choice γ = 1/L, Algorithm 3 achieves a regret bound of RegT (̊π) =

O
(
V +

√
V C

)
under Condition (21), where

V =
L3|S| log T

∆MIN
+
∑
s6=sL

∑
a6=π?(a)

L2 log T

∆(s, a)
+ L|S||A| log T

which matches the best existing regret bound in Simchowitz and Jamieson [2019]. This choice of γ
worsens the worst-case bound though.
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B Best of Both Worlds for MDPs with Unknown Transition and Full
Information

In this part, we will prove the best of both worlds results for the full-information setting. We
present the bound for the adversarial world in Proposition B.1, and that for the stochastic world in
Proposition B.2 (part of which is a restatement of Lemma 5.1). Together, they prove Theorem 4.1.1.
Proposition B.1. Consider the decomposition RegT (̊π) = E [ERR1 + ESTREG + ERR2] stated in
Eq. (14). Then, with δ = 1

T 2 Algorithm 1 ensures:

• E [ERR1] = Õ
(
L|S|

√
|A|T + L3|S|3|A|

)
,

• E [ERR2] = Õ (1),

• E [ESTREG] = Õ
(
L
√
|S||A|T + L2|S|2|A| 32 + L3|S||A|

)
.

Proposition B.2. With δ = 1
T 2 , Algorithm 1 ensures that RegT (π?) is bounded as

O

E

[
G1

(
L4|S| lnT

)︸ ︷︷ ︸
ERRSUB

+G2

(
L4|S| lnT

)︸ ︷︷ ︸
ERROPT

+G3

(
L4 lnT

)︸ ︷︷ ︸
OCCDIFF

+G4

(
L5|S||A| lnT ln(|S||A|)

)︸ ︷︷ ︸
]

+O
(
L4|S|3|A|2 ln2 T

)
,

where G1-G4 are defined in Definition D.2.1. Under Condition (1), this bound implies RegT (π?) =

O
(
U +

√
UC + V

)
where

U =

(
L6|S|2 + L5|S||A| log(|S||A|)

)
log T

∆MIN
+
∑
s 6=sL

∑
a 6=π?(s)

L6|S| log T

∆(s, a)
, V = L4|S|3|A|2 ln2 T.

Before diving into the proof details, we first give formal definitions of several notations mentioned in
Section 4 and Section 5 for the full-information setting. Through out this paper, we denote by A the
event that P ∈ Pi for all i, which happens with probability at least 1− 4δ based on [Jin et al., 2020,
Lemma 2]. We denote by N the total number of epochs, and set tN+1 = T + 1 for convenience
(recall that ti is the first episode for epoch i).

Then, recall the Q̂πt and V̂ πt defined in Section 5, that is, the state-action and state value functions
associated with the empirical transition P̄i(t) and the adjusted loss ̂̀t, formally defined as:

Q̂πt (s, a) = ̂̀
t(s, a) +

∑
s′∈Sk(s)+1

P̄i(t)(s
′|s, a)V̂t(s

′), V̂ πt (s) =
∑
a∈A

π(a|s)Q̂πt (s, a), (32)

and Q̂πt (sL, a) = 0 for all a. Also recall that the notation Q̂t and V̂t used in the loss-shifting function
are shorthands for Q̂πtt and V̂ πtt . Similarly, the true state-action and state value functions of episode t
are defined as:

Qπt (s, a) = `t(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)Vt(s
′), V πt (s) =

∑
a∈A

π(a|s)Qπt (s, a), (33)

with Qπt (sL, a) = 0 for all a. For notational convenience, we let ι = T |S||A|
δ and as-

sume that δ ∈ (0, 1), and denote by Tk the set of transition tuples at layer k, that is, Tk =
{(s, a, s′) ∈ Sk ×A× Sk+1}.

B.1 Optimism of Adjusted losses and Other Lemmas

First, we show that the adjusted loss ̂̀t defined in Eq. (11) ensures the optimism of the estimated
state-action and state value functions as stated in Lemma B.1.1. As discussed in Section 5, this certain
kind of optimism ensures that E [ERR2] is bounded by a constant with a sufficiently small confidence
parameter δ.
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Lemma B.1.1. Using the notations in Eq. (32) and Eq. (33) and conditioning on the event A, we
have

Q̂πt (s, a) ≤ Qπt (s, a),∀(s, a) ∈ S ×A, t ∈ [T ].

Proof. We prove this result via a backward induction from layer L to layer 0.

Base case: for sL, Q̂πt (s, a) = Qπt (s, a) = 0 holds always.

Induction step: Suppose Q̂πt (s, a) ≤ Qπt (s, a) holds for all the states s with k(s) > h. Then, for
any state s in layer h, we have

Q̂πt (s, a) = `t(s, a) +
∑

s′∈Sk(s)+1

P̄i(t)(s
′|s, a)V̂ πt (s′)− L ·Bt(s, a)

≤ `t(s, a) +
∑

s′∈Sk(s)+1

P̄i(t)(s
′|s, a)V πt (s′)− L ·Bt(s, a) (Induction hypothesis)

≤ `t(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)V πt (s′)

+
∑

s′∈Sk(s)+1

(
P̄i(t)(s

′|s, a)− P (s′|s, a)
)
V πt (s′)− L ·Bi(t)(s, a)

= Qπt (s, a) +
∑

s′∈Sk(s)+1

(
P̄i(t)(s

′|s, a)− P (s′|s, a)
)
V πt (s′)− L ·Bi(t)(s, a)

where the first line follows from the definition of ̂̀t.
Clearly, when Bi(t)(s, a) = 1, we have∑
s′∈Sk(s)+1

(
P̄i(t)(s

′|s, a)− P (s′|s, a)
)
V πt (s′)− L ·Bi(t)(s, a) ≤

∑
s′∈Sk(s)+1

P̄i(t)(s
′|s, a) · L− L = 0

where the inequality follows from the fact 0 ≤ V πt (s′) ≤ L.

On the other hand, when
∑
s′∈Sk(s)+1

Bi(t)(s, a, s
′) = Bi(t)(s, a), we have∑

s′∈Sk(s)+1

(
P̄i(t)(s

′|s, a)− P (s′|s, a)
)
V πt (s′)− L ·Bi(t)(s, a)

≤
∑

s′∈Sk(s)+1

Bi(t)(s, a, s
′) · L− L ·Bi(t)(s, a) = 0

where the second line uses the definition of event A.

Combining these two cases shows that Q̂πt (s, a) ≤ Qπt (s, a) holds for all state-action pairs (s, a) at
layer h, finishing the induction.

Next, we analyze the estimated regret suffered within one epoch. With slightly abuse of notation, we
denote by EstRegi(π) the difference between the total loss suffered within epoch i and that of the
fixed policy π with respect to the empirical transition P̄i and the adjusted losses within epoch i, that
is,

EstRegi(π) = E

[
ti+1−1∑
t=ti

〈
qP̄i,πt − qP̄i,π, ̂̀t〉] = E

[
ti+1−1∑
t=ti

〈
q̂t − qP̄i,π, ̂̀t〉] . (34)

In addition, we let EstRegi = maxπ EstRegi(π) be the maximum regret suffered within epoch i.
Lemma B.1.2. For full-information feedback, Algorithm 1 ensures that EstRegi is bounded by
O
(
L3 ln(|S||A|)

)
plus:

O

E


√√√√√L ln (|S||A|) ·min

L4

ti+1−1∑
t=ti

∑
s∈S

∑
a6=π(s)

q̂t(s, a),

ti+1−1∑
t=ti

∑
s6=sL

∑
a∈A

q̂t(s, a)̂̀t(s, a)2



 .

(35)
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Proof. The proof follows the same steps as in that of Theorem A.2.1. Due to the invariant property,
the loss of episode t fed to FTRL can be seen as either ̂̀t(s, a) or Q̂t(s, a) − V̂t(s, a). By the
definition of ηt, we have both ηt ̂̀t(s, a) ≥ −1 and ηt(Q̂t(s, a)− V̂t(s, a)) ≥ −1. Therefore, we can
apply Lemma A.2.3 and bound EstRegi by

E

L ln(|S||A|)
ηti+1

+

ti+1−1∑
t=ti

ηt min

∑
s6=sL

∑
a∈A

q̂t(s, a)
(
Q̂t(s, a)− V̂t(s)

)2

,
∑
s6=sL

∑
a∈A

q̂t(s, a)`t(s, a)2


 .

The tuning of ηt makes sure that the above is further bounded by O
(
L3 ln(|S||A|)

)
plus√

L ln (|S||A|) multiplied with

O

E


√√√√√min


ti+1−1∑
t=ti

∑
s 6=sL

∑
a∈A

q̂t(s, a)
(
Q̂t(s, a)− V̂t(s)

)2

,

ti+1−1∑
t=ti

∑
s 6=sL

∑
a∈A

q̂t(s, a)`t(s, a)2



 ;

see the beginning of the proof of Theorem A.2.1 for the same reasoning. Finally, it remains to bound∑
s6=sL

∑
a∈A q̂t(s, a)

(
Q̂t(s, a)− V̂t(s)

)2

by 8L4
∑
s6=sL

∑
a 6=π(s) q̂t(s, a). This is again by the

same reasoning as Eq. (23) and Eq. (24), except that Q̂t(s, a) now has a range in [−L2, L2] which
explains the extra L2 factor.

B.2 Proof for the Adversarial World (Proposition B.1)

We analyze the regret based on the decomposition in Eq. (14) and consider bounding the terms
E [ERR1], E [ERR2] and E [ESTREG] separately.

ERR1 Following the similar idea of Jin et al. [2020], we decompose this term as:

ERR1 =

T∑
t=1

V πtt (s0)− V̂ πtt (s0) =

T∑
t=1

〈qt, `t〉 −
〈
q̂t, ̂̀t〉

=

T∑
t=1

〈qt, `t〉 − 〈q̂t, `t〉+ L ·
T∑
t=1

〈
q̂t, Bi(t)

〉
=

T∑
t=1

〈qt, `t〉 − 〈q̂t, `t〉+ L ·
T∑
t=1

〈
qt, Bi(t)

〉
+ L ·

T∑
t=1

〈
q̂t − qt, Bi(t)

〉
≤

T∑
t=1

∑
s6=sL

∑
a∈A
|qt(s, a)− q̂t(s, a)|+ L ·

T∑
t=1

〈
qt, Bi(t)

〉
+ L ·

T∑
t=1

〈
q̂t − qt, Bi(t)

〉
where the last line follows from the fact 0 ≤ `t(s, a) ≤ 1. According to this decomposition, we next
consider bounding the expectation of these three terms separately.

First, we focus on the second term:

E

[
L ·

T∑
t=1

〈
qt, Bi(t)

〉]

≤ L · E

[
L−1∑
k=0

∑
s∈Sk

∑
a∈A

T∑
t=1

qt(s, a)

(
2

√
|Sk(s)+1| ln ι

max {mi(s, a), 1}
+

14|Sk(s)+1| ln ι
3 max {mi(s, a), 1}

)]

= O

(
L ·

L−1∑
k=0

(√
|Sk||Sk+1||A|T ln ι+ |Sk(s)+1||Sk||A| (2 + lnT ) ln ι

))

≤ O

(
L
√
|A|T ln ι ·

L−1∑
k=0

(|Sk|+ |Sk+1|) + L|S|2|A| ln2 ι

)
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= O
(
L|S|

√
|A|T ln ι+ L|S|2|A| ln2 ι

)
= Õ

(
L|S|

√
|A|T + L|S|2|A|

)
(36)

where the second line follows Lemma D.3.2, the third line follows from Lemma D.3.8 and the fourth
line applies AM-GM inequality.

Then, for the first term, with the help from residual term rt defined in Definition D.3.9, we have

E

 T∑
t=1

∑
s6=sL

∑
a∈A
|qt(s, a)− q̂t(s, a)|


≤ E

4

T∑
t=1

∑
s6=sL

∑
a∈A

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(s, a|w) +

T∑
t=1

∑
s6=sL

∑
a∈A

rt(s, a)


≤ E

4L ·
T∑
t=1

∑
u6=sL

∑
v∈A

∑
w∈Sk(u)+1

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

} +

T∑
t=1

∑
s6=sL

∑
a∈A

rt(s, a)


≤ E

4L ·
T∑
t=1

∑
u6=sL

∑
v∈A

qt(u, v)

√ ∣∣Sk(u)+1

∣∣ ln ι
max

{
mi(t)(u, v), 1

} +

T∑
t=1

∑
s 6=sL

∑
a∈A

rt(s, a)


= O

(
L|S|

√
|A|T ln ι+ L2|S|3|A|2 ln2 ι+ δ|S||A|T

)
= Õ

(
L|S|

√
|A|T + L2|S|3|A|2

)
(37)

where the second line uses the bound of |qt(s, a)− q̂t(s, a)| in Lemma D.3.10; the third line follows
from the fact

∑
s6=sL

∑
a∈A qt(s, a|w) ≤ L; the forth line uses the Cauchy-Schwarz inequality; the

fifth line follows the same argument in Eq. (36) and applies the expectation bound of residual terms
in Lemma D.3.10; and the last line plugs in the value of δ = 1/T 2.

For the last term, using the bound of |q̂t(s, a)− qt(s, a)| in Lemma D.3.10, we arrive at

E

[
L ·

T∑
t=1

〈
q̂t − qt, Bi(t)

〉]

≤ E

L · T∑
t=1

∑
s6=sL

∑
a∈A

Bi(t)(s, a) ·

4

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(s, a|w) + rt(s, a)


≤ E

4L ·
T∑
t=1

∑
s6=sL

∑
a∈A

∑
s′∈Sk(s)+1

Bi(t)(s, a, s
′)

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(s, a|w)


+ E

L · T∑
t=1

∑
s6=sL

∑
a∈A

rt(s, a)

 ,
where the last line follows from the fact Bi(t)(s, a) ≤ 1.

According to the definition of the residual term in Definition D.3.9, we have

rt(s, a) ≥
∑

s′∈Sk(s)+1

Bi(t)(s, a, s
′)·

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}
 qt(s, a|w)

(in particular, the second summand in the definition of rt(s, a) is an upper bound of the right-hand
side above). Therefore, we have E

[
L ·
∑T
t=1

〈
q̂t − qt, Bi(t)

〉]
further bounded by

E

(4L+ L) ·
T∑
t=1

∑
s6=sL

∑
a∈A

rt(s, a)

 ≤ O (L3|S|3|A|2 ln2 ι+ δ · L|S||A|T
)

= Õ
(
L3|S|3|A|2

)
(38)
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where the last inequality uses the expectation bound of residual terms in Lemma D.3.10.

Combining all bounds yields

E [ERR1] = Õ
(
L|S|

√
|A|T + L3|S|3|A|

)
.

ERR2 According to Lemma B.1.1, Lemma D.3.5, and the fact
∣∣∣V̂ πt (s)

∣∣∣ ≤ L2, we have

E [ERR2] = E

[
T∑
t=1

V̂ πt (s0)− V πt (s0)

]
≤ L2T Pr[Ac] ≤ 4L2Tδ = Õ(1).

ESTREG By Lemma B.1.2, we have E [ESTREG] bounded as

E

[
N∑
i=1

ti+1−1∑
t=ti

〈
q̂t − qP̄i ,̊π, ̂̀t〉] ≤ E

[
N∑
i=1

EstRegi

]

≤ E

Õ
 N∑
i=1

√√√√L

ti+1−1∑
t=ti

∑
s∈S

∑
a∈A

q̂t(s, a)̂̀t(s, a)2 + L3


≤ Õ


√√√√E

[
L|S||A|

T∑
t=1

∑
s∈S

∑
a∈A

q̂t(s, a)̂̀t(s, a)2

]
+ L3|S||A|


where the last line follows from the fact N ≤ 4|S||A| (log T + 1) according to Lemma D.3.12 and
uses Cauchy-Schwarz inequality.

