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A Proofs

In this section we proof the theorems of the main paper and recap the needed definitions to do so.
Definition A.1 (Maximum magnitude attack). Given a multi-class classifier f(·), a loss function
L(·, ·), ℓp-norm ∥ · ∥p and a given perturbation strength η the optimization problem for a maximum
magnitude attack can be written as

maximize L(f(x+ δ), y) , w.r.t. δ s.t. ∥δ∥p ≤ η . (1)

Theorem A.1 (Sufficient and necessary robustness condition for linear classifiers). Let f : Rd×Ωh →
Rk be a stochastic classifier with linear discriminant functions and fA and fI be two MC estimates
of the classifier. Let x ∈ Rd be a data point with label y ∈ {1, . . . , k} and argmaxc f

A
c (x) =

argmaxc f
I
c (x) = y, and let xadv = x + δA be an adversarial example computed for solving the

minimization problem (1) for fA. It holds that argmaxc f
I
c (x+ δA) = y if and only if

min
c̸=y

r̃Ic > ∥δA∥2 , with (2)
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r̃Ic =

∞ , if cos(αI,A
c ) =

⟨−∇x(f
I
y (x)−fI

c (x)),δA⟩
∥∇x(fI

y (x)−fI
c (x))∥2·∥δA∥2

≤ 0

fI
y (x)−fI

c (x)

∥∇x(fI
y (x)−fI

c (x))∥2·cos(αI,A
c )

, otherwise ,

where αI,A
c is the angle between −∇x(f

I
y (x)− fI

c (x)) and δA.

Proof. An adversarial attack on fI with the adversarial example x+ δA is not successful iff ∀c ∈
{1, 2, . . . , k}, c ̸= y :

fI
y

(
x+ δA

)
− fI

c

(
x+ δA

)
> 0 .

With Taylor expansion around x we can rewrite fI
y

(
x+ δA

)
− fI

c

(
x+ δA

)
as

fI
y (x) + ⟨∇xf

I
y (x), δ

A⟩ − fI
c (x)− ⟨∇xf

I
c (x), δ

A⟩
=fI

y (x)− fI
c (x) + ⟨∇xf

I
y (x)−∇xf

I
c (x), δ

A⟩
=fI

y (x)− fI
c (x)− ∥∇x(f

I
y (x)− fI

c (x))∥2 · ∥δA∥2 · cos(αI,A
c ) (3)

where αI,A
c := ∠(−∇x(f

I
y (x)− fI

c (x)), δ
A). We can distinguish two cases for each c.

Case 1: cos(αI,A
c ) ≤ 0. In this case last term of eq. (3) is negative or zero and thus

fI
y

(
x+ δA

)
− fI

c

(
x+ δA

)
≥ fI

y (x)− fI
c (x) > 0 ,

where the second inequality holds since argmaxc f
I
c (x) = y.

Case 2: cos(αI,A
c ) > 0. In this case the last term of equation eq. (3) is positive and thus

fI
y

(
x+ δA

)
− fI

c

(
x+ δA

)
≤ fI

y (x)− fI
c (x) .

As we see from rearranging eq. (3), it holds fI
y

(
x+ δA

)
− fI

c

(
x+ δA

)
> 0 if

r̃Ic :=
fI
y (x)− fI

c (x)

∥∇x(fI
y (x)− fI

c (x))∥2 · cos(α
I,A
c )

> ∥δA∥2 . (4)

For each class c either case 1 holds and we define r̃Ic := ∞, or condition (4) is fulfilled, which yields
the condition stated in the theorem.

In the main part of the paper we relaxed the linear classifier assumption by L-smoothness, which was
defined as follows:

Definition A.2 (L-smoothness [Yang et al., 2022]). A differentiable function f : Rd → Rk is
L-smooth, if for any x1, x2 ∈ Rd and any output dimension c ∈ {1, . . . , k}:

∥∇x1
fc(x1)−∇x2

fc(x2)∥2
∥x1 − x2∥2

≤ L .

Next we restate one property of L-smooth functions which we will use in our proof of theorem 2.

Proposition A.2 (Bubeck [2015]). Let f be an L-smooth function on Rn. For any x, y ∈ Rn it
holds:

|f(y)− f(x)− ⟨∇xf(x), y − x⟩| ≤ L

2
∥y − x∥22 .

