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A Broader Impacts

Though machine learning systems have been deployed in many real world domains with great success,
data that is anomalous or structurally different from the training data still sometimes renders these
systems unreliable, harmful, or even dangerous. It is necessary, in order to realize the full potential of
machine learning “in the wild”, to have effective methods for detecting, robustifying against, and
adapting to distribution shift. The potential upsides of developing such methods are clear. Imagine
systems for image classification that fix incorrect or offensive outputs by adapting to each end user,
or self driving cars that can smoothly adapt to driving in a new setting. We believe our work is a
small step toward the goal of adapting in the face of distribution shift.

However, there are also complications and downsides that must be considered. For example, it
is important to understand the failure modes and theoretical limits to handling distribution shift,
otherwise we may place “false confidence” in our deployed systems, which may be catastrophic. Our
work does not address this aspect of the problem, though this is an important direction for future
work. Perhaps more insidiously, this line of research may grant even greater capabilities to parties
that are able to collect larger and larger datasets. Deep learning systems are capable of effectively
learning from ever growing data, and as the training data grows, the system can be trained to better
adapt to a wider range of potential shifts. Thus, it is imperative to continue to push for high quality
open source datasets, so that we may democratize the tools of machine learning.

B More Details on the ARM Methods

Figure 4: During inference for ARM-CML, the context
network produces a vector ck for each input image xk in
the batch, and the average of these vectors is used as the
context c is input to the prediction network. This context
may adapt the model by providing helpful information
about the underlying test distribution, and this adaptation
can aid prediction for difficult or ambiguous examples.
During training, we compute the loss of the post adaptation
predictions and backpropagate to update ✓ and �.

A schematic of the ARM-CML method
is presented in Figure 4. The post adap-
tation model parameters ✓0 are [✓, c].
Since we only ever use the model af-
ter adaptation, both during training and
at test time, we can simply specify
g(x; ✓0) = fpred(x, c; ✓). Though not
strictly necessary, we could define the
behavior of g before adaptation, i.e.,
with unadapted parameters ✓, as using
a running average of the context com-
puted throughout the course of training,
similar to BN. We then also see that h is
a function that takes in (✓,x1, . . . ,xK)

and produces
h
✓, 1

K
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In the streaming setting, we keep track
of the average context over the previous
test points c and we maintain a counter t
of the number of test points seen so far.4
When we observe a new point x, we
increment the counter and update the av-
erage context as t

t+1c+
1

t+1 fcont(x;�),
and then we make a prediction on x us-
ing this updated context. Notice that,
with this procedure, we do not need to store any test points after they are observed, and this procedure
results in an equivalent context to ARM-CML in the batch test setting after observing K data points.

In the streaming setting, ARM-BN is similar to ARM-CML, though slightly more complex due
to the requirement of computing second moments. Denote the context after seeing t test points as
c = [µ,�2], the mean and variance of the BN layer activations on the points so far. Upon seeing a
new test point, let a denote the BN layer activations computed from this new point, with size h. We

4An alternative to maintaining a counter t is to use an exponential moving average, though we do not
experiment with this.
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Again note that we do not store any test points and that we arrive at the same context as the batch test
setting after observing K data points.

Though we did not evaluate ARM-LL in the streaming setting, in principle this method can be
extended to this setting by performing a gradient step with a smaller ↵ after observing each test point.
In an online fashion, similar to Sun et al. [69], we can continually update the model parameters over
the course of testing rather than initializing from the meta-learned parameters for each test point.

C Contrasting with Prior Benchmarks

One aim of this work is to identify problems for which unlabeled adaptation is feasible, helpful, and
potentially crucial, inspired by important real world problem settings such as federated learning.
Thus, the problems we focus on will naturally differ from prior work in domain shift, which have
different implicit and explicit goals when designing and choosing benchmarks. In particular, as
discussed in Section 1, many prior benchmarks assume the existence of a consistent input-output
relationship across domains, for which various methods can be designed to try and better uncover
this relationship. Compared to problems where adaptation is important, we can roughly characterize
these benchmarks as having a conditional distribution p(y|x) that is more stable across domains and
thus does not depend as much on the marginal p(x). As Blanchard et al. [8] note informally, and as
mentioned in Section 3, the less information the marginal provides about the conditional, the less we
expect domain generalization strategies to improve over ERM. Indeed, Gulrajani and Lopez-Paz [23]
provide a comprehensive survey of domain generalization benchmarks and find that, though ERM is
sometimes outperformed by certain methods on certain benchmarks, ERM is competitive with the
state of the art on average across the benchmarks.

