
Appendix1

The content of appendix is organized as follows:2

• Appendix A provides more details about the generation process of filter bank.3

• Appendix B shows the Pytorch-style code of our proposed ARM.4

• Appendix C conducts evaluations on downstream tasks including object detection and se-5

mantic segmentation. We also include more details about the robustness towards corruptions.6

A Details about the generation process of filter bank7

In this section, we provide more details about how we generate the filter bank. The filter bank8

consists of Gaussian and Difference of Gaussians (DoG) filters. As mentioned, the Gaussian filters9

are designed for its widely-adopted ability in anti-aliasing [1, 2] and image enhancement [3], while10

Difference of Gaussians can boost the power of edge-aware operations [4].11

In generating filters, the weights of each k × k kernel inside the filter bank are defined according to12

the function below:13

k(x− x0; Σ) =
1

2π|Σ| 12
e−

1
2 (x−x0)

TΣ−1(x−x0)
T

(1)

In particular, the weights are generated based on the covariance matrix Σ which can be decomposed14

into the equation:15

Σ = γ2UθΛUθ
T ,

= γ2
[
cos θ − sin θ
sin θ cos θ

] [
σ2
1 0

0 σ2
2

] [
cos θ − sin θ
sin θ cos θ

]T
,

(2)

where the rotation, scaling, and elongation (ellipticalness) parameters are represented by θ,γ, and16

σ1,2, respectively. During each run, we sample these parameters in intervals stochastically. After17

generating the covariance matrix Σ for each Gaussian filters, we also sample groups of i, j to generate18

the weights of DoG filters by subtracting the derived Gaussian kernels i and j.19

During our implementations, we find that the results are robust towards different parameters. One20

major reason is that the filter bank is redundant and contains enough representation power. When21

sampled with different random seeds, the estimator is capable of generating abundant kernels.22

However, we also observe the oscillations of accuracy (about 0.5% Top-1 accuracy variance in 1023

runs) when the small portion of DoG filters are removed. Consequently, we conjecture that these24

edge-preserving DoG kernels also stabilize the optimization process.25

B Pytorch-style Pesudocode of Aliasing Reduction Module26

Algorithm 1 Pytorch-style Pesudocode of ARM for ViT/DeiT
Inside the transformer block:
B: batch size, N: token sizes , C: channel number.
H’ and W’: the original spatial sizes of flattened attention maps.
self.ARM: the proposed Aliasing Reduction Module.
Fold the attention back to spatial
attention = self.attn(self.norm1(x)) # B, N, C
attention = attention.permute(0,2,1).view(B,C,H’,W’) # B, C, H’, W’
Perform anti-aliasing
attention = self.ARM(attention)
x = x + self.drop_path(attention.permute(0,2,3,1).view(B, N, C))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x

27

1

To better illustrate our simple yet effective design, we also pesudocodes in Pytorch-style. We28

provide both examples for two popular vision transformer structures: ViT[5] (DeiT [6]) 1 and Swin29

Transformer [7] 2, in Algorithm 1 and Algorithm 2.30

The proposed ARM is versatile with most vision transformer families, by directly anti-aliasing the31

self-attention representations in the transformer blocks. As discussed in Section 3.2, the ARM32

operator can be chosen flexibly among a traditional low-pass filter, e.g. Gaussian filter, a learnable33

convolutional filter, or a pre-defined filter bank. Any mentioned choice could consistently bring some34

improvements to the switchable baselines.35

Algorithm 2 Pytorch-style Pesudocode of ARM for Swin Transformer
Inside the Swin Transformer Block:
B: batch size, nW: number of windows , C: channel number, H, W: the original size.
window_size, window_reverse: the size of each window, and the function to reverse windows back.
self.ARM: the proposed Aliasing Reduction Module.
Compute window attention and merge the windows#############
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
Perform anti-aliasing
shifted_x = self.ARM(window_reverse(attn_windows, self.window_size, H, W)) # B H W C
Reverse cyclic shift(Omitted in pesudocode)
x = roll(shifted_x)
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x

36 C Downstream Task Evaluations37

To better demonstrate the effectiveness of the proposed method, we further conduct evaluations38

on downstream tasks including object detection and semantic segmentation. We choose a strong39

architecture Swin Transformer [7] as our baseline.40

Object Detection. We perform object detection experiments on COCO 2017 [8] dataset, which41

contains 118K images for training, 5K images for validation, and 20K images for test-dev. We42

consider two widely-adopted object detection frameworks including Mask R-CNN [9] and Cascade43