Proof. From the fundamental theorem of calculus we know that for a differentiable function f it
holds that f(y)− f(x) =

∫ y

x
∇tf(t)dt. By substituting xt = x+ t(y − x) we see that x0 = x and
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x1 = y and thus we can write f(y)− f(x) =
∫ 1

0
∇f(x+ t(y − x))T · (y − x)dt. This allows the

following approximations

|f(y)− f(x)− ⟨∇xf(x), y − x⟩|

=|
∫ 1

0

∇f(x+ t(y − x))T · (y − x)dt− (∇xf(x))
T (y − x)|

≤
∫ 1

0

|(∇f(x+ t(y − x))−∇xf(x))
T ) · (y − x)|dt

Cauchy-Schwarz
≤

∫ 1

0

∥∇f(x+ t(y − x))−∇xf(x)∥2 · ∥y − x∥2dt

L-smoothness
≤ L · ∥y − x∥22 ·

∫ 1

0

tdt

=
L

2
· ∥y − x∥22 .

Theorem A.3 (Sufficient condition for the robustness of an L-smooth stochastic classifier). Let
f : Rd × Ωh → Rk be a stochastic classifier with L-smooth discriminant functions and fA and
fI be two MC estimates of the prediction. Let x ∈ Rd be a data point with label y ∈ {1, . . . , k}
and argmaxc f

A
c (x) = argmaxc f

I
c (x) = y, and let xadv = x + δA be an adversarial example

computed for solving the minimization problem (1) for fA. It holds that argmaxc f
I
c (x+ δA) = y if

min
c̸=y

rIc > ∥δA∥2 ,

with

rIc =

 ∞ , if ∥∇x(f
I
y (x)− fI

c (x))∥2 · cos(αI,A
c ) + L

2 · ∥δA∥2 ≤ 0,
fI
y (x)−fI

c (x)

∥∇x(fI
y (x)−fI

c (x))∥2·cos(αI,A
c )+L

2 ·∥δA∥2
, else

and

cos(αI,A
c ) =

⟨−∇x(f
I
y (x)− fI

c (x)), δ
A⟩

∥∇x(fI
y (x)− fI

c (x))∥2 · ∥δA∥2
.

Proof. For better readability we write fI
y−c(x) := fI

y (x) − fI
c (x). Using the result from proposi-

tion A.2 and reordering the terms, we get the following lower bound:

fI
y−c(x+ δA)

≥ fI
y−c(x) + ⟨∇x(f

I
y−c(x)), δ

A⟩ − L

2
· ∥δA∥22

= fI
y−c(x)− ⟨−∇x(f

I
y−c(x)), δ

A⟩ − L

2
· ∥δA∥22

= fI
y−c(x)− ∥ −∇xf

I
y−c(x)∥2 · ∥δA∥2 · cos(αI,A

c )− L

2
· ∥δA∥22

= fI
y−c(x)−

(
∥∇xf

I
y−c(x)∥2 · cos(αI,A

c ) +
L

2
· ∥δA∥2

)
· ∥δA∥2 . (5)

If eq. (5) is bigger than zero, the attack cannot be successful. Hence,

fI
y−c(x)−

(
∥∇xf

I
y−c(x)∥2 · cos(αI,A

c ) +
L

2
· ∥δA∥2

)
· ∥δA∥2

!
> 0 (6)

fI
y−c(x) >

(
∥∇xf

I
y−c(x)∥2 · cos(αI,A

c ) +
L

2
· ∥δA∥2

)
· ∥δA∥2 . (7)

Case 1: ∥∇xf
I
y−c(x)∥2 · cos(αI,A

c ) + L
2 · ∥δA∥2 > 0. Transforming eq. (7) leads to

fI
y−c(x)

∥∇xfI
y−c(x)∥2 · cos(α

I,A
c ) + L

2 · ∥δA∥2
>∥δA∥2 .
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Case 2 : ∥∇xf
I
y−c(x)∥2 · cos(αI,A

c ) + L
2 · ∥δA∥2 = 0. In this case eq. (6) is trivially fulfilled

because fI
y−c(x) > 0 per definition.

Case 3: ∥∇xf
I
y−c(x)∥2 · cos(αI,A

c ) + L
2 · ∥δA∥2 < 0. For this case we get, that

−
fI
y−c(x)

|∥∇xfI
y−c(x)∥2 · cos(α

I,A
c ) + L

2 · ∥δA∥2|
<∥δA∥2 ,

which is always guaranteed based on the initial assumption that the benign input was classified
correctly, which concludes the proof.

The following proposition relates to footnote 5 from the main paper. We show, that the interval, in
which the expectation of the gradient norm lies, decreases to the true length of µ with reducing the
covariance.
Proposition A.4. Let X be an n-dimensional random vector following a multivariate normal distri-
bution with mean vector µ and diagonal covariance matrix Σ. Then the expectation of ∥X∥2 can be
upper and lower bounded by

∥µ∥2 ≤ E[∥X∥2] ≤
√
∥µ∥22 + tr (Σ) .