Next, we continue to bound the following key term:

E

[
T∑
t=1

∑
s∈S

∑
a∈A

q̂t(s, a)̂̀t(s, a)2

]

= E

[
T∑
t=1

∑
s∈S

∑
a∈A

q̂t(s, a)
(
`t(s, a)− L ·Bi(t)(s, a)

)2]

≤ 2 · E

[
T∑
t=1

∑
s∈S

∑
a∈A

q̂t(s, a)
(
`t(s, a)2 + L2 ·Bi(t)(s, a)2

)]

≤ 2LT + 2L2 · E

[
T∑
t=1

〈
q̂t, Bi(t)

〉]

= 2LT + 2L ·

(
L · E

[
T∑
t=1

〈
q̂t − qt, Bi(t)

〉]
+ L · E

[
T∑
t=1

〈
qt, Bi(t)

〉])
,

where the third line uses (x+ y)
2 ≤ 2

(
x2 + y2

)
and the fourth line uses Bi(t)(s, a) ≤ 1. Moreover,

in the previous analysis of the term ERR1, we bound the terms in the bracket with

E

[
L ·

T∑
t=1

〈
qt, Bi(t)

〉]
≤ Õ

(
L|S|

√
|A|T + L|S|2|A|

)
, (from Eq. (36))

E

[
L ·

T∑
t=1

〈
q̂t − qt, Bi(t)

〉]
≤ Õ

(
L3|S|3|A|2

)
. (from Eq. (38))

Therefore, we have

E

[
T∑
t=1

∑
s∈S

∑
a∈A

q̂t(s, a)̂̀t(s, a)2

]
= Õ

(
LT + L|S|

√
|A|T + L3|S|3|A|2

)
= Õ

(
LT + L3|S|3|A|2

)
,

which further proves

E[ESTREG] = Õ
(
L
√
|S||A|T + L2|S|2|A| 32 + L3|S||A|

)
.
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B.3 Proof for the Stochastic World (Proposition B.2)

As discussed in Section 5, we decompose ERR1 + ERR2 as (see Corollary D.1.2):

ERR1 + ERR2 =

T∑
t=1

∑
s 6=sL

∑
a 6=π?(s)

qt(s, a)Êπ
?

t (s, a) (ERRSUB)

+

T∑
t=1

∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a)) Êπ
?

t (s, a) (ERROPT)

+

T∑
t=1

∑
s6=sL

∑
a∈A

(qt(s, a)− q̂t(s, a))
(
Q̂π

?

t (s, a)− V̂ π
?

t (s)
)

(OCCDIFF)

+

T∑
t=1

∑
s6=sL

∑
a6=π?(s)

q?t (s, a)
(
V̂ π

?

t (s)− V π
?

t (s)
)

(BIAS)

where Êπt (s, a) is defined as:

Êπt (s, a) = `t(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)V̂ πt (s′)− Q̂πt (s, a).

Then, we proceed to bound each of the five terms: ERRSUB, ERROPT, OCCDIFF, BIAS, and
ESTREG.

ERRSUB Conditioning on A, we know that

Êπ
?

t (s, a) = LBi(t)(s, a) +
∑

s′∈Sk(s)+1

(
P (s′|s, a)− P̄i(t)(s′|s, a)

)
V̂ π

?

t (s′)

≤ LBi(t)(s, a) + L2 ·
∑

s′∈Sk(s)+1

Bi(t)(s, a, s
′)

≤ 4L2 ·
∑

s′∈Sk(s)+1

(√
P̄i(t)(s′|s, a) ln ι

max
{
mi(t)(s, a), 1

} +
7 ln ι

3 max
{
mi(t)(s, a), 1

})

≤ 4L2

(√
|S| ln ι

max
{
mi(t)(s, a), 1

} +
7|S| ln ι

3 max
{
mi(t)(s, a), 1

}) ,
where the second line follows from the event A and the fact

∣∣∣V̂ πt (s)
∣∣∣ ≤ L2, and the last line applies

the Cauchy-Schwarz inequality.

Therefore, under event A, ERRSUB can be bounded as:

ERRSUB ≤
T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a) · 4L2

(√
|S| ln ι

max
{
mi(t)(s, a), 1

} +
7|S| ln ι

3 max
{
mi(t)(s, a), 1

})

≤ 4G1

(
L4|S| ln ι

)
+

28|S|L2 ln ι

3

T∑
t=1

∑
s 6=sL

∑
a∈A

qt(s, a)

3 max
{
mi(t)(s, a), 1

} ,
where the second line follows from the definition of G1(·) in Definition D.2.1.

With the help of Lemma D.3.5 and the fact |ERRSUB| ≤ L3T , we have

E [ERRSUB] ≤ O
(
L3Tδ + E

[
G1

(
L4|S| ln ι

)])
+ E

28|S|L2 ln ι

3

T∑
t=1

∑
s6=sL

∑
a∈A

qt(s, a)

3 max
{
mi(t)(s, a), 1

}


= O
(
E
[
G1

(
L4|S| ln ι

)]
+ L2|S|2|A| ln2 ι

)
, (39)

where the last line uses Lemma D.3.8.
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ERROPT By the similar arguments above, we have ERROPT bounded by the following given event
A:

ERROPT ≤
T∑
t=1

∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a)) · 4L2

(√
|S| ln ι

max
{
mi(t)(s, a), 1

} +
7|S| ln ι

3 max
{
mi(t)(s, a), 1

}) .
Using the definition of G2(·) in Definition D.2.1 and Lemma D.3.5, we have

E [ERROPT] ≤ O
(
L3Tδ + E

[
G2

(
L4|S| ln ι

)])
+ E

28|S|L2 ln ι

3

T∑
t=1

∑
s6=sL

∑
a∈A

qt(s, a)

3 max
{
mi(t)(s, a), 1

}


= O
(
E
[
G2

(
L4|S| ln ι

)]
+ L2|S|2|A| ln2 ι

)
. (40)

OCCDIFF First, we have

OCCDIFF =

T∑
t=1

∑
s6=sL

∑
a∈A

(qt(s, a)− q̂t(s, a))
(
Q̂π

?

t (s, a)− V̂ π
?

t (s)
)

=

T∑
t=1

∑
s6=sL

∑
a6=π?(s)

(qt(s, a)− q̂t(s, a))
(
Q̂π

?

t (s, a)− V̂ π
?

t (s)
)

≤ 2L2
T∑
t=1

∑
s6=sL

∑
a6=π?(s)

|qt(s, a)− q̂t(s, a)| ,

where the second line follows from the fact V̂ π
?

t (s) = Q̂π
?

t (s, a) for all state-action pairs (s, a)

satisfying a = π?(s), and the last line uses the fact Q̂π
?

t (s, a)− V̂ π?t (s) ≤ 2L2 for all state-action
pairs. With the help of the residual terms in Definition D.3.9 and Lemma D.3.10, we further bound
OCCDIFF as

2L2
T∑
t=1

∑
s6=sL

∑
a6=π?(s)

|qt(s, a)− q̂t(s, a)|

≤ 2L2
T∑
t=1

∑
s6=sL

∑
a6=π?(s)

rt(s, a)

+ 8L2
T∑
t=1

∑
s6=sL

∑
a6=π?(s)

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(s, a|w)

= O
(
L4|S|3|A|2 ln2 ι+ L2|S||A|T · δ + G3(L4 ln ι)

)

(41)

where the last line is by the definition of G3(·) in Definition D.2.1. Therefore, we conclude

E [OCCDIFF] ≤ O
(
L4|S|3|A|2 ln2 ι+ E

[
G3(L4 ln ι)

])
. (42)

BIAS Conditioning on the event A, BIAS is nonpositive due to Lemma B.1.1. Then, by
Lemma D.3.5, we bound the expectation of BIAS by

E [BIAS] ≤ 0 + E [I{Ac}] · L3T = O (1) . (43)

ESTREG By the analysis of estimated regret in Lemma B.1.2, we have E [ESTREG] bounded by
(with CESTREG = L5|S||A| lnT ln (|S||A|))

O

E

 N∑
i=1

√√√√L5 ln (|S||A|) ·
ti+1−1∑
t=ti

∑
s∈S

∑
a6=π?(s)

q̂t(s, a) + L3 ln(|S||A|)


≤ O

E

√√√√CESTREG ·
T∑
t=1

∑
s∈S

∑
a 6=π?(s)

q̂t(s, a)

+ L3|S||A| lnT ln(|S||A|)


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≤ O

E

√√√√CESTREG ·
T∑
t=1

∑
s∈S

∑
a 6=π?(s)

qt(s, a)

+ L3|S||A| lnT ln(|S||A|)


+O

E

√√√√CESTREG ·
T∑
t=1

∑
s∈S

∑
a6=π?(s)

|q̂t(s, a)− qt(s, a)|


≤ O

(
E
[
G4(L5|S||A| lnT ln (|S||A|))

]
+ L5|S||A| lnT ln (|S||A|)

)

+O

E

 T∑
t=1

∑
s∈S

∑
a6=π?(s)

|q̂t(s, a)− qt(s, a)|


where the second line uses the Cauchy-Schwarz inequality and the fact N ≤ 4|S||A| (log T + 1)

according to Lemma D.3.12; the third line uses the fact that
√
x ≤ √y +

√
|x− y| for x, y > 0; the

last line uses the definition of G4(·) in Definition D.2.1 and the AM-GM inequality.

Note that in the analysis of OCCDIFF (see Eq. (41)), we have already shown that

T∑
t=1

∑
s6=sL

∑
a6=π?(s)

|qt(s, a)− q̂t(s, a)| = O
(
L2|S|3|A|2 ln2 ι+ E [G3(ln ι)]

)
. (44)

Combining everything, we have E [ESTREG] bounded by:

O
(
E
[
G4(L5|S||A| lnT ln (|S||A|)) + G3(ln ι)

]
+ L3|S|3|A|2 ln2 ι

)
. (45)

Finally, combining everything we have shown that Algorithm 1 ensures the following regret bound
for RegT (π?):

O
(
E
[
G1

(
L4|S| ln ι

)])
(from Eq. (39) for ERRSUB)

+O
(
E
[
G2

(
L4|S| ln ι

)])
(from Eq. (40) for ERROPT)

+O
(
E
[
G3

(
L4 ln ι

)])
(from Eq. (42) for OCCDIFF)

+O
(
E
[
G4

(
L5|S||A| ln (|S||A|) lnT

)])
(from Eq. (45) for ESTREG)

+O
(
L4|S|3|A|2 ln2 ι

)
.

Now suppose that Condition (1) holds. For some universal constant κ > 0, RegT (π?) is bounded as

RegT (π?) ≤ κ ·
(
E
[
G1

(
L4|S| ln ι

)]
+ E

[
G2

(
L4|S| ln ι

)]
+ E

[
G3

(
L4 ln ι

)])
+ κ ·

(
E
[
G4

(
L5|S||A| ln (|S||A|) lnT

)])
+ κ ·

(
L4|S|3|A|2 ln2 ι

)
.

For any z > 0, by Lemma D.2.2, Lemma D.2.3, Lemma D.2.4 and Lemma D.2.5 with α = β = 1
12zκ

we have

RegT (π?) ≤ RegT (π?) + C

z

+ 12z ·

∑
s 6=sL

∑
a 6=π?(s)

8κ2

∆(s, a)

 · (L4|S| ln ι+ L6|S| ln ι
)

+ 12z ·
(

κ2

∆MIN

)
·
(

8L5|S| ln ι+ 8L6|S|2 ln ι+
L5|S||A| ln (|S||A|) lnT

4

)
+ κ ·

(
L4|S|3|A|2 ln2 ι

)
≤ RegT (π?) + C

z
+ 288zκ2 · U + 2κ · V,
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where the last line uses the shorthands U and V defined in Proposition B.2.

Rearranging the terms arrive at:

RegT (π?) ≤ C

z − 1
+

z2

z − 1
· 288κ2U +

z

z − 1
· 2κ · V

=
C

x
+

(x+ 1)2

x
· 288κ2U +

x+ 1

x
· 2κ · V

=
1

x
·
(
C + 288κ2U + 2κ · V

)
+ x · 288κ2U + 2κ · V + 576κ2U

where we replace all z’s by x = z − 1 > 0 in the second line. Finally, by selecting the optimal x to
balance the first two terms, we have

RegT (π?) ≤ 2
√

(C + 288κ2U + 2κ · V ) · 288κ2U + 2κV + 576κ2U

= O
(
U +

√
UC + V

)
,

finishing the entire proof for Proposition B.2.
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C Best of Both Worlds for MDPs with Unknown Transition and Bandit
Feedback

In this section, we prove the best of both worlds results for the bandit setting with unknown transition.
We present the bound for the adversarial world in Proposition C.1, and that for the stochastic world in
Proposition C.2. Together, they prove Theorem 4.1.2.
Proposition C.1. With δ = 1

T 3 , Algorithm 1 ensures

RegT (̊π) = Õ
((
L+
√
A
)
|S|
√
|A|T

)
.

Proposition C.2. Suppose Condition (1) holds. With δ = 1
T 3 , Algorithm 1 ensures that RegT (π?) is

bounded by O
(
U +

√
CU + V

)
where V = L6|S|3|A|3 ln2 T and U is defined as

U =
∑
s6=sL

∑
a 6=π?(s)

[
L6|S| lnT + L4|S||A| ln2 T

∆(s, a)

]
+

[
L6|S|2 lnT + L3|S|2|A| ln2 T

∆MIN

]
.

The analysis is similar to that for the full-information setting, except that we need to handle some
bias terms caused by the new loss estimators. To this end, we denote by ˜̀t the conditional expectation
of ̂̀t, that is ˜̀

t(s, a) = Et
[̂̀
t(s, a)

]
=
qt(s, a)

ut(s, a)
· `t(s, a)− L ·Bi(t)(s, a). (46)

Then we define the following:
Definition C.3. For any policy π, the estimated state-action and state value functions associated
with P̄i(t) and loss function ˜̀t are defined as:

Q̃πt (s, a) = ˜̀
t(s, a) +

∑
s′∈Sk(s)+1

P̄i(t)(s
′|s, a)Ṽ πt (s′), ∀(s, a) ∈ (S − {sL})×A,

Ṽ πt (s) =
∑
a∈A

π(a|s)Q̃πt (s, a), ∀s ∈ S,

Q̃πt (sL, a) = 0, ∀a ∈ A.

(47)

On the other hand, the true state-action and value functions are again defined as:

Qπt (s, a) = `t(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)V πt (s′), ∀(s, a) ∈ (S − {sL})×A,

V πt (s) =
∑
a∈A

π(a|s)Qπt (s, a), ∀s ∈ S,

Qπt (sL, a) = 0, ∀a ∈ A.

(48)

where P denotes the true transition function.

Besides the definition of event A, we also define Ai to be the event P ∈ Pi. Importantly, the value
of I{Ai} is only based on observations prior to epoch i. For notational convenience, we again let
ι = T |S||A|

δ and assume δ ∈ (0, 1).

Similarly to the full-information setting, we decompose the regret against policy π, Reg(π) =

E
[∑T

t=1 V
πt
t (s0)− V πt (s0)

]
, as

E

[
T∑
t=1

V πtt (s0)− Ṽ πtt (s0)︸ ︷︷ ︸
ERR1

]
+ E

[
T∑
t=1

Ṽ πtt (s0)− Ṽ πt (s0)︸ ︷︷ ︸
ESTREG

]
+ E

[
T∑
t=1

Ṽ πt (s0)− V πt (s0)︸ ︷︷ ︸
ERR2

]
. (49)

Note that, the second term is exactly

E [ESTREG] = E

[
T∑
t=1

〈
qP̄i(t),πt − qP̄i(t),π, ˜̀t〉] = E

[
T∑
t=1

〈
qP̄i(t),πt − qP̄i(t),π, ̂̀t〉] ,

which is controlled by the FTRL process.
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C.1 Auxiliary Lemmas

First, we show the following optimism lemma.

Lemma C.1.1. With the notations defined in Eq. (47) and Eq. (48), the following holds conditioning
on event A:

Q̃πt (s, a) ≤ Qπt (s, a),∀(s, a) ∈ S ×A, t ∈ [T ].

Specifically, we have 〈
qP̄i(t),π, ˜̀t〉 = Ṽ πt (s0) ≤ V πt (s0) =

〈
qP,π, `t

〉
.

Proof. We prove this result via a backward induction from layer L to layer 0.

Base case: for sL, Q̃πt (s, a) = Qπt (s, a) = 0 holds always.

Induction step: Suppose Q̃πt (s, a) ≤ Qπt (s, a) holds for all states s with k(s) > h. Then, for any
state s with k(s) = h, we have

Q̃πt (s, a) =
qt(s, a)

ut(s, a)
· `t(s, a) +

∑
s′∈Sk(s)+1

P̄i(t)(s
′|s, a)Ṽ πt (s′)− L ·Bi(t)(s, a) (Eq. (46))

≤ qt(s, a)

ut(s, a)
· `t(s, a) +

∑
s′∈Sk(s)+1

P̄i(t)(s
′|s, a)V πt (s′)− L ·Bi(t)(s, a) (induction hypothesis)

≤ qt(s, a)

ut(s, a)
· `t(s, a) +

∑
s′∈Sk(s)+1

P (s′|s, a)V πt (s′)

+
∑

s′∈Sk(s)+1

(
P̄i(t)(s

′|s, a)− P (s′|s, a)
)
V πt (s′)− L ·Bi(t)(s, a)

≤ qt(s, a)

ut(s, a)
· `t(s, a) +

∑
s′∈Sk(s)+1

P (s′|s, a)V πt (s′)

≤ `t(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)V π(s′) = Qπt (s, a),

where the forth step follows from the same arguments in Lemma B.1.1, and the last step holds since
under event A, we have qt(s, a) ≤ ut(s, a) by the definition of ut. This finishes the induction.

