
Published as a conference paper at ICLR 2025

DATAENVGYM: DATA GENERATION AGENTS IN
TEACHER ENVIRONMENTS WITH STUDENT FEEDBACK

Zaid Khan Elias Stengel-Eskin Jaemin Cho Mohit Bansal
UNC Chapel Hill
{zaidkhan, esteng, jmincho, mbansal}@cs.unc.edu

ABSTRACT

The process of creating training data to teach models is currently driven by humans,
who manually analyze model weaknesses and plan how to create data that improves
a student model. Recent approaches using large language models (LLMs) as
annotators reduce human annotation effort, but still require humans to interpret
feedback from evaluations and control the LLM to produce data the student needs.
Automating this labor-intensive process by creating autonomous data generation
agents – or teachers – is desirable, but requires environments that can simulate
the feedback-driven, iterative, closed loop of data creation. To enable rapid and
scalable testing for such agents and their modules, we introduce DATAENVGYM, a
testbed of teacher environments for data generation agents. DATAENVGYM frames
data generation as a sequential decision-making task, involving an agent consisting
of a data generation policy (which generates a plan for creating training data) and a
data generation engine (which transforms the plan into data), inside an environment
that provides feedback from a student. The agent’s end goal is to improve student
model performance. Students are iteratively trained and evaluated on generated
data, with their feedback (in the form of errors or weak skills) being reported to the
agent after each iteration. As a general-purpose testbed, DATAENVGYM includes
multiple instantiations of teacher environments across three levels of structure in
the state representation and action space, with varying levels of scaffolding support.
More structured environments are based on automatically-inferred skills and offer
a higher degree of interpretability and control over the curriculum. We support
developing and testing data generation agents in four diverse tasks covering text,
images, and actions (mathematics, programming, visual question answering, and
tool-use) and test multiple student and teacher models. We find that example agents
in our teaching environments can iteratively improve students across diverse tasks
and settings. Moreover, we show that environments can teach different skill levels
and can be used to test variants of key modules, pointing to directions of future
work in improving data generation agents, engines, and feedback mechanisms.
Project page: https://DataEnvGym.github.io.

1 INTRODUCTION

Improving an already-trained model by creating additional training data that is targeted towards
current model weaknesses is an important and frequent task for researchers and engineers. For
example, past work in instruction tuning and alignment has found that models can be improved
with additional task-specific training examples (Touvron et al., 2023; Ding et al., 2023; Zhou et al.,
2024; Chia et al., 2024; Wang et al., 2023b; Shimabucoro et al., 2024). However, the current
model improvement process is largely driven by humans, who try to identify the weaknesses of the
model based on evaluations, use intuition and heuristics to create data to target weaknesses, train an
updated model on the data, and revise the data based on how the new model performs (Iyer et al.,
2022; Longpre et al., 2023; Shao et al., 2024). The labor and repetition involved in this process
strongly motivate the creation of data generation agents that can automate the process of creating
synthetic training data to teach student models. However, there are no simulators or environments
to serve as a testbed for the development of such automated teacher agents, or even to evaluate the

1

https://DataEnvGym.github.io


Published as a conference paper at ICLR 2025

Training Data(d) Training

(a) Evaluation

(c) Data Generation Engine

Updated

Student Model 

(b) Data Generation PolicyStudent Model

Performance 

Data Generation PlanDataEnvGym Cycle

Environment Agent

Figure 1: Overview of DATAENVGYM, a novel testbed for data generation agents. The environment
(left) consists of evaluation (a) and training (d) of the student model. The data generation agent
(right) takes a state encoding the current student model’s performance and provides training data
to improve the student model, by first creating a plan through the data generation policy (b), then
executing the plan via the data generation engine (c).

effectiveness of the different components required to automate such an iterative data generation and
model improvement process.

We propose DATAENVGYM, a testbed – or gym – of parameterizable teacher environments for
developing autonomous data generation agents (i.e. teachers), whose goal is to iteratively improve
student models by generating targeted training data conditioned on representations of the student’s
weaknesses (e.g. errors, inferred weak skills). We frame this task as an iterative interaction between
a teacher agent and a student model in which the teacher agent creates training data that improves
the student model. In the same way that game environments can be used to evaluate game-playing
agents in conventional reinforcement learning (RL), DATAENVGYM’s modular environments (cf.
Sec. 2.1) allow us to test data generation agents for a given student model. In these environments,
the data generation agent (teacher), performs multiple rounds of data creation and receives feedback
from the student after each iteration in the form of student performance, which is the teacher’s reward
signal. We provide modules for data generation, training, and evaluation, with final performance
being measured by the improvement to the student model. An overview of the DATAENVGYM can
be seen in Fig. 1. First, the environment provides the agent with a state st, containing information
about the errors of current student model mt (cf. Fig. 1(a)). Then, the agent’s data generation policy
π predicts actions that constitute a plan for generating training data (cf. Fig. 1(b)): pt ∼ π(pt|st).
Next, the agent’s data generation engine executes the plan to create training data dt (cf. Fig. 1(c)).
The created datapoints are then used to train an updated student model (cf. Fig. 1(d)): mt+1 =
Train(mt, dt). The updated student model is re-evaluated to produce the next iteration’s state st+1