Proof. We first look at the lower bound which by convexity of the norm and Jensen inequality can be
derived via

E[∥X∥2] ≤ ∥E[X]∥2 = ∥µ∥2 .

Let X ′ ∼ N (0, 1n), with 1n an n×n-dimensional unit matrix. With Jensen inequality and concavity
of the square-root function we derive the upper bound

E[∥X∥2] = E
[
∥µ+X ′ · Σ1/2∥2

]
≤

(
E
[∥∥∥µ+X ′ · Σ1/2

∥∥∥2
2

])1/2

=

(
∥µ∥22 + 2µTΣ1/2E[X ′] + E

[
X ′TΣ1/2TΣ1/2X ′

])1/2

=
√
∥µ∥22 + tr (Σ) .

B Additional information on datasets, models and training

In the following we describe additional details on the datasets, models and training procedures which
were not stated in the main paper due to space restrictions. Additionally, please find the code for the
results in the main paper attached in the supplementary material.

B.1 Datasets

We used three well know datasets: FashionMNIST [Xiao et al., 2017], CIFAR10 and CI-
FAR100 [Krizhevsky et al.], which consist out of 60,000 training and 10,000 test images of dimension
28× 28 or 32× 32× 3 in case of CIFAR where each image is uniquely associated to one out of 10
or 100 possible labels. We took all datasets from the torchvision package with the predefined training
and test split.

B.2 Models trained on FashionMNIST

For training the BNN and IM we used the exact same hyperparameters. First, we assumed a standard
normal prior decomposed as matrix variate normal distributions for the BNN and approximated
the posterior distribution via maximizing the evidence lower bound (ELBO). For the IM we added
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a Kullback-Leibler distance from the trained parameter distribution to a standard matrix variate
normal distribution as a regularization term. For both models we used a batch size of 100 and
trained for 50 epochs with Adam [Kingma and Ba, 2015] and an initial learning rate of 0.001. To
leverage the difference between IM and BNN we used 5 samples to approximate the expectation in
the ELBO/IM-objective. We used the same learning rate, batch size, optimizer and amount of epochs
for training the stochastic input networks. During a forward pass in training we created and used five
noisy versions of each input, where the noise was drawn from a centered Gaussian distribution with
variance 0.05 or 0.1 and the average prediction was fed into the cross-entropy loss.

B.3 Models trained on CIFAR10

As stated in the main part, we used the wide ResNet [Zagoruyko and Komodakis, 2017] of depth 28
and widening factor 10 provided by https://github.com/meliketoy/wide-resnet.pytorch
with dropout probabilities 0.3 and 0.6 and also used the learning hyperparameters provided with the
code which are: training for 200 epochs with batch size 100, stochastic gradient descent as optimizer
with momentum 0.9, weight decay 5e-4 and a scheduled learning rate decreasing from an initial 0.1
for epoch 0-60 to 0.02 for 60-120 and lastly 0.004 for epochs 120-200.

C Additional experimental results

In this section we present the results which were not shown in the main part due to space restrictions.

(a) IM (b) dr 0.3 (c) dr 0.6

Figure 1: Adversarial accuracy of the a) smoothed IM on FashionMNIST and b),c) smoothed
ResNet with dropout probability 0.3 and 0.6 on CIFAR10 vs percentage of images for which
minc r

I
c > ∥δA∥2 (smooth) and minc r̃

I
c > ∥δA∥2 (linear) for 100 images from the respective test

sets. Attacks were conducted on the smoothed classifier with using 10 attack samples.

C.1 Complementary experiments on accuracy of robustness conditions

For completeness we attached the results on the transferability of our derived sufficient conditions to:
the IM on FashionMNIST and the two ResNet with dropout probability 0.3 and 0.6 on CIFAR10.
For the BNN we used the same setting as described in the main paper and derive similar results (c.f.
figure 1): while the percentage of samples fulfilling the condition minc r

I
c > ∥δA∥2 approaches zero

with growing perturbation strength the percentage of samples fulfilling the condition from theorem 1
in the main paper closely matches the real adversarial accuracy in a narrow environment. For models
on CIFAR10 we had to adapt the noise added for the smooth classifier to 0.01 and reduce the amount
of samples during inference to 50 such that it fits on one GPU.