Next, we provide a sequence of boundedness results, useful for regret analysis.

Lemma C.1.2 (Lower Bound of Upper Occupancy Bound). Algorithm 1 ensures ut(s) ≥ 1
|S|t for

all t and s.

Proof. We prove by constructing a special transition function P̂i(t) within the confidence set Pi(t),
which ensures qP̄i(t),πt(s) ≥ 1

|S|t for all state-action pairs. Specifically, let P̂i(t) be such that

P̂i(t)(s
′|s, a) =

1

t
· 1

|Sk(s)+1|
+
t− 1

t
· P̄i(t)(s′|s, a), ∀(s, a, s′) ∈ Tk, k < L.

Clearly, P̂i(t)(·|s, a) is a valid transition distribution over Sk(s)+1 for all state-action pairs. Then, we
prove that P̂i(t) ∈ Pi by

∣∣∣P̂i(t)(s′|s, a)− P̄i(t)(s′|s, a)
∣∣∣ =

1

t
·
∣∣∣∣P̄i(t)(s′|s, a)− 1

|Sk(s)+1|

∣∣∣∣ ≤ 1

t
≤

14 ln
(
T |S||A|

δ

)
3 max

{
mi(t)(s,a), 1

}
where the last inequality follows from the fact that mi(t)(s, a) ≤ t.
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Then, for any state s 6= s0, we have by the definition of occupancy measures

qP̂i(t),πt(s) =
∑

s′∈Sk(s)−1

∑
a′∈A

qP̂i(t),πt(s′, a′) · P̂i(t)(s|s′, a′)

≥
∑

s′∈Sk(s)−1

∑
a′∈A

qP̂i(t),πt(s′, a′) · 1∣∣Sk(s)

∣∣ t
=

1∣∣Sk(s)

∣∣ t ≥ 1

|S|t

Clearly, for s0 it holds that qP̂i(t),πt(s0) = 1 ≥ 1/|S|t, which finishes the proof.

Corollary C.1.3. Algorithm 1 ensures that, the adjusted loss ̂̀t defined in Eq. (11) for bandit-feedback
is bounded as: ∣∣∣̂̀t(s, a)

∣∣∣ ≤ L+
It(s, a)

qt(s, a)
· |S|t.

Also, we have

E
[
It(s, a)

qt(s, a)

∣∣∣∣Ai(t)] = E
[
It(s, a)

qt(s, a)

∣∣∣∣Aci(t)] = 1.

Proof. By Lemma C.1.2, we have∣∣∣̂̀t(s, a)
∣∣∣ ≤ It(s, a)

ut(s) · πt(a|s)
+ L ≤ It(s, a)

qt(s) · πt(a|s)
· |S|t+ L = L+

It(s, a)

qt(s, a)
· |S|t,

where the first inequality follows from Bi(s, a) ≤ 1 and `t(s, a) ≤ 1, and the second inequality uses
Lemma C.1.2 and the fact qt(s) ≤ 1.

For the second statement, we have

E
[
It(s, a)

qt(s, a)

∣∣∣∣Ai(t)] = E

[
Et
[
It(s, a)

qt(s, a)

]∣∣∣∣Ai(t)
]

= E
[

1| Ai(t)
]

= 1,

By the same arguments we can prove E
[

It(s,a)
qt(s,a)

∣∣∣Aci(t)] = 1 as well.

Lemma C.1.4. Algorithm 1 ensures that, the expected adjusted loss ˜̀t defined in Eq. (46) is bounded
as: ∣∣∣˜̀t(s, a)

∣∣∣ ≤ L+ |S| · t ≤ 2|S| · t, ∀(s, a) ∈ S ×A, t ∈ [T ].

Proof. By Eq. (46), we know that∣∣∣˜̀t(s, a)
∣∣∣ =

∣∣∣∣ qt(s, a)

ut(s, a)
· `t(s, a)− L ·Bi(t)(s, a)

∣∣∣∣ ≤ qt(s)

ut(s)
+ L ≤ L+ |S| · t

where the last inequality follows from Lemma C.1.2. Combining with the fact |S| ≥ L finishes the
proof.

Corollary C.1.5. Algorithm 1 ensures that, the estimated state-action value functions defined in
Eq. (47) are bounded as:∣∣∣Q̃πt (s, a)

∣∣∣ ≤ 2L|S|t, ∀(s, a) ∈ S ×A, t ∈ [T ].

Proof. This is directly by Lemma C.1.4 and the definition of Q̃πt (s, a).

Next, we analyze the estimated regret in each epoch. Reloading the notation from the full-information
setting, we define

EstRegi(π) = E

[
ti+1−1∑
t=ti

〈
qP̄i,πt − qP̄i,π, ̂̀t〉] = E

[
ti+1−1∑
t=ti

〈
q̂t − qP̄i,π, ̂̀t〉] .

36



Lemma C.1.6. With β = 128L4, for any epoch i, Algorithm 1 ensures

EstRegi(π) ≤ O

E

ti+1−1∑
t=ti

ηt ·

√L|S||A|+ L2
∑
s6=sL

∑
a∈A

q̂t(s, a) ·Bi(t)(s, a)2


+O

(
L4|S||A| log T + δ · E [L|S|T (ti+1 − ti)]

)
,

(50)

for any policy π, and simultaneously

EstRegi(π) ≤ O

E

√L|S| ti+1−1∑
t=ti

ηt ·
√∑
s 6=sL

∑
a 6=π(s)

q̂t(s, a)


+O

L2 · E

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a6=π(s)

√
q̂t(s, a)


+O

L4|A| · E

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a∈A

q̂t(s, a) ·Bi(t)(s, a)2


+O

(
L4|S||A| log T + δ · E [L|S|T (ti+1 − ti)]

)
,

(51)

for any deterministic policy π : S → A.

Proof. The proof is largely based on that of Theorem A.3.1, but with some careful treatments based
one whether Ai holds or not. Let q = qP̄i,π be the occupancy measure we want to compete against.
When Ai does not hold, we first derive the following naive bound on

∑ti+1−1
t=ti

〈
q̂t − q, ̂̀t〉:

ti+1−1∑
t=ti

〈
q̂t − q, ̂̀t〉 ≤ ti+1−1∑

t=ti

∑
s6=sL

∑
a∈A

(q̂t(s, a) + q(s, a)) ·
∣∣∣̂̀t(s, a)

∣∣∣
≤
ti+1−1∑
t=ti

∑
s6=sL

∑
a∈A

(q̂t(s, a) + q(s, a)) ·
(
L+

It(s, a)

ut(s, a)
· |S|t

)
(Corollary C.1.3)

≤ 2L2 · (ti+1 − ti) + |S|T ·
ti+1−1∑
t=ti

∑
s6=sL

∑
a∈A

(q̂t(s, a) + q(s, a)) · It(s, a)

qt(s, a)
.

Therefore, we have the conditional expectation E
[∑ti+1−1

t=ti

〈
q̂t − q, ̂̀t〉∣∣∣Aci] bounded by

E

2L2 · (ti+1 − ti) + |S|t ·
ti+1−1∑
t=ti

∑
s6=sL

∑
a∈A

(q̂t(s, a) + q(s, a)) · It(s, a)

qt(s, a)

∣∣∣∣∣∣Aci


≤ E
[
(2L2 + 2L|S|T ) · (ti+1 − ti)

∣∣Aci] (Corollary C.1.3)

≤ O
(
E [L|S|T · (ti+1 − ti)| Aci ]

)
.

Next, we condition on event Ai. In this case, by the same argument as [Jin and Luo, 2020, Lemma 5]
and also our loss-shifting technique, Algorithm 1 with β = 128L4 ensures that

∑ti+1−1
t=ti

〈
q̂t − q, ̂̀t〉

is bounded by

O
(
L4|S||A| log T

)
+

ti+1−1∑
t=ti+1

(
1

ηt
− 1

ηt−1

)
(φH(q)− φH(q̂t))

+ 8

ti+1−1∑
t=ti

ηt min

∑
s6=sL

∑
a∈A

q̂t(s, a)
3/2
(
Q̂t(s, a)− V̂t(s)

)2

,
∑
s6=sL

∑
a∈A

q̂t(s, a)
3/2 ̂̀

t(s, a)2


(52)
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where φH(q) = −
∑
s 6=sL

∑
a∈A

√
q(s, a), and Q̂t and V̂t are state-action and state value functions

associated with the loss estimator ̂̀t and the empirical transition P̄i(t):

Q̂t(s, a) = ̂̀
t(s, a) +

∑
s′∈Sk(s)+1

P̄i(t)(s
′|s, a)V̂t(s

′), V̂t(s) =
∑
a∈A

πt(a|s)Q̂t(s, a).

Below, we discuss how to proceed from here to prove Eq. (50) and Eq. (51) respectively.

Proving Eq. (50) In this case, we take the second argument of the min operator from Eq. (52) and
bound φH(q)− φH(q̂t) ≤

∑
s 6=sL

∑
a∈A

√
q̂t(s, a) trivially by

√
L|S||A| using Cauchy-Schwarz

inequality, leading to
ti+1−1∑
t=ti

〈
q̂t − q, ̂̀t〉

≤ O (L|S||A| log T ) +
√
L|S||A| ·

ti+1−1∑
t=ti

ηt + 8

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a∈A

q̂t(s, a)
3/2 ̂̀

t(s, a)2

( 1
ηt
− 1

ηt−1
≤ ηt since 1

ηt
=
√
t− ti + 1)

≤ O (L|S||A| log T ) + 2
√
L|S||A| ·

ti+1−1∑
t=ti

ηt + 16

ti+1−1∑
t=ti

ηt ·
∑
s 6=sL

∑
a∈A

q̂t(s, a)3/2 · It(s, a)

ut(s, a)2

+ 16L2

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a∈A

q̂t(s, a)
3/2 ·Bi(t)(s, a)2

≤ O (L|S||A| log T ) + 2
√
L|S||A| ·

ti+1−1∑
t=ti

ηt + 16

ti+1−1∑
t=ti

ηt ·
∑
s 6=sL

∑
a∈A

√
q̂t(s, a) · It(s, a)

qt(s, a)

+ 16L2

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a∈A

q̂t(s, a) ·Bi(t)(s, a)2

where the second step follows from the definition of ̂̀t in Eq. (11) and the last step follows from the
fact q̂t(s, a) ≤ ut(s, a) and qt(s, a) ≤ ut(s, a) since P̄i, P ∈ Pi according to event Ai.
Therefore, by Lemma D.3.6 we have for any policy π that,

E [EstRegi(π)] ≤ E

2
√
L|S||A| ·

ti+1−1∑
t=ti

ηt + 16

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a∈A

√
q̂t(s, a) · It(s, a)

qt(s, a)


+ E

16L2

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a∈A

q̂t(s, a) ·Bi(t)(s, a)2


+O

(
L4|S||A| log T + δ · E [L|S|T (ti+1 − ti)]

)
≤ O

E

[√
L|S||A| ·

ti+1−1∑
t=ti

ηt

]
+ E

L2

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a∈A

q̂t(s, a) ·Bi(t)(s, a)2


+O

(
L4|S||A| log T + δ · E [L|S|T (ti+1 − ti)]

)
where the second step takes the conditional expectation of It(s, a) and applies the Cauchy-Schwarz
inequality to get

∑
s6=sL

∑
a∈A

√
q̂t(s, a) ≤

√
L|S||A|. This finishes the proof of Eq. (50).

Proving Eq. (51) In this case, recall that π is a deterministic policy, so that

φH(q)− φH(q̂t) =
∑
s6=sL

√
q̂t(s)

(∑
a∈A

√
πt(a|s)− 1

)
+
∑
s 6=sL

(√
q̂t(s)−

√
q(s)

)
.
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Using [Jin and Luo, 2020, Lemma 16] to bound the first term (take α in their lemma to be 0), and [Jin
and Luo, 2020, Lemma 19] to bound the second, we obtain

φH(q)− φH(q̂t) =
∑
s6=sL

∑
a6=π(s)

√
q̂t(s, a) +

√
L|S|

∑
s6=sL

∑
a6=π(s)

q̂t(s, a).

Therefore, taking the first argument of the min operator from Eq. (52) and using 1
ηt
− 1

ηt−1
≤ ηt

again, we arrive at
ti+1−1∑
t=ti

〈
q̂t − q, ̂̀t〉 ≤√L|S| ti+1−1∑

t=ti

ηt ·
√∑
s6=sL

∑
a6=π(s)

q̂t(s, a)

+

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a6=π(s)

√
q̂t(s, a)

+ 8

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a∈A

q̂t(s, a)
3/2
(
Q̂t(s, a)− V̂t(s)

)2

+O
(
L4|S||A| log T

)
.

(53)

Finally, we apply Lemma C.1.7 to bound the term
∑
s6=sL

∑
a∈A q̂t(s, a)3/2

(
Q̂t(s, a)− V̂t(s)

)2

,
and use Lemma D.3.6 again to take expectation and arrive at Eq. (51) (with the help of Eq. (54)).

Lemma C.1.7. Under event A, we have for any t,∑
s6=sL

∑
a∈A

q̂t(s, a)
3/2
(
Q̂t(s, a)− V̂t(s)

)2

≤ 4L4|A|
∑
s′ 6=sL

∑
a′∈A

q̂t(s
′, a′) ·Bi(t)(s′, a′)2 +

∑
s6=sL

∑
a∈A

√
q̂t(s, a) · (Ot(s, a) +Wt(s, a))

where

Ot(s, a) = 4L · (1− πt(a|s))
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a)

It(s′, a′)
qt(s′, a′)

,

Wt(s, a) = 4L ·
∑
b 6=a

πt(b|s)
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, b) It(s

′, a′)

qt(s′, a′)
,

and q̂t(s′, a′|s, a) is the probability of visiting (s′, a′) starting from (s, a) under πt and P̄i(t). More-
over, we have

Et

∑
s6=sL

∑
a∈A

√
q̂t(s, a) · (Ot(s, a) +Wt(s, a))

 ≤ 16L2
∑
s6=sL

∑
a6=π(s)

√
q̂t(s, a), (54)

for any mapping π : S → A.

Proof. First,
(
Q̂t(s, a)− V̂t(s)

)2

is bounded by

(
Q̂t(s, a)− V̂t(s)

)2

=

(1− πt(a|s)) Q̂t(s, a)−

∑
b6=a

πt(b|s)Q̂t(s, b)

2

≤ 2 (1− πt(a|s))2
Q̂t(s, a)2 + 2

∑
b6=a

πt(b|s)Q̂t(s, b)

2

.
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Following the same idea of Lemma A.1.3, the first term can be bounded as

(1− πt(a|s))2
Q̂t(s, a)2

= (1− πt(a|s))2

 L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a)̂̀t(s′, a′)

2

≤ 2 (1− πt(a|s))2

 L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a)

It(s′, a′)
ut(s′, a′)

· `t(s′, a′)

2

+ 2 (1− πt(a|s))2

 L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a) · L ·Bi(t)(s′, a′)

2

≤ 2L · (1− πt(a|s))2
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a)2 · It(s′, a′)

ut(s′, a′)2

+ 2L3 (1− πt(a|s))2
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a) ·Bi(t)(s′, a′)2 (55)

where the equality follows from the definition of Q̂t; the first inequality uses the fact (x+y)2 ≤ 2(x2+
y2); the second inequality applies the Cauchy-Schwarz inequality with the facts It(s, a)It(s′, a′) = 0

for (s, a) 6= (s′, a′) and
∑L−1
k=k(s)

∑
s′∈Sk

∑
a′∈A q̂t(s

′, a′|s, a) ≤ L.

By the same arguments, the second term is bounded as∑
b6=a

πt(b|s)Q̂t(s, b)

2

=

 L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b6=a

πt(b|s)q̂t(s′, a′|s, b)

 ̂̀
t(s, a)

2

≤ 2L ·
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b 6=a

πt(b|s) · q̂t(s′, a′|s, b)

2

· It(s′, a′)
ut(s′, a′)2

+ 2L3
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b 6=a

πt(b|s) · q̂t(s′, a′|s, b)

 ·Bi(t)(s′, a′)2, (56)

where in the last step we use
∑L−1
k=k(s)

∑
s′∈Sk

∑
a′∈A

(∑
b 6=a πt(b|s) · q̂t(s′, a′|s, b)

)
≤ L (after

applying Cauchy-Schwarz).