and provide feedback to the agent (in the form of student performance). DATAENVGYM is designed
in a generalizable way to support data creation for diverse agents across multiple tasks, covering
multimodal (visual question answering) and text-only (mathematics and programming) tasks.

DATAENVGYM’s modular design enables many possible instantiations of data generation environ-
ments. We provide three implementations of DATAENVGYM environments along with the agent
modules required for each. These differ in the state representations and action spaces they provide
to the agents, and they range from open-ended (generating data directly from per-example model
predictions) to more structured (generating data based on a skill-based hierarchical representation
of intermediate model progress). First, in the OPEN-ENDED environment (cf. Fig. 2(a)), the state
representation is an unstructured list of the student model’s errors. The action space in this envi-
ronment is also unstructured (i.e. open-ended), with an action consisting of generating a particular
set of datapoints; i.e., the agent infers directly from the errors what type of data would help the
model and then directly generates that data. This contrasts with human developers, who typically
use a more skill-directed approach, breaking performance down into skill-specific metrics to decide
where to add data. Skill-based development has three distinct advantages: it provides the agent with
structured ways of controlling the data generation process, it makes the process more interpretable by
organizing data generation around easy-to-grasp skills, and it enables human-model interoperability
and curriculum control, where a human or a model can specify skills for the model to improve on.

2



Published as a conference paper at ICLR 2025

Based on these advantages, we argue that skill-structured agents may be preferable or necessary in
some cases. Therefore, DATAENVGYM also supports skill-based teaching and learning. Specifically,
DATAENVGYM includes the SKILL-LIST environment (cf. Fig. 2(b)), in which a skill discovery
module first automatically infers human-interpretable skills from the training data using a large
language model (LLM). This produces a more structured state representation (i.e., a report of skill-
specific performance), and makes the agent’s task more interpretable, as it has explicit feedback on
which skills the student model is struggling. Like the OPEN-ENDED environment, the SKILL-LIST
environment asks agents to directly generate data. While the SKILL-LIST environment provides more
structure and interpretability to the agent than the OPEN-ENDED environment by adding skills to the
state representation, both have granular action spaces with a high degree of freedom. Thus, while the
SKILL-LIST input space is more structured and interpretable, its output space is not. To give the agent
a more structured output, we also include an environment in which the action space is structured
into fixed, coarser-grained actions. To this end, in the SKILL-TREE environment (cf. Fig. 2(c)),
we abstract skills into a tree-based representation called a skill forest. Here, skills are organized
hierarchically into skill trees, with parent skills as root nodes and subskills as child nodes (see Fig. 3
for an example). This hierarchical framing allows new, more granular subskills to be discovered and
simplifies the agent’s task into a binary choice between two actions: the explore action, which
grows a skill tree by adding new subskills, and the exploit action, which rebalances the skill tree
to allocate more data to existing subskills. This split is designed to help the agent prioritize important
skills (by generating more data for skills that have helped improve performance in the past) while also
balancing competing pressures for breadth and depth in the skill hierarchy (by adding new subskills
and broadening the skill tree). Our DATAENVGYM testbed not only provides default implementations
for all these environments and components, but also makes it easy to test alternate implementations;
for example, an improved skill discovery implementation or an alternate data structure can easily be
plugged in and tested based on downstream student performance. A summary of the input and action
spaces for these environments is shown in Fig. 3.