Gulrajani and Lopez-Paz [23] also evaluated ARM-CML across the whole suite and found middling
performance across most of the testbeds in the benchmark. This negative result provides further evi-
dence that adaptation may not be well suited to these problems, at least in their standard formulations.
Similarly, adaptation and ARM methods also do not improve performance on some of the WILDS
domain generalization problems [35], potentially due to the marginal p(x) not providing much
information about p(y|x), or other factors such as the lack of training domains or shared structure
between domains. One potentially interesting result that Gulrajani and Lopez-Paz [23] found was
that ARM-CML did outperform ERM and all prior methods on one toy problem: the colored MNIST
benchmark [3]. For a non adaptive model, the goal as originally proposed in Arjovsky et al. [3]
is to disregard color and learn the invariant relationship between digits and labels. Irrespective of
the original motivations, though, an adaptive model is in theory capable of learning a more flexible
classification strategy for this problem, in that it may leverage information about the current domain
in order to produce better predictions. Viewed this way, it becomes clear why ARM-CML can learn a
more performant solution for the colored MNIST problem. This result on a toy problem provides
further motivation for identifying and studying real world problems for which adaptation can be
beneficial, alongside other benchmarks geared toward discovering invariances.

Specifically when viewing learning adaptation as a meta-learning problem, as in this work, we may
pose additional hypotheses about a problem’s desired properties. For example, in meta-learning,
each task is viewed as a “higher level” data point, and this generally motivates constructing many
different tasks so as to prevent the learner from overfitting to the tasks. We extend this intuition
to our work in that our problems have tens to hundreds of domains, whereas the benchmarks in
DomainBed have between 3 to 6 domains. Note that the overall dataset sizes are still comparable, so
previous benchmarks typically also have orders of magnitude more data per domain. Depending on
the scenario, it may be difficult to either collect data from many domains, or conversely it may be
difficult to collect many data points from any single domain. For example, the FEMNIST dataset
naturally contains hundreds of users each contributing at most hundreds of examples, but it would be
difficult to collect orders of magnitude more data from any given user. These practical considerations
should also factor into the choice of algorithm for solving any particular problem.
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Prior testbeds used in group distributionally robust optimization (DRO) typically also contain a small
number of groups [60], and these testbeds also have a couple of other important differences. First,
as discussed in Section 5, group DRO testbeds typically use the same training and test groups and
measure worst case performance, which differs from domain generalization, meta-learning, and most
problems considered in this work, which construct or hold out disjoint sets of domains for testing.
Second, prior group DRO testbeds use label information to construct groups, in that data within
each group will all have the same label. This is not an issue for non adaptive models, however,
classification in this setup becomes much easier for adaptive models and particularly if training
with an ARM method, as the model simply needs to learn to adapt to output a constant label. Thus,
in this work, we identify and set up problems which are distinct from both prior work in domain
generalization and group DRO, in order to properly evaluate ARM and prior methods in settings for
which adaptation is beneficial.

D Additional Experimental Details

Code for Table 1 results will be available from https://github.com/henrikmarklund/arm.

In our experiments, we use several different computing clusters with either NVIDIA Titan X Pascal,
RTX 2080 Ti, or V100 GPUs, and all experiments use 1 GPU. When reporting our results, we run
each method across three seeds and reported the mean and standard error across seeds. Standard
error is calculated as the sample standard deviation divided by

p
3. We checkpoint models after every

epoch of training, and at test time, we evaluate the checkpoint with the best worst case validation
accuracy. Training hyperparameters and details for how we evaluate validation and test accuracy
are provided for each experimental domain below. All hyperparameter settings were selected in
preliminary experiments using validation accuracy only.

We also provide details for how we constructed the splits for each dataset. These splits were designed
without any consideration for the train, validation, and test accuracies of any method. All of these
design choices were made either intuitively – such as maintaining the original data splits for MNIST –
or randomly – such as which users were selected for which splits in FEMNIST – or with a benign
alternate purpose – such as choosing disjoint sets of corruptions with mostly different types.

D.1 Rotated MNIST details

We construct a training set of 32292 data points using 90% of the original training set – separating
out a validation set – by sampling and applying random rotations to each image. The rotations are not
dependent on the image or label, but certain rotations are sampled much less frequently. Rotations of
0 through 20 degrees, inclusive, have 7560 data points each, 30 through 50 degrees have 2160 points
each, 60 through 80 have 648, 90 through 110 have 324 each, and 120 to 130 have 108 points each.

We train all models for 200 epochs with mini batch sizes of 300. We use Adam updates with learning
rate 0.0001. We construct an additional level of mini batching for our method as described in
Section 4, such that the batch dimensions of the data mini batches are 6⇥ 50 rather than just 300, and
each of the inner mini batches contain examples from the same rotation. We refer to the outer batch
dimension as the meta batch size and the inner dimension as the batch size. All methods are still
trained for the same number of epochs and see the same amount of data. DRNN uses an additional
learning rate hyperparameter for their robust loss, which we set to 0.01 across all experiments [60].