Combining Eq. (55) and Eq. (56), we show that q̂t(s, a)
(
Q̂t(s, a)− V̂t(s)

)2

can be bounded as

q̂t(s, a)
(
Q̂t(s, a)− V̂t(s)

)2

≤ 4L · q̂t(s, a) (1− πt(a|s))2
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a)2 · It(s′, a′)

ut(s′, a′)2

+ 4L · q̂t(s, a)

L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b 6=a

πt(b|s) · q̂t(s′, a′|s, b)

2

· It(s′, a′)
ut(s′, a′)2

+ 4L3q̂t(s, a) (1− πt(a|s))2
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a) ·Bi(t)(s′, a′)2
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+ 4L3q̂t(s, a)

L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b 6=a

πt(b|s) · q̂t(s′, a′|s, b)

 ·Bi(t)(s′, a′)2.

Moreover, we have the summation of the first two terms bounded as

4L · q̂t(s, a) (1− πt(a|s))2
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a)2 · It(s′, a′)

ut(s′, a′)2

+ 4L · q̂t(s, a)

L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b6=a

πt(b|s) · q̂t(s′, a′|s, b)

2

· It(s′, a′)
ut(s′, a′)2

≤ 4L · (1− πt(a|s))2
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s, a)q̂t(s
′, a′|s, a)

ut(s′, a′)
· q̂t(s′, a′|s, a)

It(s′, a′)
qt(s′, a′)

+ 4L ·
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b 6=a q̂t(s, b) · q̂t(s′, a′|s, b)

ut(s′, a′)
·

∑
b 6=a

πt(b|s) · q̂t(s′, a′|s, b)
It(s′, a′)
qt(s′, a′)


≤ Ot(s, a) +Wt(s, a)

where we use qt(s
′, a′) ≤ ut(s

′, a′) due to event Ai in the first step and∑
a∈A q̂t(s, a)q̂t(s

′, a′|s, a) ≤ q̂t(s
′, a′) ≤ ut(s

′, a′) in the second step to bound the frac-
tions by 1.

On the other hand, the summation of the other two terms is bounded as

4L3q̂t(s, a) (1− πt(a|s))2
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a) ·Bi(t)(s′, a′)2

+ 4L3q̂t(s, a)

L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b 6=a

πt(b|s) · q̂t(s′, a′|s, b)

 ·Bi(t)(s′, a′)2

≤ 4L3q̂t(s)

L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s′, a′|s, a)πt(a|s) +
∑
b 6=a

πt(b|s) · q̂t(s′, a′|s, b)

 ·Bi(t)(s′, a′)2

= 4L3
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s)q̂t(s) ·Bi(t)(s′, a′)2.

Note that, taking the summation of the last bound over all state-action pairs yields

4L3
∑
s 6=sL

∑
a∈A

L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s)q̂t(s) ·Bi(t)(s′, a′)2

= 4L3|A|
∑
s′ 6=sL

∑
a′∈A

k(s′)−1∑
k=0

∑
s∈Sk

q̂t(s
′, a′|s)q̂t(s)

 ·Bi(t)(s′, a′)2

≤ 4L4|A|
∑
s′ 6=sL

∑
a′∈A

q̂t(s
′, a′) ·Bi(t)(s′, a′)2.

Therefore, combining everything, we have shown:∑
s6=sL

∑
a 6=π(s)

q̂t(s, a)
3/2
(
Q̂t(s, a)− V̂t(s)

)2

≤ 4L4|A|
∑
s′ 6=sL

∑
a′∈A

q̂t(s
′, a′) ·Bi(t)(s′, a′)2 +

∑
s 6=sL

∑
a 6=π(s)

√
q̂t(s, a) · (Ot(s, a) +Wt(s, a)) ,
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proving the first statement of the lemma.

To prove the second statement, we first show

Et [Ot(s, a) +Wt(s, a)] = 4L (1− πt(a|s)) ·
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

q̂t(s
′, a′|s, a)

+ 4L ·
L−1∑
k=k(s)

∑
s′∈Sk

∑
a′∈A

∑
b6=a

πt(b|s) · q̂t(s′, a′|s, b)


= 4L (1− πt(a|s))

L−1∑
k=k(s)

1 + 4L ·
L−1∑
k=k(s)

(1− πt(a|s))

≤ 8L2 (1− πt(a|s)) ,

and therefore

Et

∑
s6=sL

∑
a∈A

√
q̂t(s, a) · (Ot(s, a) +Wt(s, a))


≤ 8L2

∑
s6=sL

∑
a∈A

√
q̂t(s, a) (1− πt(a|s))

≤ 8L2
∑
s6=sL

∑
a6=π(s)

√
q̂t(s, a) + 8L2

∑
s6=sL

√
q̂t(s) (1− πt(π(s)|s))

≤ 16L2
∑
s6=sL

∑
a6=π(s)

√
q̂t(s, a),

which proves Eq. (54).

Note that both Eq. (50) and Eq. (51) contain a term related to
∑
s6=sL

∑
a∈A q̂t(s, a) · Bi(t)(s, a)2.

Below, we show that when summed over t, this is only logarithmic in T .
Lemma C.1.8. Algorithm 1 ensures the following:

E

 T∑
t=1

∑
s6=sL

∑
a∈A

q̂t(s, a) ·Bi(t)(s, a)2

 = O
(
L2|S|3|A|2 ln2 ι+ |S||A|T · δ

)
. (57)

Proof. By Lemma D.3.2, we know that

Bi(s, a)2 ≤

(
2

√
|Sk(s)+1| ln ι

max {mi(s, a), 1}
+

14|Sk(s)+1| ln ι
3 max {mi(s, a), 1}

)2

≤ O

(
|Sk(s)+1| ln ι

max {mi(s, a), 1}
+
|Sk(s)+1|2 ln2 ι

max {mi(s, a), 1}2

)
.

Then, we have

E

 T∑
t=1

∑
s6=sL

∑
a∈A

q̂t(s, a) ·Bi(t)(s, a)2


= E

 T∑
t=1

∑
s6=sL

∑
a∈A

(q̂t(s, a)− qt(s, a)) ·Bi(t)(s, a)2

+ E

 T∑
t=1

∑
s6=sL

∑
a∈A

qt(s, a) ·Bi(t)(s, a)2


≤ E

 T∑
t=1

∑
s6=sL

∑
a∈A

rt(s, a)


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+ E

4

T∑
t=1

∑
s6=sL

∑
a∈A

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√√√√P (w|u, v) ln
(
T |S||A|

δ

)
max

{
mi(t)(u, v), 1

} qt(s, a|w) ·Bi(t)(s, a)


+O

E

 T∑
t=1

∑
s6=sL

∑
a∈A

qt(s, a) ·

(
|Sk(s)+1| ln ι

max {mi(s, a), 1}
+
|Sk(s)+1|2 ln2 ι

max {mi(s, a), 1}2

)
≤ O

E

 T∑
t=1

∑
s6=sL

∑
a∈A

rt(s, a)


+O

E

 T∑
t=1

∑
s6=sL

∑
a∈A

qt(s, a) ·

(
|Sk(s)+1| ln ι

max {mi(s, a), 1}
+
|Sk(s)+1|2 ln2 ι

max {mi(s, a), 1}2

)
where the first inequality uses Lemma D.3.10 and Bi(s, a) ∈ [0, 1], and the last inequal-
ity follows from the observation that, the second term in the previous line is bounded by∑T
t=1

∑
s6=sL

∑
a∈A rt(s, a) according to the definition of residual terms in Definition D.3.9.

Finally, applying Lemma D.3.10 and Lemma D.3.8, we have

E

 T∑
t=1

∑
s6=sL

∑
a∈A

q̂t(s, a) ·Bi(t)(s, a)2


= O

(
L2|S|3|A|2 ln2 ι+ |S||A|T · δ

)
+O

(
L−1∑
k=0

(
|Sk+1| |Sk| |A| lnT ln ι+ |Sk(s)+1|2 |Sk| |A| ln2 ι

))
= O

(
L2|S|3|A|2 ln2 ι+ |S||A|T · δ

)
,

which completes the proof.

Finally, we provide a lemma regarding the learning rates.

Lemma C.1.9 (Learning Rates). According to the design of the learning rate ηt = 1√
t−ti(t)+1

, the

following inequalities hold:
T∑
t=1

η2
t ≤ O

(
|S||A| log2 T

)
, (58)

T∑
t=1

ηt ≤ O
(√
|S||A|T log T

)
. (59)

Proof. By direct calculation, we have

ti+1−1∑
t=ti

η2
t =

ti+1−ti∑
n=1

1

n
≤ 2

∫ ti+1−ti+1

1

1

x
dx = 2 ln (ti+1 − ti + 1) ≤ O (log T ) .

Combining the inequality with the fact that the total number of epochs N is at most
4|S||A| (log T + 1) (Lemma D.3.12) finishes the proof of Eq. (58). Following the similar idea,
we have

ti+1−1∑
t=ti

ηt =

ti+1−ti∑
n=1

1√
n
≤
∫ ti+1−ti

0

1√
x
dx ≤ 2

√
ti+1 − ti.

Taking the summation over N epochs and applying the Cauchy-Schwarz inequality yields Eq. (59).
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C.2 Proof for the Adversarial World (Proposition C.1)

Recall the regret decomposition in Eq. (49):

E

[
T∑
t=1

V πtt (s0)− Ṽ πtt (s0)︸ ︷︷ ︸
ERR1

]
+ E

[
T∑
t=1

Ṽ πtt (s0)− Ṽ πt (s0)︸ ︷︷ ︸
ESTREG

]
+ E

[
T∑
t=1

Ṽ πt (s0)− V πt (s0)︸ ︷︷ ︸
ERR2

]
.

We bound each of them separately below.

ERR1 Similarly to the proof for the full-information feedback setting, we have

ERR1 =

T∑
t=1

〈qt, `t〉 −
〈
q̂t, ˜̀t〉

=

T∑
t=1

∑
s6=sL

∑
a∈A

`t(s, a)q̂t(s, a)

ut(s, a)
· (ut(s, a)− qt(s, a)) +

T∑
t=1

〈qt − q̂t, `t〉+ L ·
T∑
t=1

〈
q̂t, Bi(t)

〉
where the last two terms have been shown to be at most Õ

(
L|S|

√
|A|T + L3|S|3|A|

)
according to

the analysis of ERR1 in Appendix B.2 (see Eq. (36), Eq. (37) and Eq. (38)).

Then, we bound the first term as

E

 T∑
t=1

∑
s6=sL

∑
a∈A

`t(s, a)q̂t(s, a)

ut(s, a)
· (ut(s, a)− qt(s, a))


≤ E

 T∑
t=1

∑
s6=sL

∑
a∈A
|ut(s, a)− qt(s, a)|

 (q̂t(s, a) ≤ ut(s, a))

≤ E

4

T∑
t=1

∑
s6=sL

∑
a∈A

rt(s, a) + 16

T∑
t=1

∑
s 6=sL

∑
a∈A

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(s, a|w)


(Corollary D.3.11)

≤ O
(
L2|S|3|A|2 ln2 ι+ |S||A|T · δ

)
+ 4L · E

 T∑
t=1

∑
u6=sL

∑
v∈A

qt(u, v)

√ ∣∣Sk(u)+1

∣∣ ln ι
max

{
mi(t)(u, v), 1

}


(Lemma D.3.10 and Cauchy-Schwarz)

≤ O

(
L2|S|3|A|2 ln2 ι+ |S||A|T · δ + L ·

L−1∑
k=0

√
|Sk| · |Sk+1| |A|T ln ι

)
(Lemma D.3.8)

= O
(
L|S|

√
|A|T ln ι+ L2|S|3|A|2 ln2 ι+ |S||A|T · δ

)
.

Combining the bounds together, we have E [ERR1] bounded by:

E [ERR1] = Õ
(
L|S|

√
|A|T + L3|S|3|A|2

)
.

ERR2 Following the same idea of bounding ERR2, by Lemma C.1.1 and Lemma D.3.5, we have
the expectation of ERR2 bounded as

E [ERR2] ≤ δ · 3L|S|T 2 + 0 = O
(
L|S|T 2 · δ

)
= O(1).

ESTREG According to Eq. (50) of Lemma C.1.6, we have

EstReg(̊π) = E

[
T∑
t=1

〈
q̂t − qP̄i(t) ,̊π, ̂̀t〉] = E

[
N∑
i=1

EstRegi(̊π)

]
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≤ O

E

[
N∑
i=1

ti+1−1∑
t=ti

ηt
√
L|S||A|

]
+ E

L2 ·
T∑
t=1

∑
s6=sL

∑
a∈A

q̂t(s, a) ·Bi(t)(s, a)2


+O

(
L4|S|2|A|2 ln2 T + δL|S|T 2

)
≤ Õ

(
E

[
T∑
t=1

ηt ·
√
L|S||A|

]
+ L4|S|3|A|2 ln2 ι

)
(Lemma C.1.8)

≤ Õ
(
|S||A|

√
LT + L4|S|3|A|2

)
. (Eq. (59))

Finally, we combine the bounds of ERR1, ERR2 and ESTREG as:

RegT (̊π) = Õ
(
L|S|

√
|A|T + |S||A|

√
LT + L4|S|3|A|2

)
,

finishing the proof.

C.3 Proof for the Stochastic World (Proposition C.2)

Similarly to the proof of Proposition B.2, we decompose ERR1 and ERR2 jointly into four terms
ERRSUB, ERROPT, OCCDIFF and BIAS:

ERR1 + ERR2 =

T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)Êπ
?

t (s, a) (ERRSUB)

+

T∑
t=1

∑
s 6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a)) Êπ
?

t (s, a) (ERROPT)

+

T∑
t=1

∑
s 6=sL

∑
a∈A

(qt(s, a)− q̂t(s, a))
(
Q̃π

?

t (s, a)− Ṽ π
?

t (s)
)

(OCCDIFF)

+

T∑
t=1

∑
s 6=sL

∑
a 6=π?(s)

q?t (s, a)
(
Ṽ π

?

t (s)− V π
?

t (s)
)

(BIAS)

where Êπt is defined as

Êπt (s, a) = `t(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)Ṽ πt (s′)− Q̃πt (s, a).

By the exact same reasoning as in the full-information setting (Appendix B.3), we have
E [OCCDIFF] = O

(
L4|S|3|A|2 ln2 ι+ E

[
G3(L4 ln ι)

])
and E [BIAS] = O(1), but the first two

terms ERRSUB and ERROPT are slightly different. To see this, note that under event A, we have

Êπ
?

t (s, a) = `t(s, a)− ˜̀t(s, a) +
∑

s′∈Sk(s)+1

(
P (s′|s, a)− P̄i(t)(s′|s, a)

)
Ṽ π

?

t (s′)

= `t(s, a)

(
1− qt(s, a)

ut(s, a)

)
+ L ·Bi(t)(s, a) +

∑
s′∈Sk(s)+1

(
P (s′|s, a)− P̄i(t)(s′|s, a)

)
Ṽ π

?

t (s′)

≤ ut(s, a)− qt(s, a)

qt(s, a)
+ 2L2 ·Bi(t)(s, a)

where the last line applies the definition of event A and the fact qt(s, a) ≤ ut(s, a) given this event.
Importantly, the second term has been studied and bounded in the proof of Proposition B.2 already,
so we only need to focus on the first term. Before doing so, note that the range of Êπt is O (L|S|t)
based on Corollary C.1.5, and thus the range of ERRSUB and ERROPT is O

(
L2|S|T 2

)
. Therefore,

we only need to add a term O
(
δ · L2|S|T 2

)
to address the event Ac.
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Extra term in ERRSUB According to previous analysis, the extra term in ERRSUB is
T∑
t=1

∑
s 6=sL

∑
a 6=π?(s)

qt(s, a) · ut(s, a)− qt(s, a)

qt(s, a)
≤

T∑
t=1

∑
s6=sL

∑
a 6=π?(s)

|ut(s, a)− qt(s, a)|

≤ 4

T∑
t=1

∑
s6=sL

∑
a6=π?(s)

rt(s, a) + 16

T∑
t=1

∑
s6=sL

∑
a 6=π?(s)

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√√√√P (w|u, v) ln
(
T |S||A|

δ

)
max

{
mi(t)(u, v), 1

} qt(s, a|w)

(Corollary D.3.11)

= 4

T∑
t=1

∑
s6=sL

∑
a6=π?(s)

rt(s, a) + 16G3(ln ι) (Definition D.2.1)

= 16G3(ln ι) +O
(
L2S3A2 ln2 ι

)
. (Lemma D.3.10)

Finally, using Lemma D.3.6 and the bound on ERRSUB for the full-information setting, we have

E [ERRSUB] = O
(
G3(ln ι) + G1(L4|S| ln ι) + L2|S|3|A|2 ln2 ι

)
.