Mask R-CNN [10] in mmdetection [11]. Following [7], we keep the consistent settings including44

multi-scale training, AdamW optimizer (with an initial learning rate of 0.0001, weight decay of45

0.05, and batch size of 16). We adopt both 1x (12 epochs) and 3x (36 epochs) schedule and similar46

hyperparameter settings from the open-source implementation3.47

Method Backbone Pre-trained LR
Schedule

Box
mAP

Mask
mAP

Mask R-CNN [9]

Swin-T ImageNet-1k 1x 43.7 39.8
Swin-T w ARM ImageNet-1k 1x 44.8 40.5

Swin-T ImageNet-1k 3x 46.0 41.6
Swin-T w ARM ImageNet-1k 3x 46.7 42.1

Cascade Mask R-CNN [10] Swin-T ImageNet-1k 1x 48.1 41.7
Swin-T w ARM ImageNet-1k 1x 48.9 42.3

Table 1: Results on COCO object detection and instance segmentation. The baseline architecture follows
Swin-T. The models integrated with our proposed ARM are shown in bold font.

From Table 1, the proposed ARM enhances both baselines consistently in 1x and 3x schedule without48

bells and whistles. The results verify the effectiveness of ARM on downstream tasks.49

Semantic Segmentation. We also evaluate our method on semantic segmentation, utilizing the50

widely-used ADE20K [12] dataset. ADE20K covers 150 semantic classes, with 20K images for51

training, 2K images for testing, and 3K for testing. Following [7], UperNet [13] structure in52

mmsegmentation [14] is used. For training, the AdamW optimizer with an initial learning rate of53

6 × 10−5 and a weight decay of 0.01 is employed. The models are trained for 160K iterations54

on 8 Tesla V100 GPUs. We also adopt the consistent data augmentations in mmsegmentation55

1https://github.com/facebookresearch/deit
2https://github.com/microsoft/Swin-Transformer
3https://github.com/SwinTransformer/Swin-Transformer-Object-Detection

2

https://github.com/facebookresearch/deit
https://github.com/microsoft/Swin-Transformer
https://github.com/SwinTransformer/Swin-Transformer-Object-Detection

implementation. During inference, a multi-scale testing strategy exploits [0.5, 0.75, 1.0, 1.25, 1.5,56

1.75]× resolutions are exploited. We report mIoU on the validation set in Table 2.57

Method Backbone Crop Size LR Schedule mIoU
UperNet DeiT-S 512 160K 44.0

UperNet Swin-T 512 160K 45.8
Swin-T w ARM 512 160K 46.9

Table 2: Results of semantic segmentation on ADE20K dataset. The models integrated with our proposed ARM
are shown in bold font.

Generalization towards Common Corruptions. We provide detailed error rates towards different58

types of common corruptions on ImageNet-C. As mentioned above, transformers have demonstrated59

dominance against corruptions compared to CNNs. Likes anti-aliasing the CNNs in [1], anti-aliasing60

in vision transformers also upgrades the feature robustness. Moreover, we can find that while Swin-T61

has a overall lower error rate compared to anti-aliased ResNet-50, it acts poorly when dealing with62

certain corruptions such as JPEG-compression and pixelate. When integrated with our aliasing63

reduction module, the model gains a clear boost in robustness, particularly towards those corruptions64

that are not handled well by the original transformer architecture.65

Error Rate towards common corruptions on ImageNet-C
Noise Blur Weather Digital norm

mCEGauss Shot Inpulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel Jpeg
AA R50 63.86 66.07 69.15 58.36 71.70 60.74 61.58 66.78 60.29 54.40 31.48 58.09 55.26 53.89 43.62 73.73
Swin-T 52.46 54.42 54.12 68.31 83.68 65.52 72.85 56.91 52.84 49.02 47.79 45.50 75.96 67.03 64.11 60.7
w ARM 51.17 54.03 53.58 66.25 83.06 65.07 70.44 57.22 57.12 46.79 45.15 44.99 77.12 63.88 61.52 59.8

Table 3: Generalization towards corruptions. The error rates (lower is better) on ImageNet-C. In the first row
we provide ResNet-50 with anti-aliasing in [1]. The next two rows respectively show the Swin-T’s performance,
and the Swin-T with our ARM module.