We compute validation accuracy every 10 epochs. We estimate validation accuracy on each rotation
by randomly sampling 300 of the held out 6000 original training points and applying the specific
rotation, resampling for each validation evaluation. This is effectively the same procedure as the test
evaluation, which randomly samples 3000 of the 10000 test points and applies a specific rotation.

We retain the original 28 ⇥ 28 ⇥ 1 image dimensionality, and we divide inputs by 256. We use
convolutional neural networks for all methods with varying depths to account for parameter fairness.
For all methods that do not use a context network, the network has four convolution layers with 128
5⇥ 5 filters, followed by 4⇥ 4 average pooling, one fully connected layer of size 200, and a linear
output layer. Rectified linear unit (ReLU) nonlinearities are used throughout, and BN [31] is used for
the convolution layers. The first two convolution layers use padding, and the last two convolution
layers use 2 ⇥ 2 max pooling. For ARM-CML and the context ablation, we remove the first two
convolution layers for the prediction network, but we incorporate a context network. The context
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network uses two convolution layers with 64 filters of size 5⇥ 5, with ReLU nonlinearities, BN, and
padding, followed by a final convolution layer with 12 5⇥ 5 filters with padding.

D.2 FEMNIST details

FEMNIST, and EMNIST in general, is a significantly more challenging dataset compared to MNIST
due to its larger label space (62 compared to 10 classes), label imbalance (almost half of the data
points are digits), and inherent ambiguities (e.g., lowercase versus uppercase “o”) [12]. In processing
the dataset,5 we filter out users with fewer than 100 examples, leaving 262, 50, and 35 unique users
and a total of 62732, 8484, and 8439 data points in the training, validation, and test splits, respectively.
The smallest users contain 104, 119, and 140 data points, respectively. We keep all hyperparameters
the same as for rotated MNIST, except we set the meta batch size for ARM methods to be 2, and we
use stochastic gradient updates with learning rate 0.0001, momentum 0.9, and weight decay 0.0001.
For DANN, we use Adam updates with learning rate 0.0001 as stochastic gradient updates were
unsuccessful for this method.

We compute validation accuracy every epoch by iterating through the data of each validation user
once, and this procedure is the same as test evaluation. Note that all methods will sometimes receive
small batch sizes as each user’s data size may not be a multiple of 50. Though this may affect ARM
methods, we demonstrate in Section 5 that ARM-CML and ARM-BN can adapt using small batch
sizes, such as in the streaming test setting. The network architectures are the same as the architectures
used for rotated MNIST, except that, when applicable, the last layer of the context network has only 1
filter of size 5⇥ 5.

D.3 CIFAR-10-C and Tiny ImageNet-C details

For both CIFAR-10-C and Tiny ImageNet-C, we construct training, validation, and test sets with
56, 17, and 22 domains, respectively. Each domain is based on type and severity of corruption. We
split domains such that corruptions in the training, validation, and test sets are disjoint. Specifically,
the training set consists of Gaussian noise, shot noise, defocus blur, glass blur, zoom blur, snow,
frost, brightness, contrast, and pixelate corruptions of all severity levels. Similarly, the validation
set consists of speckle noise, Gaussian blur, and saturate corruptions, and the test set consists of
impulse noise, motion blur, fog, and elastic transform corruptions of all severity levels. For two
corruptions, spatter and JPEG compression, we include lower severities (1-3) in the training set
and higher severities (4-5) in the validation and test sets. In this way, we are constructing a more
challenging test setting, in which the test domains are not sampled identically as the training domains,
since the corruption types are largely different between the two sets. For the training and validation
sets, each domain consists of 1000 images for CIFAR-10-C and 2000 images for Tiny ImageNet-C,
giving training sets of size 56000 and 112000, respectively. We use the full test set of 10000 images
for each domain, giving a total of 220000 test images for both datasets.

In these experiments, we use a support size of 100 and meta batch size of 3. For CIFAR-10-C, we
use the same convolutional network architecture as for rotated MNIST and FEMNIST, except for the
first layer which needs to be modified to handle RGB images. For Tiny ImageNet-C, we fine tune
ResNet-50 [24] models pretrained on ImageNet. The context ablation and ARM-CML additionally
use small convolutional context networks, and the learned loss ablation and ARM-LL use small fully
connected loss networks. For this domain, we further incorporate BN adaptation into the context
ablation and ARM-CML, as we found this technique to generally be very helpful when dealing with
image corruptions. The images are first normalized by the ImageNet mean and standard deviation.
For CIFAR-10-C, we train models from scratch for 100 epochs, and for Tiny ImageNet-C we fine
tune for 50 epochs. We use stochastic gradient updates with learning rate 0.01, momentum 0.9, and
weight decay 0.0001. We evaluate validation accuracy after every epoch and perform model selection
based on the worst case accuracy over domains. We perform test evaluation by randomly sampling
3000 images from each domain and computing worst case and average accuracy across domains.