Extra term in ERROPT Similarly, we consider the extra term in ERROPT:
T∑
t=1

∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a)) · ut(s, a)− qt(s, a)

qt(s, a)

≤ 4

T∑
t=1

∑
s6=sL

∑
a=π?(s)

qt(s, a)− q?t (s, a)

qt(s, a)
rt(s, a)

+

T∑
t=1

∑
s6=sL

∑
a=π?(s)

qt(s, a)− q?t (s, a)

qt(s, a)
·

16
∑
u,v,w

qt(u, v)

√√√√P (w|u, v) ln
(
T |S||A|

δ

)
max

{
mi(t)(u, v), 1

} qt(s, a|w)


(Corollary D.3.11)

≤ 4

T∑
t=1

∑
s6=sL

∑
a=π?(s)

rt(s, a) + 16G6(ln ι) (Definition D.2.1)

= 16G6(ln ι) +O
(
L2S3A2 ln2 ι

)
. (Lemma D.3.10)

Again, considering the term that appears in the full-information setting already, we have

E [ERROPT] = O
(
G6(ln ι) + G2(L4|S| ln ι) + L2|S|3|A|2 ln2 ι

)
.

It remains to bound ESTREG with terms that enjoy self-bounding properties.

Term ESTREG According to Eq. (51) in Lemma C.1.6, taking the summation of all the epochs,
we have the following bound for E [ESTREG]:

O

E

√|S|L N∑
i=1

ti+1−1∑
t=ti

ηt ·
√∑
s6=sL

∑
a6=π?(s)

q̂t(s, a)

+ L2 · E

 N∑
i=1

ti+1−1∑
t=ti

ηt ·
∑
s6=sL

∑
a6=π?(s)

√
q̂t(s, a)


+O

E

L4|A|
N∑
i=1

ti+1−1∑
t=ti

∑
s 6=sL

∑
a∈A

q̂t(s, a) ·Bi(t)(s, a)2


+O

(
δ · E

[
L|S|T

N∑
i=1

(ti+1 − ti)

]
+ L4|S|2|A|2 ln2 ι

)

= O

E

√|S|L T∑
t=1

ηt ·
√∑
s6=sL

∑
a6=π?(s)

q̂t(s, a)

+O

L2 · E

 T∑
t=1

ηt ·
∑
s6=sL

∑
a6=π?(s)

√
q̂t(s, a)


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+O
(
L6|S|3|A|3 ln2 ι

)
where the lase line applies Lemma C.1.8.

Then, for the first term, we have

E

√|S|L T∑
t=1

ηt ·
√∑
s6=sL

∑
a6=π?(s)

q̂t(s, a)


≤ E

√|S|L ·
√√√√ T∑

t=1

η2
t ·

√√√√ T∑
t=1

∑
s 6=sL

∑
a 6=π?(s)

q̂t(s, a)


≤ E

√4L|S|2|A| log2 T ·

√√√√ T∑
t=1

∑
s 6=sL

∑
a 6=π?(s)

q̂t(s, a)


where the second line follows from the Cauchy-Schwarz inequality, and the third line applies Eq. (58).

Then, we separate the term into two parts:

E

√4L|S|2|A| log2 T ·

√√√√ T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)


+ E

√4L|S|2|A| log2 T ·

√√√√ T∑
t=1

∑
s6=sL

∑
a6=π?(s)

|q̂t(s, a)− qt(s, a)|


≤ E

[
2 ·G4(L|S|2|A| log2 T )

]
+ E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

|q̂t(s, a)− qt(s, a)|

+ 4|S|2|A|L log2 T

where second line follows from the fact
√
xy ≤ x + y for x, y ≥ 0. Note that, the second term

above can be bounded by O
(
G3 (ln ι) + L2|S|3|A|2 ln2 ι

)
just as in the full-information setting (see

Eq. (44)). Therefore, we have finished bounding the first term:

E

√|S|L T∑
t=1

ηt ·
√∑
s6=sL

∑
a6=π?(s)

q̂t(s, a)


= O

(
E
[
G4(L|S|2|A| log2 T ) + G3 (ln ι)

]
+ L2|S|3|A|2 ln2 ι

)
.

On the other hand, the second term can be bounded similarly:

L2 · E

 T∑
t=1

ηt ·
∑
s6=sL

∑
a6=π?(s)

√
q̂t(s, a)


≤ L2 · E

∑
s6=sL

∑
a6=π?(s)

·

√√√√ T∑
t=1

η2
t ·

√√√√ T∑
t=1

q̂t(s, a)


≤ L2

√
4|S||A| log2 T · E

∑
s6=sL

∑
a6=π?(s)

·

√√√√ T∑
t=1

q̂t(s, a)


≤ E

[
2 ·G5(L4|S||A| log2 T )

]
+ E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

|q̂t(s, a)− qt(s, a)|

+ L4|S||A| log2 T

= O
(
E
[
G5(L4|S||A| log2 T ) + G3 (ln ι)

]
+ L2|S|3|A|2 ln2 ι

)
.
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So we have the final bound on E [ESTREG]:

E [ESTREG] = O
(
E
[
G4

(
L|S|2|A| log2 T

)
+ G5

(
L4|S||A| log2 T

)
+ G3 (ln ι)

]
+ L6|S|3|A|3 ln2 ι

)
Finally, by combining the bounds of each term, we finally have

RegT (π?) ≤ O
(
E
[
G1

(
L4|S| lnT

)
+ G3 (lnT )

]
(from ERRSUB)

+ E
[
G2

(
L4|S| lnT

)
+ G6 (lnT )

]
(from ERROPT)

+ E
[
G3

(
L4 lnT

)]
(from OCCDIFF)

+ E
[
G4

(
L|S|2|A| ln2 T

)
+ G5

(
L4|S||A| ln2 T

)
+ G3 (lnT )

]
(from ESTREG)

+ L6|S|3|A|3 ln2 T
)
.

When Condition (1) holds, we apply similar self-bounding arguments to obtain a logarithmic regret
bound. Specifically, for some universal constant κ > 0, we have

RegT (π?) ≤ κ

(
E
[
G1

(
L4|S| lnT

)
+ G2

(
L4|S| lnT

)
+ G3

(
L4 lnT

)])

+ κ

(
E
[
G4

(
L|S|2|A| log2 T

)
+ G5

(
L4|S||A| log2 T

)
+ G6 (lnT )

])

+ κ

(
L6|S|3|A|3 ln2 ι

)
.

Then, for any z > 1, by applying all the self-bounding lemmas (Lemma D.2.2-Lemma D.2.7) with
α = β = 1

32zκ , we arrive at

RegT (π?) ≤ 1

z
· (RegT (π?) + C)

+ z · O

∑
s 6=sL

∑
a 6=π?(s)

κ2

∆(s, a)

 · (L4|S| lnT + L6|S| lnT + L4|S||A| log2 T
)

+ z · O
(

κ2

∆MIN
·
(
L5|S|2 lnT + L6|S|2 lnT + L3|S|2|A| lnT + L|S|2|A| log2 T

))
+ κ ·

(
L6|S|3|A|3 ln2 T

)
≤ 1

z
· (RegT (π?) + C) + κ ·

(
L6|S|3|A|3 ln2 T

)
+ z · O

∑
s6=sL

∑
a6=π?(s)

L6|S| lnT + L4|S||A| log2 T

∆(s, a)
+
L6|S|2 lnT + L3|S|2|A| log2 T

∆MIN


≤ 1

z
· (RegT (π?) + C) + z · κ′U + κ · V,

where κ′ is a universal constant hidden in the O(·) notation, and U and V are defined in Proposi-
tion C.2). The last step is to rearrange and pick the optimal z, which is almost identical to that in the
proof of Proposition B.2 and finally shows RegT (π?) = O

(
U +

√
UC + V

)
. This completes the

entire proof.
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D General Decomposition, Self-bounding Terms, and Supplementary
Lemmas

In this section, we provide details of our two key techniques: a general decomposition and self-
bounding terms, as well as a set of supplementary Lemmas used throughout the analysis.

D.1 General Decomposition Lemma

In this section, we consider measuring the performance difference between a policy π and a mapping
(deterministic policy) π?, that is, V π(s0)− V π?(s0) where Q and V are the state-action and state
value functions associated with some transition P and some loss function `, that is,

Qπ(s, a) = `(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)V π(s′), V π(s) =
∑
a∈A

π(a|s)Qπ(s, a),

for all state-action pairs (with V π(sL) = 0). Moreover, for some estimated transition P̂ and estimated
loss function ̂̀, define similarly Q̂ and V̂ as the corresponding state-action and state value functions:

Q̂π(s, a) = ̂̀(s, a) +
∑

s′∈Sk(s)+1

P̂ (s′|s, a)V̂ π(s′), V̂ π(s) =
∑
a∈A

π(a|s)Q̂π(s, a),

for all state-action pairs (with V̂ π(sL) = 0).

Again, we denote by q?π(s, a) the probability of visiting a trajectory of the form
(s0, π

?(s0)), (s1, π
?(s1)), . . . , (sk(s)−1, π

?(sk(s)−1)), (s, a) when executing policy π. In other
words, q?π can be formally defined as

q?π(s, a) =

{
π(a|s), s = s0,

π(a|s) ·
(∑

s′∈Sk(s)−1
q?π(s′, π?(s))P (s|s′, π?(s))

)
, otherwise.

Note that our earlier notation q?t is thus a shorthand for q?πt . With slight abuse of notations, we define
q?π(s) =

∑
a∈A q

?
π(s, a).

Now, we present a general decomposition for V π(s0)− V π?(s0).
Lemma D.1.1. (General Performance Decomposition) For any policies π and u, and a mapping
(deterministic policy) π? : S → A, we have

V π(s0)− V π
?

(s0) =
∑
s6=sL

∑
a6=π?(s)

q(s, a)Êu(s, a) (Error of Sub-opt actions)

+
∑
s6=sL

∑
a=π?(s)

(q(s, a)− q?π(s, a)) Êu(s, a) (Error of Opt actions)

+
∑
s6=sL

∑
a∈A

q(s, a)
(
Q̂u(s, a)− V̂ u(s)

)
(Policy Difference)

−
∑
s6=sL

∑
a=π?(s)

q?π(s, a)
(
Q̂u(s, a)− V̂ u(s)

)
(Estimation Bias 1)

+
∑
s6=sL

∑
a6=π?(s)

q?π(s, a)
(
V̂ u(s)− V π

?

(s)
)
, (Estimation Bias 2)

where q = qP,π is the occupancy measure associated with transition P and policy π, and Êπ is a
surplus function with:

Êπ(s, a) = `(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)V̂ π(s′)− Q̂π(s, a).

Moreover, selecting the surrogate policy u as the mapping π? yields Corollary D.1.2, which is the
key decomposition lemma used in our analysis.

49



Corollary D.1.2. Consider an arbitrary policy sequence {πt}Tt=1, an arbitrary estimated transition
sequence {P̂t}Tt=1, and an arbitrary estimated loss sequence {̂̀t}Tt=1. Then, we have

T∑
t=1

(
V πt(s0)− V̂ πtt (s0)

)
︸ ︷︷ ︸

ERR1

+

(
T∑
t=1

V̂ π
?

t (s0)− V π
?

(s0)

)
︸ ︷︷ ︸

ERR2

=

T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)Êπ
?

t (s, a) (Error of Sub-opt actions)

+

T∑
t=1

∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a)) Êπ
?

t (s, a) (Error of Opt actions)

+

T∑
t=1

∑
s6=sL

∑
a∈A

(qt(s, a)− q̂t(s, a))
(
Q̂π

?

t (s, a)− V̂ π
?

t (s)
)

(Occupancy Difference)

+
T∑
t=1

∑
s6=sL

∑
a6=π?(s)

q?t (s, a)
(
V̂ π

?

t (s)− V π
?

t (s)
)
, (Estimation Bias)

where q̂t = qP̂t,πt , qt = qP,πt , q?t = q?πt , Q̂
πt
t and V̂ πtt are the state-action and state value functions

associated with πt, ̂̀t, and P̂t, and Êπt is the surplus function defined as:

Êπt (s, a) = `(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)V̂ πt (s′)− Q̂πt (s, a).

Proof. (Proof of Lemma D.1.1) By direct calculation, for all states s, we have

V π(s)− V̂ u(s) =
∑
a∈A

π(a|s)
(
Qπ(s, a)− Q̂u(s, a)

)
+
∑
a∈A

π(a|s)
(
Q̂u(s, a)− V̂ u(s)

)
=
∑
a∈A

π(a|s)
∑

s′∈Sk(s)+1

P (s′|s, a)
(
V π(s′)− V̂ u(s′)

)

+
∑
a∈A

π(a|s)

`(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)V̂ u(s′)− Q̂u(s, a)


︸ ︷︷ ︸

Êu(s,a)

+
∑
a∈A

π(a|s)
(
Q̂u(s, a)− V̂ u(s)

)
.

By repeatedly expanding V π(s′)− V̂ u(s′) in the same way, we conclude

V π(s0)− V̂ u(s0) =
∑
s6=sL

∑
a∈A

q(s, a)Êu(s, a) +
∑
s6=sL

∑
a∈A

q(s, a)
(
Q̂u(s, a)− V̂ u(s)

)
. (60)

On the other hand, we also have for all states s:

V π(s)− V̂ u(s)

=
∑

a=π?(s)

π(a|s)
(
Qπ(s, a)− V̂ u(s)

)
+

∑
a6=π?(s)

π(a|s)
(
Qπ(s, a)− V̂ u(s)

)
=

∑
a=π?(s)

π(a|s)
∑

s′∈Sk(s)+1

P (s′|s, a)
(
V π(s′)− V̂ u(s′)

)
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+
∑

a=π?(s)

π(a|s)

`(s, a) +
∑

s′∈Sk(s)+1

P (s′|s, a)V̂ u(s′)− Q̂u(s, a)


︸ ︷︷ ︸

Êu(s,a)

+
∑

a=π?(s)

π(a|s)
(
Q̂u(s, a)− V̂ u(s)

)
+

∑
a 6=π?(s)

π(a|s)
(
Qπ(s, a)− V̂ u(s)

)
.

Using Lemma D.1.3 (which repeatedly expands V π(s′)− V̂ u(s′) in the same way) with

C(s) =
∑

a=π?(s)

π(a|s)Êu(s, a) +
∑

a=π?(s)

π(a|s)
(
Q̂u(s, a)− V̂ u(s)

)
+

∑
a 6=π?(s)

π(a|s)
(
Qπ(s, a)− V̂ u(s)

)
we obtain

V π(s0)− V̂ u(s0) =
∑
s6=sL

q?π(s)C(s)

=
∑
s6=sL

∑
a=π?(s)

q?π(s, a)Êu(s, a)

+
∑
s 6=sL

∑
a 6=π?(s)

q?π(s, a)
(
Qπ(s, a)− V̂ u(s)

)
+
∑
s 6=sL

∑
a=π?(s)

q?π(s, a)
(
Q̂u(s, a)− V̂ u(s)

)
.

(61)

Combining Eq. (60) and Eq. (61), we have the following equality:∑
s6=sL

∑
a 6=π?(s)

q?π(s, a)
(
Qπ(s, a)− V̂ u(s)

)
=
∑
s6=sL

∑
a∈A

q(a, s)Êu(s, a)

+
∑
s6=sL

∑
a∈A

q(s, a)
(
Q̂u(s, a)− V̂ u(s)

)
−
∑
s6=sL

∑
a=π?(s)

q?π(s, a)Êu(s, a)

−
∑
s6=sL

∑
a=π?(s)

q?π(s, a)
(
Q̂u(s, a)− V̂ u(s)

)
=
∑
s6=sL

∑
a6=π?(s)

q(s, a)Êu(s, a) (Error of Sub-opt actions) (62)

+
∑
s6=sL

∑
a=π?(s)

(q(s, a)− q?π(s, a)) Êu(s, a) (Error of Opt actions)

+
∑
s6=sL

∑
a∈A

q(s, a)
(
Q̂u(s, a)− V̂ u(s)

)
(Policy Difference)

−
∑
s6=sL

∑
a=π?(s)

q?π(s, a)
(
Q̂u(s, a)− V̂ u(s)

)
(Estimation Bias 1), (63)

Next, we consider the following:

V π(s)− V π
?