D License of Dataset66

Datasets. We use four datasets including ImageNet, ImageNet-C, MS COCO, and ADE 20K.67

ImageNet 4: BSD 3-Clause License.68

ImageNet-C 5: Apache-2.0 License69

MS COCO 6: Creative Commons Attribution 4.0 License70

ADE20K 7: Creative Commons BSD-3 License71

References72

[1] Richard Zhang. Making convolutional networks shift-invariant again. In ICML, 2019.73

[2] Samarth Sinha, Animesh Garg, and Hugo Larochelle. Curriculum by smoothing. NeurIPS,74

2020.75

[3] Domen Tabernik, Matej Kristan, and Aleš Leonardis. Spatially-adaptive filter units for deep76

neural networks. In CVPR, 2018.77

[4] Jan Eric Kyprianidis and Jürgen Döllner. Image abstraction by structure adaptive filtering. In78

TPCG, 2008.79

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,80

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,81

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image82

recognition at scale. In ICLR, 2021.83

4https://www.image-net.org/
5https://github.com/hendrycks/robustness
6https://cocodataset.org/
7https://groups.csail.mit.edu/vision/datasets/ADE20K/

3

https://www.image-net.org/
https://github.com/hendrycks/robustness
https://cocodataset.org/
https://groups.csail.mit.edu/vision/datasets/ADE20K/

[6] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and84

Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv85

preprint arXiv:2012.12877, 2020.86

[7] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining87

Guo. Swin transformer: Hierarchical vision transformer using shifted windows. arXiv preprint88

arXiv:2103.14030, 2021.89

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,90

Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV,91

2014.92

[9] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.93

[10] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection.94

In CVPR, 2018.95

[11] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun,96

Wansen Feng, Ziwei Liu, Jiarui Xu, et al. Mmdetection: Open mmlab detection toolbox and97

benchmark. arXiv preprint arXiv:1906.07155, 2019.98

[12] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio99

Torralba. Semantic understanding of scenes through the ade20k dataset. IJCV, 2019.100

[13] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing101

for scene understanding. In ECCV, 2018.102

[14] MMSegmentation Contributors. MMSegmentation: Openmmlab semantic segmentation toolbox103

and benchmark. https://github.com/open-mmlab/mmsegmentation, 2020.104

4

https://github.com/open-mmlab/mmsegmentation

Checklist105

1. For all authors...106

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s107

contributions and scope? [Yes]108

(b) Did you describe the limitations of your work? [Yes]109

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Beyond110

the issue of interpretability in Section ??, another negative societal impact might arise111

if our method is applied to transformer-based image generation, potentially introducing112

more concerns about deepfakes.113

(d) Have you read the ethics review guidelines and ensured that your paper conforms to114

them? [Yes]115

2. If you are including theoretical results...116

(a) Did you state the full set of assumptions of all theoretical results? [N/A]117

(b) Did you include complete proofs of all theoretical results? [N/A]118

3. If you ran experiments...119

(a) Did you include the code, data, and instructions needed to reproduce the main experi-120

mental results (either in the supplemental material or as a URL)? [Yes] See Section ??,121

?? and ??. Additional instructions as well as Pytorch-style pseudo-code are present in122

the Appendix.123

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they124

were chosen)? [Yes]125

(c) Did you report error bars (e.g., with respect to the random seed after running exper-126

iments multiple times)? [No] Most of our experiments are on large-scale datasets127

like ImageNet, which we found are not sensitive towards random seeds. It’s also128

computational infeasible to run multiple times of the large experiments.129

(d) Did you include the total amount of compute and the type of resources used (e.g., type130

of GPUs, internal cluster, or cloud provider)? [Yes] See Section ??131

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...132

(a) If your work uses existing assets, did you cite the creators? [Yes]133

(b) Did you mention the license of the assets? [Yes] See Appendix134

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]135

See Appendix136

(d) Did you discuss whether and how consent was obtained from people whose data you’re137

using/curating? [Yes]138

(e) Did you discuss whether the data you are using/curating contains personally identifiable139

information or offensive content? [N/A]140

5. If you used crowdsourcing or conducted research with human subjects...141

(a) Did you include the full text of instructions given to participants and screenshots, if142

applicable? [N/A]143

(b) Did you describe any potential participant risks, with links to Institutional Review144

Board (IRB) approvals, if applicable? [N/A]145

(c) Did you include the estimated hourly wage paid to participants and the total amount146

spent on participant compensation? [N/A]147

5

	Details about the generation process of filter bank
	Pytorch-style Pesudocode of Aliasing Reduction Module
	Downstream Task Evaluations
	License of Dataset