5https://github.com/TalwalkarLab/leaf/tree/master/data/femnist.
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Table 3: Comparing to DANN [19] as an unsupervised domain adaptation (UDA) method, in which
the particular test domain is known at training time. Note that this involves retraining models for each
test evaluation, and ARM-CML is still more performant by leveraging meta-training and adaptation.

Rotated MNIST
Method WC Avg
DANN (DG) 79.7± 1.1 95.0± 0.1
DANN (UDA) 82.4± 1.6 94.9± 0.2
ARM-CML 88.2± 0.5 96.5± 0.2

Table 4: Comparing to a modified version of ARM-CML with probabilistic contexts, similar to Ku-
magai and Iwata [37]. The standard formulation of ARM-CML performs better on rotated MNIST
and FEMNIST, possibly due to the objective purely encouraging predictive accuracy.

Rotated MNIST FEMNIST
Method WC Avg WC Avg
ARM-CML 88.2± 0.5 96.5± 0.2 71.3± 1.2 86.4± 0.3
ARM-CML w/ prob. c 82.6± 0.6 93.8± 0.5 65.1± 2.5 84.7± 0.7

E Additional Experiments

E.1 Additional comparisons

In Table 3 and Table 4, we provide additional comparisons to unsupervised domain adaptation (UDA)
methods and zero shot domain adaptation methods, respectively. A number of methods have been
proposed for UDA, and for simplicity, we compare to DANN [19], which we evaluated in Section 5 as
a domain generalization algorithm but was originally proposed for UDA. When faced with multiple
test shifts, UDA methods run training separately for each shift, as they assume access to unlabeled
samples from the test distribution at training time. For rotated MNIST, where there are 14 test groups,
evaluating DANN as a UDA method involved 42 separate training runs, as we still used 3 training
seeds per test evaluation. We see Table 3 that DANN in this setting seems to perform better in terms
of worst case accuracy, though the error margins are overlapping, which is not surprising given each
model’s ability to specialize to a particular test domain. However, by leveraging meta-training and
adaptation, ARM-CML still performs the best on this problem.

As noted in Section 2, Kumagai and Iwata [37] propose a method for zero shot domain adaptation that
is quite similar to ARM-CML, with the primary high level difference being that, in their method, the
contexts are treated as probabilistic latent variables. We thus evaluate a variant of ARM-CML in which
we placed a unit Gaussian prior independently on each dimension of the context c and optimized
an evidence lower bound. In Table 4, we see that this variant generally performed worse than the
original formulation of ARM-CML, possibly due to the objective balancing between satisfying a
restrictive prior and optimizing for predictive accuracy.

E.2 Additional results with loosened assumptions

In Figure 5, we include results for the rotated MNIST problem in the test streaming setting. We can
see the same general trend as for Tiny ImageNet-C, where the models trained via ARM methods are
able to adapt successfully, and in this easier domain these models require fewer than 10 test inputs
to reach their performances reported in Table 1, where adaptation is performed with batches of 50
points.

In the case of unknown domains, one option is to use unsupervised learning techniques to
discover domain structure in the training data. To test this option, we focus on rotated
MNIST and ARM-CML, which performs the best on this dataset, and train a variational autoen-
coder (VAE) [34, 58] with discrete latent variables [32, 47] using the training images and labels.

21



Figure 5: On rotated MNIST, ARM methods reach strong performance in the streaming setting after
fewer than 10 data points, again despite meta-training with batch sizes of 50.

Table 5: Using learned domains, ARM-CML outperforms ERM and matches the performance of TTT
on rotated MNIST. This result may be improved by techniques for learning more diverse domains.

Method WC Avg
ERM 74.3± 1.7 93.6± 0.4
TTT 81.1± 0.3 95.4± 0.1
ARM-CML 81.7± 0.3 95.2± 0.3

Figure 6: VAE samples conditioned on different val-
ues of y (x axis) and c (y axis). The VAE learns to use
c to represent rotations.

We define the latent variable, which we de-
note as c to differentiate from the domain z,
to be Categorical with 12 possible discrete
values, which we purposefully choose to be
smaller than the number of rotations. The
VAE is not given any information about the
ground truth z; however, we weakly encode
the notion that c is independent of y by condi-
tioning the decoder on the label. We use the
VAE inference network to assign domains to
the training data, and we run ARM-CML us-
ing these learned domains. In Table 5, we see
that ARM-CML in this setting outperforms
ERM and is competitive with TTT, which as
discussed earlier encodes a strong inductive
bias, via rotation prediction, for solving this
task. Figure 6 visualizes samples from the
VAE for different values of y and c, which shows that the VAE learns to encode rotation information
using c. This result suggests that, when domain information is not provided, a viable approach may
be to learn domains which then enables the use of ARM methods.
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