(s)
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=
∑

a=π?(s)

π(a|s) (Qπ(s, a)−Q?(s, a)) +
∑

a6=π?(s)

π(a|s)
(
Qπ(s, a)− V π

?

(s)
)

=
∑

a=π?(s)

π(a|s)
∑

s′∈Sk(s)+1

P (s′|s, a)
(
V π(s′)− V π

?

(s)
)

+
∑

a 6=π?(s)

π(a|s)
(
Qπ(s, a)− V π

?

(s)
)
.

By Lemma D.1.3 (which again repeatedly expands V π(s′)− V π?(s) in the same way), we obtain

V π(s0)− V π
?

(s0) =
∑
s6=sL

∑
a 6=π?(s)

q?π(s, a)
(
Qπ(s, a)− V π

?

(s)
)
. (64)

Finally, combining Eq. (62) and Eq. (64), we arrive at

V π(s0)− V π
?

(s0)

=
∑
s6=sL

∑
a6=π?(s)

q?π(s, a)
(
Qπ(s, a)− V̂ u(s)

)
+
∑
s6=sL

∑
a 6=π?(s)

q?π(s, a)
(
V̂ u(s)− V π

?

(s)
)

=
∑
s6=sL

∑
a6=π?(s)

q(s, a)Êu(s, a) (Transition Error of Sub-opt actions)

+
∑
s 6=sL

∑
a=π?(s)

(q(s, a)− q?π(s, a)) Êu(s, a) (Transition Error of Opt actions)

+
∑
s 6=sL

∑
a∈A

q(s, a)
(
Q̂u(s, a)− V̂ u(s)

)
(Policy Difference)

−
∑
s 6=sL

∑
a=π?(s)

q?π(s, a)
(
Q̂u(s, a)− V̂ u(s)

)
(Estimation Bias 1)

+
∑
s 6=sL

∑
a 6=π?(s)

q?π(s, a)
(
V̂ u(s)− V π

?

(s)
)

(Estimation Bias 2)

finishing the proof.

Proof. (Proof of Corollary D.1.2) By applying Lemma D.1.1 with u = π?, we know that V πtt (s0)−
V π

?

t (s0) equals to∑
s6=sL

∑
a6=π?(s)

qt(s, a)Êπ
?

t (s, a)

+
∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a)) Êπ
?

t (s, a)

+
∑
s6=sL

∑
a∈A

q̂t(s, a)
(
Q̂π

?

t (s, a)− V̂ π
?

t (s)
)

+
∑
s6=sL

∑
a∈A

(qt(s, a)− q̂t(s, a))
(
Q̂π

?

t (s, a)− V̂ π
?

t (s)
)

−
∑
s6=sL

∑
a=π?(s)

q?t (s, a)
(
Q̂π

?

t (s, a)− V̂ π
?

t (s)
)

(Estimation Bias 1)

+
∑
s6=sL

∑
a6=π?(s)

q?t (s, a)
(
V̂ π

?

t (s)− V π
?

t (s)
)
. (Estimation Bias 2)

Now observe the following two facts. First, the third term above is in fact equal to V̂ πtt (s0)− V̂ π?t (s0)
according to the standard performance difference lemma [Kakade, 2003, Theorem 5.2.1]. Second,
the first estimation bias term is simply 0 since Q̂π

?

t (s, a) = V̂ π
?

t (s) when a = π?(s).

Therefore, by taking the summation over t, we obtain

ERR1 + ERR2 =

T∑
t=1

(
V πtt (s0)− V π

?

t (s0)
)
−
(
V̂ πtt (s0)− V̂ π

?

t (s0)
)

52



=
∑
s6=sL

∑
a 6=π?(s)

qt(s, a)Êπ
?

t (s, a)

+
∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a)) Êπ
?

t (s, a)

+
∑
s6=sL

∑
a∈A

(qt(s, a)− q̂t(s, a))
(
Q̂π

?

t (s, a)− V̂ π
?

t (s)
)

+
∑
s6=sL

∑
a6=π?(s)

q?t (s, a)
(
V̂ π

?

t (s)− V π
?

t (s)
)

which finishes the proof.

Lemma D.1.3. For any functions F : S → R and C : S → R satisfying the following condition:

F (s) =
∑

a=π?(s)

π(a|s)
∑

s′∈Sk(s)+1

P (s′|s, a)F (s′) + C(s)

and F (sL) = 0, we have

F (s0) =
∑
s6=sL

q?π(s)C(s).

Proof. By definition and direct calculation, we have F (s0) equal to

∑
a=π?(s0)

q(s0, a)
∑
s′∈S1

P (s′|s0, a)F (s′) + C(s) (q(s0) = 1)

=
∑
s1∈S1

q?π(s1)F (s1) + q?π(s0)C(s)

=
∑
s1∈S1

q?π(s1)

 ∑
a=π?(s)

π(a|s)
∑
s′∈S2

P (s′|s, a)F (s′)

+

1∑
k=0

∑
s∈Sk

q?π(s)C(s)

=
∑
s2∈S2

q?π(s2)F (s2) +

1∑
k=0

∑
s∈Sk

q?π(s)C(s) (definition of q?π(s))

=
∑
sL∈SL

q?π(sL)F (sL) +

L−1∑
k=0

∑
s∈Sk

q?π(s)C(s) (repeatedly expanding)

=
∑
s6=sL

q?π(s)C(s), (F (sL) = 0)

which completes the proof.

D.2 Self-bounding Terms

In this section, we summarize all the self-bounding terms we use in the proofs for the unknown
transition settings.
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Definition D.2.1 (Self-bounding Terms). For some mapping π? : S → A, define the following:

G1(J) =

T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)

√
J

max
{
mi(t)(s, a)

} ,
G2(J) =

T∑
t=1

∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a))

√
J

max
{
mi(t)(s, a), 1

} ,
G3(J) =

T∑
t=1

∑
s6=sL

∑
a6=π?(s)

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) · J

max
{
mi(t)(u, v), 1

}qt(s, a|w),

G4(J) =

√√√√J ·
T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a),

G5(J) =
∑
s6=sL

∑
a6=π?(s)

√√√√J

T∑
t=1

qt(s, a),

G6(J) =

T∑
t=1

∑
s6=sL

∑
a=π?(s)

qt(s, a)− q?t (s, a)

qt(s, a)

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) · J

max
{
mi(t)(u, v), 1

}qt(s, a|w)

 .

In the next six lemmas, we show that each of these six functions enjoys a certain self-bounding
property under Condition (1) so that they are small whenever the regret of the learner is small. In all
these lemmas, the policy π? used in G1-G6 coincides with the π? in Condition (1). Also note that
Lemma 5.2 is simply a collection of the first four lemmas.
Lemma D.2.2. Suppose Condition (1) holds. Then we have for any α ∈ R+,

E [G1(J)] ≤ α · (RegT (π?) + C) +
1

α

∑
s6=sL

∑
a6=π?(s)

8J

∆(s, a)
.

Proof. Under the condition, for any α ∈ R+, we have

G1(J) =

T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)

(√
J

max
{
mi(t)(s, a), 1

} − α∆(s, a)

)
+ α

T∑
t=1

∑
s6=sL

∑
a 6=π?(s)

qt(s, a)∆(s, a)

where the expectation of the last term is bounded by α · (RegT (π?) + C). It thus remains to bound
the first term. To this end, for a fixed state-action pair (s, a), we define Ns,a as the last epoch where
the term in the bracket is still positive, so that:

mNs,a+1(s, a) ≤ 2J

α2∆(s, a)2

due to the doubling epoch schedule. Then we have

E

[
T∑
t=1

qt(s, a)

(√
J

max
{
mi(t)(s, a), 1

} − α∆(s, a)

)]

= E

[
N∑
i=1

(mi+1(s, a)−mi(s, a))

(√
J

max {mi(s, a), 1}
− α∆(s, a)

)]

≤ E

Ns,a∑
i=1

(mi+1(s, a)−mi(s, a))

(√
J

max {mi(s, a), 1}
− α∆(s, a)

)
≤ E

[
2

∫ mNs,a+1(s,a)

0

√
J

x
dx

]
≤ E

[
2

∫ 2J
α2∆(s,a)2

0

√
J

x
dx

]
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≤ 4 ·
√
J ·

√
2J

α2∆(s, a)2
≤ 8J

α∆(s, a)
.

Taking the summation over all state-action pairs (s, a) satisfying a 6= π?(s), we thus have

E [G2(J)] ≤ α · (RegT (π?) + C) +
∑
s6=sL

∑
a 6=π?(s)

8J

α∆(s, a)
.

Lemma D.2.3. Suppose Condition (1) holds. Then we have for any β ∈ R+,

E [G2(J)] ≤ β · (RegT (π?) + C) +
1

β
· 8|S|LJ

∆MIN
.

Proof. Clearly, under the condition, for any β ∈ R+, we have

G2(J) =

T∑
t=1

∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a))

(√
J

max
{
mi(t)(s, a), 1

} − β · ∆MIN

L

)

+ β

T∑
t=1

∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a)) · ∆MIN

L

where the expectation of the last term is bounded by β · (RegT (π?) + C) according to Lemma D.2.8
(deferred to the end of this subsection). It thus remains to bound the first term. To this end, for a fixed
state-action pair (s, a), we similarly define Ns,a as the last epoch where the term in the bracket is
still positive, so that:

mNs,a+1(s, a) ≤ 2JL2

β2∆2
MIN

due to the doubling epoch schedule. Then, we have

E

[
T∑
t=1

(qt(s, a)− q?t (s, a))

(√
J

max
{
mi(t)(s, a), 1

} − β · ∆MIN

L

)]

≤ E

Ns,a∑
i=1

(mi+1(s, a)−mi(s, a))

(√
J

max {mi(s, a), 1}
− β · ∆MIN

L

)
(qt(s, a) ≥ q?t (s, a) by definition)

≤ E

[
2

∫ mNs,a+1(s,a)

0

√
J

x
dx

]
≤ E

[
2

∫ 2JL2

β2∆2
MIN

0

√
J

x
dx

]

≤ 4 ·
√
J ·

√
2JL2

β2∆2
MIN

≤ 8LJ

β∆MIN
.

Taking the summation over all state-action pairs satisfying a = π?(s), we have

E [G2(J)] ≤ β · (RegT (π?) + C) +
∑
s6=sL

∑
a=π?(s)

8LJ

β∆MIN

= β · (RegT (π?) + C) +
8|S|LJ
β∆MIN

.

Lemma D.2.4. Suppose Condition (1) holds. Then we have for any α, β ∈ R+,

E [G3(J)] ≤ (α+ β) · (RegT (π?) + C) +
1

α
·
∑
s6=sL

∑
a 6=π?(s)

8L2|S|J
∆(s, a)

+
1

β
· 8L2|S|2J

∆MIN
.
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Proof. First we have

G3(J) =

T∑
t=1

L−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) · J

max
{
mi(t)(s, a)

}
 L−1∑
l=k+1

∑
s∈Sl

∑
a6=π?(s)

qt(s, a|w)


=

T∑
t=1

L−1∑
k=0

∑
u∈Sk

∑
v 6=π?(s)

qt(u, v)

 ∑
w∈Sk+1

√
P (w|u, v) · J

max
{
mi(t)(s, a), 1

} L−1∑
l=k+1

∑
s∈Sl

∑
a6=π?(s)

qt(s, a|w)


+

T∑
t=1

L−1∑
k=0

∑
u∈Sk

∑
v=π?(s)

qt(u, v)

 ∑
w∈Sk+1

√
P (w|u, v) · J

max
{
mi(t)(s, a), 1

} L−1∑
l=k+1

∑
s∈Sl

∑
a6=π?(s)

qt(s, a|w)


≤

T∑
t=1

L−1∑
k=0

∑
u∈Sk

∑
v 6=π?(s)

qt(u, v) ·

√
L2|S| · J

max
{
mi(t)(s, a), 1

}
+

T∑
t=1

L−1∑
k=0

∑
u∈Sk

∑
v=π?(s)

qt(u, v)

 ∑
w∈Sk+1

√
P (w|u, v) · J

max
{
mi(t)(s, a), 1

} L−1∑
l=k+1

∑
s∈Sl

∑
a6=π?(s)

qt(s, a|w)


where the second step separates the optimal and sub-optimal state-action pairs, and the inequality
follows from the fact

∑
s6=sL

∑
a∈A qt(s, a|w) ≤ L and the Cauchy-Schwarz inequality. Note that,

the first term is simply G1(L2|S|) and can be applied using Lemma D.2.2.

To bound the last term, we first observe the following
T∑
t=1

L−1∑
k=0

∑
u∈Sk

∑
v=π?(s)

qt(u, v)

 ∑
w∈Sk+1

(
P (w|u, v) · ∆MIN

L

) L−1∑
l=k+1

∑
s∈Sl

∑
a 6=π?(s)

qt(s, a|w)


=

T∑
t=1

L−1∑
l=0

∑
s∈Sl

∑
a 6=π?(s)

∆MIN

L
·

 l−1∑
k=0

∑
u∈Sk

∑
v=π?(s)

∑
w∈Sk+1

qt(u, v)P (w|u, v)qt(s, a|w)


≤

T∑
t=1

L−1∑
l=0

∑
s∈Sl

∑
a 6=π?(s)

∆MIN

L
·

(
l−1∑
k=0

qt(s, a)

)

≤
T∑
t=1

L−1∑
l=0

∑
s∈Sl

∑
a 6=π?(s)

qt(s, a)∆MIN

where the expectation of the last term is bounded by RegT (π?) + C under Condition (1).

Let cilp [x] = max {x, 0} be the clipping function that removes the negative value. By adding and
subtracting β times the term above, we have
T∑
t=1

L−1∑
k=0

∑
u∈Sk

∑
v=π?(s)

qt(u, v)

 ∑
w∈Sk+1

√
P (w|u, v) · J

max
{
mi(t)(s, a), 1

} L−1∑
l=k+1

∑
s∈Sl

∑
a 6=π?(s)

qt(s, a|w)


= β

T∑
t=1

L−1∑
k=0

∑
u∈Sk

∑
v=π?(s)

qt(u, v)

 ∑
w∈Sk+1

(
P (w|u, v) · ∆MIN

L

) L−1∑
l=k+1

∑
s∈Sl

∑
a6=π?(s)

qt(s, a|w)


+

T∑
t=1

L−1∑
k=0

∑
u∈Sk

∑
v=π?(s)

qt(u, v)

 ∑
w∈Sk+1

(√
P (w|u, v) · J

max
{
mi(t)(s, a), 1

} − β · ∆MINP (w|u, v)

L

)
L−1∑
l=k+1

∑
s∈Sl

∑
a6=π?(s)

qt(s, a|w)


≤ β

T∑
t=1

L−1∑
l=0

∑
s∈Sl

∑
a6=π?(s)

qt(s, a)∆MIN

+ L

T∑
t=1

L−1∑
k=0

∑
u∈Sk

∑
v=π?(s)

∑
w∈Sk+1

qt(u, v)clip

[√
P (w|u, v) · J

max
{
mi(t)(s, a), 1

} − β · ∆MINP (w|u, v)

L

]
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where the last line follows from the facts x ≤ clip[x] and
∑
s6=sL

∑
a∈A qt(s, a|w) ≤ L.

Fix a tupleNu,v,w where v = π?(u), we similarly defineNu,v,w as the last epoch where the argument
of clip(·) is still positive, so that:

mNu,v,w+1(s, a) ≤ 2JL2

P (w|u, v)β2∆2
MIN

due to the doubling epoch schedule. Then, we have

E

[
T∑
t=1

qt(u, v)clip

[√
P (w|u, v) · J

max
{
mi(t)(s, a), 1

} − β · ∆MINP (w|u, v)

L

]]

≤ E

Nu,v,w∑
i=1

(mi+1(u, v)−mi(u, v)) clip

[√
P (w|u, v) · J

max
{
mi(t)(s, a), 1

} − β · ∆MINP (w|u, v)

L

]
≤ E

[
2

∫ mNu,v,w+1(s,a)

0

√
P (w|u, v) · J

x
dx

]
≤ E

[
2

∫ 2JL2

P (w|u,v)β2∆2
MIN

0

√
P (w|u, v)J

x
dx

]

≤ 4 ·
√
P (w|u, v) · J ·

√
2JL2

P (w|u, v)β2∆2
MIN

≤ 8LJ

β∆MIN
.