C.2 Complementary experiments on stronger attacks

We first present the results not shown in the main paper. That is, we investigate the accuracy under
FGM attack with an increasing amount of samples used during the attack (c.f. figure 2). Similar to
the observations in the main paper, the accuracy under attack is reduced by an increased amount of
samples. However, we observe only a very small decrease in accuracy when increasing the amount of
samples from 100 and 1,000 for the BNN, from 1 to 5 or above for the SIN 0.05 and when using 5
instead of 10 or 100 samples for the attack on the ResNet trained with dropout probability 0.3. This
observation is mirrored by the reduction of cos(αI,A

c ) displayed in figure 3 where we observe an
increase of the cosine boxplots which matches the decrease of the adversarial accuracy when taking
more samples during the attack.
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(a) BNN (b) SIN 0.05 (c) dr 0.3

Figure 2: Accuracy under FGM attack for a) the BNN and b) the SIN 0.05 on FashionMNIST and c)
ResNet with dropout probability 0.3 on CIFAR10 for different perturbation strengths and amount of
samples used for calculating the attack. During inference we used 100 samples.

(a) BNN (b) SIN 0.05 (c) dr 0.3

Figure 3: Cosine of the angle for the first 1,000 test set images from the FashionMNIST and CIFAR10
test set for an a) BNN, b) SIN 0.05 and c) ResNet trained with dropout probability 0.3 when attacked
with different amounts of samples and attack strength 1.5 and 0.3 with FGM respectively. White
crosses indicate the mean value.

C.2.1 Attacks with FGSM (ℓ∞- norm)

All adversarial examples in the main part of the paper were based on an ℓ2-norm constraint, which we
chose for the nice geometric distance interpretation. However, the first proposed attack scheme [Good-
fellow et al., 2015] was based on ℓ∞-norm, which we test in the following. In figure 4 and 5 we
see the respective results on the different data sets. For all models the robustness is decreased with
multiple samples and models with higher prediction variance also have a higher accuracy under this
attack. Note, that the values of the perturbation strength are not comparable to the values under ℓ2-
norm constraint, since ∥x∥∞ ≤ ∥x∥2.
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(a) BNN (b) IM

(c) SIN 0.05 (d) SIN 0.1

Figure 4: Accuracy under FGSM attack under ℓ∞-norm constraint for a) the BNN, b) the IM, c) SIN
0.05 and d) SIN 0.1 on the first 1,000 test set images from FashionMNIST for different perturbation
strengths and amount of samples used for calculating the attack. Predictions during inference are
based on 100 samples.

(a) droprate 0.3 (b) droprate 0.6

Figure 5: Accuracy under FGSM attack under ℓ∞-norm constraint for the ResNet model with a
dropout probability a) of 0.3 and b) of 0.6 on the first 1,000 test set images from CIFAR10 for
different perturbation strengths and amount of samples used for calculating the attack. Predictions
during inference are based on 100 samples.

C.2.2 Attacks with PGD

Projected gradient descent [Madry et al., 2018] is a strong iterative attack, where multiple small
steps of size ν of fast gradient method are applied. Specifically, we used the same ℓ2-norm length
constraint on η as in the experiments of the main part of the paper but chose step size ν = η/50 and
100 iterations. Note that at each iteration a new network is sampled such that for an attack based on
1 samples, 100 different attack networks were seen, for an attack based on 5 samples 500 different
networks and so on. In figure 6 and 7 we see that the overall accuracy is decreased compared to
the results for FGM, but still, IM has a higher accuracy under attack than the BNN and so does the
ResNet with a higher dropout probability. Further, the attacks get stronger with taking more samples,
so the general observations made in the main paper also hold for strong attacks and are not due to a
sub-optimal attack.
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(a) BNN (b) IM

Figure 6: Accuracy under PGD attack with 100 iterations for a) the BNN and b) the IM on the first
1,000 test set images from FashionMNIST for different perturbation strengths and amount of samples
used for calculating the attack.

(a) droprate 0.3 (b) droprate 0.6

Figure 7: Accuracy under PGD attack with 100 iterations for the ResNet with a dropout probability
of a) 0.3 and b) of 0.6 on CIFAR10 for different perturbation strengths and amount of samples used
for calculating the attack.

