
Under review as a conference paper at ICLR 2021

APPENDIX A NOISY SAMPLE VISUALIZATION

In Figure 3, we show example images randomly chosen from the out-of-distribution samples filtered
out by our method. In Figure 4, we show random examples where their pseudo-labels are different
from the original training labels. By visual examination, we observe that our method can remove
OOD samples and correct noisy labels at a high success rate.

Figure 3: Examples of randomly selected out-of-distribution samples filtered out by our method. The original
training labels are shown below the images.

12

Under review as a conference paper at ICLR 2021

Figure 4: Examples of randomly selected samples with noisy labels corrected by our method. The original
training labels are shown in red and corrected pseudo-labels are shown in green.

13

Under review as a conference paper at ICLR 2021

APPENDIX B PSEUDO-CODE OF MOPRO

Algorithm 1 summarizes the proposed method.

Algorithm 1: MoPro’s main algorithm.

1 Input: number of classes K, temperature ⌧ , threshold T , momentum m, encoder network f(·),
projection network g(·), classifier h(·), momentum encoder g0(f 0

(·)).
2 for {(xi, yi)}bi=1 in loader do // load a minibatch of noisy training data
3 for i 2 {1, ..., b} do

4 x̃i = weak aug(xi) // weak augmentation
5 x̃0

i = strong aug(xi) // strong augmentation
6 vi = f(x̃i) // representation
7 zi = g(vi) // normalized low-dimensional embedding
8 zi = g0(f 0

(x̃0
i)) // momentum embedding

9 pi = h(vi) // class prediction

10 si = {ski }Kk=1, s
k
i =

exp(zi·ck/⌧)PK
k=1 exp(zi·ck/⌧)

// prototypical score

// noise correction
11 qi = (pi + si)/2 // soft pseudo-label

12 if maxk qki > T then

13 ŷi = argmaxk q
k
i

14 else if qyi
i > 1/K then

15 ŷi = yi
16 else

17 ŷi = OOD

18 end

// calculate losses

19 Li
ins = � log

exp(zi·z0
i/⌧)PR

r=0 exp(zi·z0
r/⌧)

// instance contrastive loss

20 if ŷi is not OOD then

21 Li
pro = � log

exp(zi·cŷi
/⌧)

PK
k=1 exp(zi·ck/⌧)

// prototypical contrastive loss

22 Li
ce = � log(pŷi

i) // cross entropy loss
23 else

24 Li
pro = Li

ce = 0

25 end

// update momentum prototypes
26 cŷi Normalize(mcŷi + (1�m)zi)
27 end

28 L =
Pb

i=1(Li
ce + Li

pro + Li
ins) // total loss

29 update networks f, g, h to minimize L.
30 end

APPENDIX C TRANSFER LEARNING IMPLEMENTATION DETAILS

For low-shot image classification on Places and VOC, we follow the procedure in Li et al. (2020b)
and train linear SVMs on the global average pooling features of ResNet-50. We preprocess all
images by resizing to 256 pixels along the shorter side and taking a 224 ⇥ 224 center crop. The
SVMs are implemented in the LIBLINEAR (Fan et al., 2008) package.

For low-resource finetuning on ImageNet, we adopt different finetuning strategy for different ver-
sions of WebVision pretrained models. For WebVision V0.5 and V1.0, since they contain the same
1000 classes as ImageNet, we finetune the entire model including the classification layer. We train
with SGD, using a batch size of 256, a momentum of 0.9, a weight decay of 0, and a learning rate of
0.005. We train for 40 epochs, and drop the learning rate by 0.2 at 15 and 30 epochs. For WebVision
2.0, since it contains 5000 classes, we randomly initialize a new classification layer with 1000 output

14

Under review as a conference paper at ICLR 2021

dimension, and finetune the model end-to-end. We train for 50 epochs, using a learning rate of 0.01,
which is dropped by 0.1 at 20 and 40 epochs.

For object detection and instance segmentation on COCO, we adopt the same setup in MoCo (He
et al., 2019), using Detectron2 (Girshick et al., 2018) codebase. The image scale is in [640, 800]
pixels during training and is 800 at inference. We fine-tune all layers end-to-end. We finetune on the
train2017 set (⇠118k images) and evaluate on val2017.

APPENDIX D STANDARD DEVIATION FOR LOW-SHOT CLASSIFICATION

Table 7 reports the standard deviation for the low-shot image classification experiment in Section 5.1.

Method Pretrain dataset VOC07 Places205

k=1 k=2 k=4 k=8 k=1 k=2 k=4 k=8

CE (Sup.) ImageNet 54.3±4.8 67.8±4.4 73.9±0.9 79.6±0.8 14.9±1.3 21.0±0.3 26.9±0.6 32.1±0.4
MoPro WebVision-V1.0 59.5±5.2 71.3±2.2 76.5±1.1 81.4±0.6 16.9±1.3 23.2±0.3 29.2±0.6 34.5±0.3
MoPro WebVision-V2.0 64.8±6.7 74.8±2.6 79.9±1.4 83.9±1.0 22.2±1.3 29.2±0.5 35.6±0.7 40.9±0.3

Table 7: Low-shot image classification experiments. Mean and standard deviation are calculated across 5 runs.

15

	Introduction
	Related work
	Webly-supervised representation learning
	Learning with label noise
	Self-supervised representation learning

	Method
	Representation Learning Framework
	Contrastive Loss
	Noise Correction
	Momentum Prototypes

	Experiments
	Dataset for upstream training
	Implementation details
	Upstream task performance

	Transfer learning
	Low-shot image classification on fixed representation
	Low-resource transfer with finetuning
	Object detection and instance segmentation
	Robustness

	Ablation Study
	Conclusion
	Noisy sample visualization
	Pseudo-code of MoPro
	Transfer learning implementation details
	Standard deviation for low-shot classification