Taking the summation over all transition tuple (u, v, w) satisfying v = π?(s) and adding
E
[
G1(L2|S|J)

]
, we have

E [G3(J)] ≤ β · (RegT (π?) + C) + E
[
G1(L2|S|J)

]
+ L

L−1∑
k=0

∑
u∈Sk

∑
v=π?(u)

∑
w∈Sk+1

8LJ

β∆MIN

≤ (α+ β) · (RegT (π?) + C) +
1

α
·
∑
s6=sL

∑
a6=π?(s)

8L2|S|J
∆(s, a)

+
1

β
· 8L2|S|2J

∆MIN
,

where the last line follows from the fact
∑L−1
k=0 |Sk| |Sk + 1| ≤ |S|2.

Lemma D.2.5. Suppose Condition (1) holds. Then we have for any β ∈ R+,

E [G4(J)] ≤ β · (RegT (π?) + C) +
1

β
· J

4∆MIN
.

Proof. By the fact that 2
√
xy ≤ x+ y for all x, y ≥ 0, with Condition (1), we have

E [G4(J)] = E

√√√√2β

T∑
t=1

∑
s6=sL

∑
a 6=π?(s)

qt(s, a)∆MIN ·
J

2β∆MIN


≤ β · E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)∆MIN

+
J

4β∆MIN

≤ β · (RegT (π?) + C) +
J

4β∆MIN
.

Lemma D.2.6. Suppose Condition (1) holds. Then we have for any α ∈ R+,

E [G5(J)] ≤ α · (RegT (π?) + C) +
∑
s6=sL

∑
a6=π?(s)

J

4α∆(s, a)
.
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Proof. By the fact that 2
√
xy ≤ x+ y for all x, y ≥ 0, with Condition (1), we have

E [G4(J)] = E

∑
s6=sL

∑
a6=π?(s)

√√√√2α

T∑
t=1

qt(s, a)∆(s, a) · J

2α∆(s, a)


≤ α · E

 T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a)∆(s, a)

+
∑
s6=sL

∑
a6=π?(s)

J

4α∆(s, a)

≤ α · (RegT (π?) + C) +
∑
s6=sL

∑
a6=π?(s)

J

4α∆(s, a)
.

Lemma D.2.7. Suppose Condition (1) holds. Then we have for any β ∈ R+,

E [G6(J)] ≤ β · (RegT (π?) + C) +
1

β
· 8L3|S|2|A| · J

∆MIN
.

Proof. By adding and subtracting terms, we have G6(J) equals to

T∑
t=1

∑
s6=sL

∑
a=π?(s)

qt(s, a)− q?t (s, a)

qt(s, a)
·

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√√√√P (w|u, v) ln
(
T |S||A|

δ

)
max

{
mi(t)(u, v), 1

} qt(s, a|w)− βqt(s, a) · ∆MIN

L


+
β

L

T∑
t=1

∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a)) ∆MIN

where the expectation of the last term is bounded by β · (RegT (π?) + C) according to Lemma D.2.8.

To bound the first term, we observe that

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√√√√P (w|u, v) ln
(
T |S||A|

δ

)
max

{
mi(t)(u, v), 1

} qt(s, a|w)− βqt(s, a) · ∆MIN

L

=

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√√√√P (w|u, v) ln
(
T |S||A|

δ

)
max

{
mi(t)(u, v), 1

} qt(s, a|w)

− β · ∆MIN

L2
·

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)P (w|u, v)qt(s, a|w)


=

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)


√√√√P (w|u, v) ln

(
T |S||A|

δ

)
max

{
mi(t)(u, v), 1

} − P (w|u, v) · β · ∆MIN

L2

 · qt(s, a|w)

≤
k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v) clip


√√√√P (w|u, v) ln

(
T |S||A|

δ

)
max

{
mi(t)(u, v), 1

} − P (w|u, v) · β · ∆MIN

L2


︸ ︷︷ ︸

=ht(u,v,w)

qt(s, a|w)

where the first equality uses
∑

(u,v,w)∈Tk qt(u, v)P (w|u, v)qt(s, a|w) = qt(s, a) for all layer k =

0, . . . k(s)− 1. (Recall clip[x] = max{x, 0}.)
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Therefore, with Condition (1), we bound the E [G6(J)] by

E

 T∑
t=1

∑
s6=sL

∑
a=π?(s)

qt(s, a)− q?t (s, a)

qt(s, a)

(∑
u,v,w

qt(u, v)ht(u, v, w)qt(s, a|w)

)
+ β · (RegT (π?) + C)


≤ E

 T∑
t=1

∑
s 6=sL

∑
a=π?(s)

(∑
u,v,w

qt(u, v)ht(u, v, w)qt(s, a|w)

)+ β · (RegT (π?) + C)

≤ LE

[
·
T∑
t=1

∑
u,v,w

qt(u, v)ht(u, v, w)

]
+ β · (RegT (π?) + C)

where the second line applies the fact qt(s,a)−q?t (s,a)
qt(s,a) ≤ 1, and the third line changes summation order

and uses the fact that
∑
s6=sL

∑
a∈A qt(s, a|w) ≤ L.

Finally, following the similar idea of handing
∑
t=1 qt(u, v)ht(u, v, w) as in Lemma D.2.4, we have

E

[∑
t=1

qt(u, v)ht(u, v, w)

]
≤ 8L2J

β∆MIN
.

By taking the summation over all transition triples, we have

E [G6(J)] ≤ β · (RegT (π?) + C) + L ·
L−1∑
k=0

∑
(u,v,w)∈Tk

1

β
· 8L2 · J

∆MIN

≤ β · (RegT (π?) + C) +
1

β
· 8L3|S|2|A| · J

∆MIN
,

where the last line follows from the fact that
∑L
k=0 |Sk| |Sk+1| ≤ |S|2.

Lemma D.2.8. Under Condition (1), we have

E

 T∑
t=1

∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?t (s, a)) ∆MIN

 ≤ L · E [RegT (π?) + C] .

Proof. For each k, we proceed as∑
s∈Sk

∑
a=π?(s)

(qt(s, a)− q?t (s, a))

≤ 1−
∑
s∈Sk

∑
a=π?(s)

q?t (s, a) (
∑
s∈Sk

∑
a∈A qt(s, a) = 1)

= 1−
∑
s∈Sk

∑
a=π?(s)

πt(a|s) Pr

[
{sk = s}

⋂(
k−1⋂
τ=0

{aτ = π?(sτ )}

)∣∣∣∣∣P, πt
]

(definition of q?t )

= 1− Pr

[(
k⋂
τ=0

{aτ = π?(sτ )}

)∣∣∣∣∣P, πt
]

= Pr

[(
k⋂
τ=0

{aτ = π?(sτ )}

)c∣∣∣∣∣P, πt
]

= Pr

[(
k⋃
τ=0

{aτ 6= π?(sτ )}

)∣∣∣∣∣P, πt
]

(De Morgan’s laws)

≤
k∑
τ=0

Pr [aτ 6= π?(sτ )|P, πt] (union bound)
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=

k∑
τ=0

∑
s∈Sτ

∑
a6=π?(s)

qt(s, a) =
∑
s6=sL

∑
a6=π?(s)

qt(s, a).

Therefore, we have
T∑
t=1

∑
s6=sL

∑
a=π?(s)

(qt(s, a)− q?π(s, a)) ∆MIN

≤ L ·
T∑
t=1

∑
s6=sL

∑
a6=π?(s)

qt(s, a) ·∆(s, a)

≤ L · E [RegT (π?) + C]

where the last line follows from Condition (1).

D.3 Supplementary Lemmas

Lemma D.3.1. (Occupancy Measure Difference) For any policy π and transition functions P1 and
P2, with q1 = qP1,π and q2 = qP2,π we have for all s,

q1(s)− q2(s) =

k(s)−1∑
k=0

∑
u∈Sk

∑
v∈A

∑
w∈Sk+1

q1(u, v) [P1(w|u, v)− P2(w|u, v)] q2(s|w)

=

k(s)−1∑
k=0

∑
u∈Sk

∑
v∈A

∑
w∈Sk+1

q2(u, v) [P1(w|u, v)− P2(w|u, v)] q1(s|w)

(65)

where the conditional occupancy measure q1(s′|s) (similarly for q2(s′|s)) is defined recursively as

q1(s′|s) =


0, k(s′) < k(s) or (k(s′) = k(s) and s′ 6= s)

1, k(s′) = k(s) and s′ = s∑
u∈Sk(s′)−1

q1(u|s)
(∑

v∈A π(v|u)P (s′|u, v)
)
, k(s′) > k(s)

(66)
which is the conditional probability of visiting state s′ from s under π and transition P1.

Proof. Fix a state s. We proceed as:

q1(s)− q2(s)

=
∑

s′∈Sk(s)−1

∑
a′∈A

(q1(s′, a′)P1(s|s′, a′)− q2(s′, a′)P2(s′, a′))

=
∑

s′∈Sk(s)−1

∑
a′∈A

(q1(s′)− q2(s′))P1(s|s′, a′)π(a′|s′)

+
∑

s′∈Sk(s)−1

∑
a′∈A

q2(s′, a′) (P1(s|s′, a′)− P2(s|s′, a′))

where the second step follows by subtracting and adding q2(s′, a′)P1(s|s′, a′). Note that,∑
a′∈A π(a′|s′)P1(s|s′, a′) is exactly the conditional probability of transiting to state s from state s′

with transition P1. Therefore, we have
∑
a′∈A π(a′|s′)P1(s|s′, a′) = q1(s|s′) according to Eq. (66),

and further expand q1(s)− q2(s) as:∑
s′∈Sk(s)−1

∑
a′∈A

(q1(s′)− q2(s′))P1(s|s′, a′)π(a′|s′)

+
∑

s′∈Sk(s)−1

∑
a′∈A

q2(s′, a′) (P1(s|s′, a′)− P2(s|s′, a′))

=
∑

s′∈Sk(s)−1

q1(s|s′) (q1(s′)− q2(s′))
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+
∑

s′∈Sk(s)−1

∑
a′∈A

q2(s′, a′) [P1(s|s′, a′)− P2(s|s′, a′)] q1(s|s)

where the second line follows from the fact that q1(s|s) = 1.

Therefore, we can recursively expand q1(s)− q2(s) as:

q1(s)− q2(s)

=
∑

s′∈Sk(s)−1

(q1(s′)− q2(s′)) q1(s|s′)

+
∑

s′∈Sk(s)−1

∑
a′∈A

q2(s′, a′) [P1(s|s′, a′)− P2(s|s′, a′)] q1(s|s)

=
∑

s′∈Sk(s)−1

(q1(s′)− q2(s′)) q1(s|s′)

+

k(s)∑
k=k(s)

∑
(u,v,w)∈Tk

q2(u, v) [P1(w|u, v)− P2(w|u, v)] q1(s|w)

=
∑

s′∈Sk(s)−1

 ∑
s′′∈Sk(s)−2

(q1(s′′)− q2(s′′)) q1(s′|s′′)

 q1(s|s′)

+

k(s)∑
k=k(s)−1

∑
(u,v,w)∈Tk

q2(u, v) [P1(s|s′, a′)− P2(s|s′, a′)] q1(s|w)

=
∑

s′′∈Sk(s)−2

(q1(s′′)− q2(s′′)) q1(s|s′′) +

k(s)∑
k=k(s)−1

∑
(u,v,w)∈Tk

q2(u, v) [P1(s|s′, a′)− P2(s|s′, a′)] q1(s|w)

=

k(s)−1∑
k=0

∑
u∈Sk

∑
v∈A

∑
w∈Sk+1

q2(u, v) [P1(w|u, v)− P2(w|u, v)] q1(s|w). (expand recursively)

where the second step follows from the fact that q(s′|s) = 0 for all states s 6= s′ with k(s) = k(s′),
and the third step follows from the fact

∑
s′∈Sk q(s

′|s′′)q(s|s′) = q(s|s′′) for all state pairs that
k(s) > k > k(s′′).

By applying the same technique, we also have

q2(s)− q1(s) =

k(s)−1∑
k=0

∑
u∈Sk

∑
v∈A

∑
w∈Sk+1

q1(u, v) [P2(w|u, v)− P1(w|u, v)] q2(s|w).

Flipping this equality finishes the proof for the second statement of the lemma:

q1(s)− q2(s) =

k(s)−1∑
k=0

∑
u∈Sk

∑
v∈A

∑
w∈Sk+1

q1(u, v) [P1(w|u, v)− P2(w|u, v)] q2(s|w).

Lemma D.3.2. The following holds:

Bi(s, a) ≤ 2

√√√√ |Sk(s)+1| ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+
14|Sk(s)+1| ln

(
T |S||A|

δ

)
3 max {mi(s, a), 1}

.

Proof. By the definition of Bi(s, a), we have

Bi(s, a) =
∑

s′∈Sk(s)+1

Bi(s, a, s
′)
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=
∑

s′∈Sk(s)+1

2

√√√√ P̄i(s′|s, a) ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+
14 ln

(
T |S||A|

δ

)
3 max {mi(s, a), 1}



≤ 2

√√√√ |Sk(s)+1| ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+
14|Sk(s)+1| ln

(
T |S||A|

δ

)
3 max {mi(s, a), 1}

where the last line follows from the Cauchy-Schwarz inequality.

Lemma D.3.3. Conditioning on event A, we have

Bi(s, a, s
′) ≤ 4

√√√√P (s′|s, a) ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+
40 ln

(
T |S||A|

δ

)
3 max {mi(s, a), 1}

. (67)

Proof. By direct calculation based on Eq. (8) and the condition of event A, we have

Bi(s, a, s
′) ≤ 2

√√√√ P̄i(s′|s, a) ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+
14 ln

(
T |S||A|

δ

)
3 max {mi(s, a), 1}

≤ 2

√√√√ (P (s′|s, a) +Bi(s, a, s′)) ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+
14 ln

(
T |S||A|

δ

)
3 max {mi(s, a), 1}

≤ 2

√√√√P (s′|s, a) ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+

√√√√4Bi(s, a, s′) ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+
14 ln

(
T |S||A|

δ

)
3 max {mi(s, a), 1}

≤ 2

√√√√P (s′|s, a) ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+
Bi(s, a, s

′)

2
+

20 ln
(
T |S||A|

δ

)
3 max {mi(s, a), 1}

,

where the third line applies the fact that
√
x+ y ≤

√
x+
√
y, and the last line follows from the fact

2
√
xy ≤ x+ y for x, y > 0.

Rearranging the terms yields that

Bi(s, a, s
′) ≤ 4

√√√√P (s′|s, a) ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+
40 ln

(
T |S||A|

δ

)
3 max {mi(s, a), 1}

.

Combining with the fact Bi(s, a, s′) ≤ 1, we have the following tighter bound of confidence width.
Corollary D.3.4. Conditioning on event A, we have

Bi(s, a, s
′) ≤ min

4

√√√√P (s′|s, a) ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

+
40 ln

(
T |S||A|

δ

)
3 max {mi(s, a), 1}

, 1


≤ min

4

√√√√P (s′|s, a) ln
(
T |S||A|

δ

)
max {mi(s, a), 1}

, 1

+ min

 40 ln
(
T |S||A|

δ

)
3 max {mi(s, a), 1}

, 1

 .

We often use the following two lemmas to deal with the small-probability event Ac when taking
expectation.
Lemma D.3.5. Suppose that a random variable X satisfies the following conditions:
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• Conditioning on event E , X < Y where Y > 0 is another random variable;

• X < C holds always for some fixed C ∈ R+.

Then, we have

E [X] ≤ C · Pr [Ec] + E [Y ] .

Proof. By writing the random variable X as X · I{E}+X · I{Ec}, and noting

X · I{E} ≤ Y · I{E} ≤ Y, and X · I{Ec} ≤ C · I{Ec},

we prove the statement after taking the expectations.

Lemma D.3.6. Suppose that a random variable X satisfies the following conditions:

• Conditioning on event E , X < Y where Y > 0 is another random variable;

• X < C holds where C is another random variable which ensures E [C|Ec] ≤ D for some
fixed D ∈ R+.

Then, we have

E [X] ≤ D · Pr [Ec] + E [Y ] .

Proof. By writing the random variable X as X · I{E}+X · I{Ec}, and noting

X · I{E} ≤ Y · I{E} ≤ Y, X · I{Ec} ≤ C · I{Ec}, E [C · I{Ec}] ≤ E [C|Ec] ,

we prove the statement after taking the expectations.

Lemma D.3.7. ([Jin et al., 2020, Lemma 10]) With probability at least 1 − 2δ, we have for all
k = 0, . . . L− 1,

T∑
t=1

∑
s∈Sk,a∈A

qt(s, a)

max{1,mi(t)(s, a)}
= O (|Sk||A| lnT + ln(L/δ)) (68)

and
T∑
t=1

∑
s∈Sk,a∈A

qt(s, a)√
max{1,mi(t)(s, a)}

= O
(√
|Sk||A|T + |Sk||A| lnT + ln(L/δ)

)
. (69)

Simultaneously, for all k < h, we have

T∑
t=1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)

√
P (w|u, v)

max{1,mi(t)(u, v)}
· qt(x, y|w)

√
P (z|x, y)

max{1,mi(t)(x, y)}

= O
(

(|A| lnT + ln (L/δ)) ·
√
|Sk| |Sk+1| |Sh| |Sh+1|

)
.