C.3 Discussing the impact of extreme prediction values

Attacks based on softmax predictions can be unsuccessful for deterministic and stochastic neural
networks alike when encountering overly confident predictions. That is, predictions where the
softmax output is equal to 1, since these lead to zero gradients. A practical solution to circumvent this
problem is to calculate the gradient based on the logits [Carlini and Wagner, 2017]. This approach is
feasible for classifier whose predictions do not depend on the scaling of the output, that is, outputs
which are equally expressive in both intervals [0, 1] and [−∞,∞]. In Bayesian neural networks,
where fc(x,Θ) is per definition a probability the shortcut over taking the gradient over logits leads to
distorted gradients. For completeness, we nevertheless look at the performance of an attack based
on the logits for the two different models trained on FashionMNIST with softmax outputs: IM and
BNN. We conducted an adversarial FGM attack based on 100 samples, but instead of using the
cross-entropy loss we used the Carlini-Wagner (CW) loss [Carlini and Wagner, 2017] on the averaged
logits, given by:

CW (x,ΘA) = max

(
max
i̸=t

(Z(x,ΘA)i)− Z(x,ΘA)t, 0

)
,

where Z(x,ΘA)t =
1
SA

∑SA

s=1 Z(x, θs)t is an arbitrary averaged logit of an output node for input x.
In figure 8 it is shown, that the attack with the CW loss on the infinite mixture model improves upon
the original attack scheme (FGM), whereas it did not improve the attack’s success for the BNN. We
additionally conducted an attack based on the logit margin loss L(x+ δA, y) = −(minc̸=y fy−c(x))
equivalent to the attack conducted on the SIN, but we found that it performs similar to the CW loss.
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(a) IM (b) BNN

Figure 8: Accuracy under attack for the first 1,000 test set images from FashionMNIST with varying
perturbation strengths and different attack objectives. Each attack was calculated based on 100
samples and ℓ2-constraint for models trained on FashionMNIST.

C.4 Complementary experiments on robustness in dependence of the amount of samples used
during inference

In the main part of the paper we argued why, surprisingly, the amount of samples during inference
does not influence the robustness, even though we see in figure 9 that less sample lead to the smallest
values for cos(αI,A

c ). As stated in the main part, the increased gradient norm when using only few
samples seems to compensate the assumed benefits with regard to the angle for using few samples
(c.f. figure 10). This can also be seen in table 2 and figure 6 from the main paper, where a (negative)
effect on the robustness can only be observed for one inference sample, which also leads to the worst
test set accuracy. The benign prediction margins are also hardly effected by the increased number of
samples during prediction (c.f. figure 11).

(a) IM (b) SIN 0.1 (c) droprate 0.6

(d) BNN (e) SIN 0.05 (f) droprate 0.3

Figure 9: Cosine of the angle for models trained on FashionMNIST ( a), b), d), e) ) and trained on
CIFAR10 ( c) and f) ) for different amounts of samples used during inference. Used attack direction
δ was calculated based on 100 sample of FGM under ℓ2-norm constraint with η = 1.5 and 0.3
respectively.
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(a) IM (b) SIN 0.1 (c) droprate 0.6

(d) BNN (e) SIN 0.05 (f) droprate 0.3

Figure 10: Norm of the gradient for models trained on FashionMNIST ( a), b), d), e) ) and trained on
CIFAR10 ( c) and f) ) for different amounts of samples used during inference.

(a) IM (b) SIN 0.1 (c) droprate 0.6

(d) BNN (e) SIN 0.05 (f) droprate 0.3

Figure 11: Prediction margin for the benign inputs for models trained on FashionMNIST ( a), b), d),
e) ) and trained on CIFAR10 ( c) and f) ) for different amounts of samples used during inference.
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C.5 Experiments for CIFAR100

For the experiments on CIFAR100 we used yet another method to create stochastic neural networks,
namely by applying a Laplace approximation [MacKay, 1992] to an already trained network. This
is archived by adapting a Gaussian distribution over the network’s parameters such that the mean
is given by the maximum a posterior estimate and the covariance are calculated to match the local
loss curvature. Specifically, we used the GitHub library from Daxberger et al. [2021] on top of the
adversarial trained wide ResNet70-16 with clean accuracy 69.15 provided by Gowal et al. [2020].
Because of the high amount of parameters in this network we used a last-layer diagonal Gaussian
approximation for fitting our posterior distribution from which we sample the θi’s for deriving an
approximate expected prediction. As in the previous experiments we observe, that the adversarial
accuracy decreases with more samples during attack, while the angle between the attack and negative
gradient during inference decreases which leads to a cosine increase.

Table 1: Adversarial accuracy decrease and cos(αI,A
c ) increase on CIFAR100 with increased amount

of samples during attack, where the attack was conducted with ℓ∞ norm constraint and perturbation
strength 8/225.

# SAMPLES ADVERSARIAL ACCURACY AVERAGE cos(αI,A
c )± STD

1 48.00 0.2028 ± 0.112
5 45.00 0.2550 ± 0.100

10 43.90 0.2680 ± 0.095
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