(70)

Proof. Eq. (68) and Eq. (69) are from Jin et al. [2020]. For Eq. (70), by direct calculation we have

T∑
t=1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)

√
P (w|u, v)

max{1,mi(t)(u, v)}
· qt(x, y|w)

√
P (z|x, y)

max{1,mi(t)(x, y)}

=

T∑
t=1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

√
qt(u, v)P (z|x, y)qt(x, y|w)

max{1,mi(t)(u, v)}
·

√
qt(u, v)P (w|u, v)qt(x, y|w)

max{1,mi(t)(x, y)}

≤

√√√√ T∑
t=1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)P (z|x, y)qt(x, y|w)

max{1,mi(t)(u, v)}
·

√√√√ T∑
t=1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)P (w|u, v)qt(x, y|w)

max{1,mi(t)(x, y)}
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≤

√√√√|Sk+1|
T∑
t=1

∑
u∈Sk

∑
a∈A

qt(u, v)

max{1,mi(t)(u, v)}
·

√√√√|Sh+1|
T∑
t=1

∑
x∈Sh

∑
a∈A

qt(x, y)

max{1,mi(t)(x, y)}

≤ O
(

(|A| lnT + ln (L/δ)) ·
√
|Sk| |Sk+1| |Sh| |Sh+1|

)
.

Lemma D.3.8. For all k = 0, . . . , L− 1, we have

E

 T∑
t=1

∑
s∈Sk,a∈A

qt(s, a)

max{1,mi(t)(s, a)}

 = O (|Sk||A| lnT + |Sk||A|) (71)

and

E

 T∑
t=1

∑
s∈Sk,a∈A

qt(s, a)√
max{1,mi(t)(s, a)}

 = O
(√
|Sk||A|T + |Sk||A|

)
. (72)

Proof. For each state-action pair (s, a), we have

E

[
T∑
t=1

qt(s, a)

max{1,mi(t)(s, a)}

]

= E

[
T∑
t=1

It(s, a)

max{1,mi(t)(s, a)}

]
= E

[
N∑
i=1

ti+1−1∑
t=ti

It(s, a)

max{1,mi(s, a)}

]

= E

[
N∑
i=1

mi+1(s, a)−mi(s, a)

max{1,mi(s, a)}

]

≤ 2E

[
1 +

∫ 1+mN+1(s,a)

1

dx

x

]
≤ 2 (2 lnT + 1)

where the second line follows from the definition of the indicator and occupancy measure qt, and the
last line applies the fact mi+1(s, a) ≤ 2mi(s, a) when mi(s, a) ≥ 1. Taking the summation over all
state-action pairs at layer k finishes the proof of Eq. (71).

Similarly, we have

E

[
T∑
t=1

qt(s, a)√
max{1,mi(t)(s, a)}

]

= E

[
T∑
t=1

It(s, a)√
max{1,mi(t)(s, a)}

]
= E

[
N∑
i=1

ti+1−1∑
t=ti

It(s, a)√
max{1,mi(s, a)}

]

= E

[
N∑
i=1

mi+1(s, a)−mi(s, a)√
max{1,mi(s, a)}

]

≤ 2E

[
1 +

∫ mN+1(s,a)

0

dx√
x

]
≤ 2

(
2
√
mN+1(s, a) + 1

)
where mN+1(s, a) is the total number of visiting state-action pair (s, a). Taking the summation over
all state-action pairs of layer k yields that

E

[∑
s∈Sk

∑
a∈A

T∑
t=1

qt(s, a)√
max{1,mi(t)(s, a)}

]
≤
∑
s∈Sk

∑
a∈A

2
(

2
√
mN+1(s, a) + 1

)
≤ 2

(
2
√
|Sk||A|T + |Sk||A|

)
where the last inequality follows from the Cauchy-Schwarz inequality.
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Definition D.3.9. (Residual Term) We define the residual term rt(s, a) as

rt(s, a) =
40

3

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v) ·
P (w|u, v) ln

(
T |S||A|

δ

)
max

{
mi(t)(u, v), 1

} · qt(s, a|w)

+

k(s)−1∑
k=0

k(s)−1∑
h=k+1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)Bi(t)(u, v, w)qt(x, y|w)Bi(t)(x, y, z)

+ I{Ac}.

(73)

for all state-action pair (s, a) ∈ S ×A and all episodes t ∈ [T ].
Lemma D.3.10. The following hold:

|qt(s, a)− q̂t(s, a)| ≤ rt(s, a) + 4

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(s, a|w)

and

E

 T∑
t=1

∑
s 6=sL

∑
a∈A

rt(s, a)

 = O
(
L2|S|3|A|2 ln2

(
T |S||A|

δ

)
+ |S||A|T · δ

)
.

Proof. For simplicity, we let ι = T |S||A|
δ and assume δ ∈ (0, 1). According to the Lemma D.3.1,

conditioning on event A, we have

|qt(s, a)− q̂t(s, a)| =

∣∣∣∣∣∣
k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)
(
P (w|u, v)− P̄i(t)(w|u, v)

)
q̂t(s, a|w)

∣∣∣∣∣∣
≤
k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)
∣∣P (w|u, v)− P̄i(t)(w|u, v)

∣∣ q̂t(s, a|w)

≤
k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)Bi(t)(u, v, w)q̂t(s, a|w)

Moreover, we apply Lemma D.3.1 again to conditional occupancy measure and obtain

|qt(s, a|w)− q̂t(s, a|w)| ≤
k(s)−1∑
h=k(w)

∑
(x,y,z)∈Th

qt(x, y|w)Bi(t)(x, y, z)q̂t(s, a|z)

≤
k(s)−1∑
h=k(w)

∑
(x,y,z)∈Th

qt(x, y|w)Bi(t)(x, y, z)

where the second line applies the fact q̂t(s, a|z) ≤ 1.

Combining these inequalities yields (under the event A)

|qt(s, a)− q̂t(s, a)|

≤
k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)Bi(t)(u, v, w)qt(s, a|w)

+

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)Bi(t)(u, v, w)

 k(s)−1∑
h=k(w)

∑
(x,y,z)∈Th

qt(x, y|w)Bi(t)(x, y, z)


≤ 4

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(s, a|w)
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+
40

3

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v) · P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

} · qt(s, a|w)

+

k(s)−1∑
k=0

k(s)−1∑
h=k+1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)Bi(t)(u, v, w)qt(x, y|w)Bi(t)(x, y, z)

where the second line follows from Lemma D.3.3.

On the other hand, |qt(s, a)− q̂t(s, a)| ≤ 1 holds always. Combining the bounds of these two cases
finishes the first statement.

Recall the definition of the residual terms, we decompose the following into three terms SUM1, SUM2

and SUM3:

E

 T∑
t=1

∑
s6=sL

∑
a∈A

rt(s, a)


=

40

3
E

 T∑
t=1

∑
s6=sL

∑
a∈A

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v) · P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

} · qt(s, a|w)


︸ ︷︷ ︸

,SUM1

+ E

 T∑
t=1

∑
s 6=sL

∑
a∈A

I{Ac}


︸ ︷︷ ︸

,SUM2

+ E

 T∑
t=1

∑
s 6=sL

∑
a∈A

k(s)−1∑
k=0

k(s)−1∑
h=k+1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)Bi(t)(u, v, w)qt(x, y|w)Bi(t)(x, y, z)


︸ ︷︷ ︸

,SUM3

.

Then, we show that these terms are all logarithmic in T .

SUM1 By direct calculation, we have

SUM1 =
40

3
E

 T∑
t=1

∑
s6=sL

∑
a∈A

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v) · P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

} · qt(s, a|w)


=

40

3
E

 T∑
t=1

L−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v) · ln ι

max
{
mi(t)(u, v), 1

} ·
∑
s 6=sL

∑
a∈A

P (w|u, v)qt(s, a|w)


≤ 40L

3
ln ιE

 T∑
t=1

∑
u6=sL

∑
v∈A
· qt(u, v)

max
{
mi(t)(u, v), 1

}


=
80L

3
ln ι

(
L−1∑
k=0

|Sk||A| (lnT + 1)

)
= O

(
L|S||A| ln2 ι

)
(74)

where the first line follows from the property of occupancy measures, and the last line applies Eq. (71)
of Lemma D.3.8.

SUM2 According to the definition of event A, we have

SUM2 = E

 T∑
t=1

∑
s6=sL

∑
a∈A

I{Ac}

 = |S||A|T · E [I{Ac}] = |S||A|T · δ. (75)
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SUM3 First, we consider the term inside the expectation bracket and show the following condition-
ing on event A:

T∑
t=1

∑
s 6=sL

∑
a∈A

k(s)−1∑
k=0

k(s)−1∑
h=k+1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)Bi(t)(u, v, w)qt(x, y|w)Bi(t)(x, y, z)

≤ 4

T∑
t=1

∑
s6=sL

∑
a∈A

k(s)−1∑
k=0

k(s)−1∑
h=k+1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(x, y|w)Bi(t)(x, y, z)

+
40

3

T∑
t=1

∑
s6=sL

∑
a∈A

k(s)−1∑
k=0

k(s)−1∑
h=k+1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)

(
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}) qt(x, y|w)Bi(t)(x, y, z)

≤ 16|S||A| ln ι
T∑
t=1

∑
k<h

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)

√
P (w|u, v)

max
{
mi(t)(u, v), 1

}qt(x, y|w)

√
P (z|x, y)

max
{
mi(t)(x, y), 1

}
+

160|S||A|
3

T∑
t=1

∑
k<h

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(x, y|w) min

{
P (z|x, y) ln ι

max
{
mi(t)(x, y), 1

} , 1}

+
40|S||A|

3

T∑
t=1

∑
k<h

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)

(
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}) qt(x, y|w)

where the second inequality follows from Lemma D.3.3 and Corollary D.3.4.

Then we consider bounding these three different terms with the help of previous analysis. According
to Eq. (70) of Lemma D.3.7, The first term is bounded with probability at least 1− 2δ′:

16|S||A| ln ι
T∑
t=1

∑
k<h

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)

√
P (w|u, v)

max
{
mi(t)(u, v), 1

}qt(x, y|w)

√
P (z|x, y)

max
{
mi(t)(x, y), 1

}
≤ 16|S||A| ln ι · O

(
(|A| lnT + ln(L/δ′))

∑
k<h

√
|Sk| |Sk+1| |Sh| |Sh+1|

)

≤ 16|S||A| ln ι · O

(
(|A| lnT + ln(L/δ′))

∑
k<h

(|Sk| |Sk+1|+ |Sh| |Sh+1|)

)
≤ O

(
(|A| lnT + ln(L/δ′))L|S|3|A| ln ι

)
,

where the third line follows from the AM-GM inequality. Taking the expectation with δ′ = L
ι , we

have the expectation of the first term bounded by O
(
L|S|3|A|2 ln2 ι

)
using Lemma D.3.5.

On the other hand, for the second term, we have

160|S||A|
3

T∑
t=1

∑
k<h

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(x, y|w) min

{
P (z|x, y) ln ι

max
{
mi(t)(x, y), 1

} , 1}

≤ 80|S||A|
3

T∑
t=1

∑
k<h

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)P (w|u, v)qt(x, y|w)

(
P (z|x, y) ln ι

max
{
mi(t)(x, y), 1

})

+
80|S||A|

3

T∑
t=1

∑
k<h

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)
ln ι

max
{
mi(t)(u, v), 1

}qt(x, y|w)

≤ 80L|S||A|
3

ln ι

T∑
t=1

∑
x∈S

∑
y∈A

(
qt(x, y)

max
{
mi(t)(x, y), 1

})

+
80L|S|2|A|

3
ln ι

T∑
t=1

∑
u6=sL

∑
v∈A

(
qt(u, v)

max
{
mi(t)(u, v), 1

})
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≤ 160L|S|2|A|
3

ln ι

T∑
t=1

∑
u 6=sL

∑
v∈A

qt(u, v)

max
{
mi(t)(u, v), 1

}
where the expectation of the final term is bounded O

(
L|S|3|A|2 ln2 ι

)
with the help from

Lemma D.3.8. Similarly, we have the expectation of the third term bounded by O
(
L|S|3|A|2 ln2 ι

)
following the same idea.

Therefore, we have SUM3 bounded as

SUM3 = O
(
L|S|3|A|2 ln2 ι+ L|S|3|A|2 ln2 ι+ |S||A|T · δ

)
= O

(
L|S|3|A|2 ln2 ι+ |S||A|T · δ

)
(76)

where the |S||A|T · δ comes from the range of SUM3 and the probability of event Ac.
Combining the bounds of SUM1, SUM2, and SUM3 stated in Eq. (74), Eq. (75) and Eq. (76) finishes
the proof.

Corollary D.3.11. The following holds:

|qt(s, a)− ut(s, a)| ≤ 4rt(s, a)+16

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√√√√P (w|u, v) ln
(
T |S||A|

δ

)
max

{
mi(t)(u, v), 1

} qt(s, a|w).

where qt is the true occupancy measure of episode t, and ut is the upper occupancy bound of episode
t associated with confidence set Pi(t) and policy πt.

Proof. Fix the state-action pair (s, a) and episode t . Let P̂ be the transition in Pi(t) that realizes
the maximum in the definition of ut(s, a), and q̃t = qP̂ ,πt bet the associated occupancy measure.
Therefore, we have q̃t(s, a) = ut(s, a).

Conditioning on event A, we have

|qt(s, a)− q̃t(s, a)| =

∣∣∣∣∣∣
k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)
(
P (w|u, v)− P̂ (w|u, v)

)
q̃t(s, a|w)

∣∣∣∣∣∣
≤
k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)
∣∣∣P (w|u, v)− P̂ (w|u, v)

∣∣∣ q̃t(s, a|w)

≤ 2

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)Bi(t)(u, v, w)q̃t(s, a|w).

Moreover, we apply Lemma D.3.1 to terms q̂t(s, a|w) and obtain

|qt(s, a|w)− q̃t(s, a|w)| ≤ 2

k(s)−1∑
h=k(w)

∑
(x,y,z)∈Th

qt(x, y|w)Bi(t)(x, y, z)q̃t(s, a|z)

≤ 2

k(s)−1∑
h=k(w)

∑
(x,y,z)∈Th

qt(x, y|w)Bi(t)(x, y, z)

where the second line uses q̂t(s, a|z) ≤ 1.

Combining these inequalities yields (under the event A)

|qt(s, a)− q̂t(s, a)|

≤ 4

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)Bi(t)(u, v, w)qt(s, a|w)
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+ 4

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)Bi(t)(u, v, w)

 k(s)−1∑
h=k(w)

∑
(x,y,z)∈Th

qt(x, y|w)Bi(t)(x, y, z)


≤ 16

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v)

√
P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

}qt(s, a|w)

+
160

3

k(s)−1∑
k=0

∑
(u,v,w)∈Tk

qt(u, v) · P (w|u, v) ln ι

max
{
mi(t)(u, v), 1

} · qt(s, a|w)

+ 4

k(s)−1∑
k=0

k(s)−1∑
h=k+1

∑
(u,v,w)∈Tk

∑
(x,y,z)∈Th

qt(u, v)Bi(t)(u, v, w)qt(x, y|w)Bi(t)(x, y, z)

where the second line follows from Lemma D.3.3.

On the other hand, |qt(s, a)− q̃t(s, a)| ≤ 1 holds always. Combining the bounds of these two cases
finishes the proof.

Lemma D.3.12. Algorithm 1 ensures N ≤ 4|S||A| (log T + 1) where N is the number of epochs.

Proof. For a fixed state-action pair (s, a), let the i1 ≤ i2 ≤ . . . ≤ ik denotes the epochs that triggered
by this state-action pair, that is

{i1, i2, . . . , ik} = {i : i ∈ 1, . . . N,mi(s, a) ≥ max {1, 2 ·mi−1(s, a)}} .

Clearly, it holds that

1 = mi1(s, a), and miτ (s, a) ≥ 2miτ−1
(s, a)τ ∈ 2, . . . , k

which indicates that mik(s, a) ≥ 2k−1. Combining with the fact that mik(s, a) ≤ T , we have

k = |{i1, i2, . . . , ik}| ≤ 4 log T + 4.

Taking the summation over all state-action pairs finishes the proof.
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