We benchmark several baseline agents as examples (data generation policies combined with data gen-
eration engines) in DATAENVGYM’s teaching environments, across different domains (mathematics,
programming, visual question answering) and on different student and teacher models. Generally, we
find that the example agents we provide already improve student performance when models are trained
in DATAENVGYM’s teaching environments; after training, students see a consistent improvement
when compared to their starting point (i.e., before training in the environment). Across environments,
students improve by an average of 4.43% (absolute accuracy) on GQA, 4.82% on MATH, 1.80%
on LiveCodeBench, 15.17% on NaturalBench, and 20.81% on MnMs. Moreover, we find that our
example agents can make use of student feedback to help iteratively improve the student: we compare
baseline agent policies that make use of student feedback states (“With State” policies) to ones that
do not (“No State” policies), finding that conditioning on the feedback state is key to successful
data generation, with “With State” policies outperforming “No State” by 3.5% in OPEN-ENDED,
2.05% in SKILL-LIST, and 1.08% in SKILL-TREE. We also show that some environments make
improving students more challenging for teachers, based on how flexible versus how controllable
(and interpretable) the curriculum needs to be. Moreover, we show that environments can teach
different skills (based on skill frequency and question difficulty) and can be used to test variants of
key modules, e.g., the skill discovery module. Lastly, we provide qualitative examples of student
model predictions before and after our training. Overall, DATAENVGYM is a general-purpose testbed
for developing and evaluating data generation agents, engines, and feedback mechanisms, laying the
foundation for future improvements to these key elements of automated model improvement.

2 DATAENVGYM ENVIRONMENTS AND AGENTS

We provide three categories of (environment, agent) pairs in DATAENVGYM with multiple levels of
structure given to data generation agent, corresponding to different levels of interpretability. Agents
are composed of two modules: the data generation policy π (which creates a data generation
plan pt ∼ π(pt|st)) and the data generation engine Engine (which executes the plan to produce
training data dt = Engine(pt); cf. Sec. 2.2.2), Both the policy and plan can change depending on
the environment the agent is in, as the environment provides the agent with affordances that define the
agent’s action space. The environments encapsulate several modules, including a student model mt,
a trainer (which trains student model given the generated training data, mt+1 = Train(mt, dt))

3



Published as a conference paper at ICLR 2025

Data Generation Policy 

(a) Open-ended Environment (b) Skill-List Environment (c) Skill-Tree Environment

State
Student Performance

(List of errors)

Data Generation Engine

Next State

Data Generation Plan

Train Student Model

Evaluate Student Model

Action

More Training Data

Student Performance
(List of errors)

Student Performance
(Skill-speci�c errors)

Skill List+
Student Performance
(Skill-speci�c errors)

Skill Tree+

Student Performance
(Skill-speci�c errors)

Skill List+
Student Performance
(Skill-speci�c errors)

Skill Tree+

Environment

Agent Skill Organization
(Explore vs. Exploit)

Updated Student Model

Skill Discoveryonly 

Every 

Skill Discoveryonly 

Figure 2: Illustration of the three example instances of DATAENVGYM environments described
in Sec. 2. In the (a) OPEN-ENDED environment, the state is represented as a list of per-example
accuracies, and the data generation policy directly creates a data generation plan from them. In the (b)
SKILL-LIST environment, the state is represented as a categorized list of skills and per-skill student
model performance; its data generation plan allows the policy to prioritize weak skills. In the (c)
SKILL-TREE environment, the state is represented as a forest of skill trees containing skill-subskill
relational information, and its data generation policy chooses between two actions for each skill:
explore (grow skill tree) and exploit (rebalance skill tree).

and an evaluator (which evaluates the updated student model and outputs its performance, st+1 =
Eval(mt+1); cf. Sec. 2.1.1):

As summarized in Table 1, some environments have additional modules for generating skill-specific
training examples via automatic skill discovery (Sec. 2.1.2) and organization (Sec. 2.1.3). Skill-
based structures give agents three distinct advantages: first, they provide the agent with affordances
to control how targeted or diverse the data it generates is (i.e. knobs that adjust to what degree the
data addresses a single skill vs. broadly improves a variety of skills). Secondly, when the skills
are interpretable to people, skill-based agents provide human-model interoperability and human-in-
the-loop control, where humans can influence the data generation process (e.g. by specifying skills
to improve) or can in fact step in for the agent (and vice versa) whenever needed. Finally, having
skill-based improvements allows for interpretable agent behavior; a user can observe for which skills
data is being generated and where training is most effective. We provide all of these components for
three different tasks: mathematics, visual question answering (VQA), and programming.

(1) OPEN-ENDED Environment. The OPEN-ENDED environment, shown in Fig. 2(a), provides the
simplest state structure to the data generation agent, and is the least constrained of the environments.
State representation: The state is represented as a list of evaluated predictions from the student. The
agent must infer from this list what kind of data would best help the student, mapping directly from
errors in the list to desired future datapoints. Action space: The action space that the OPEN-ENDED
environment affords directly specifies the datapoints to generate, i.e. the agent is expected to directly
generate specs for every datapoint, without any auxiliary actions to structure the generation process.

(2) SKILL-LIST Environment. The SKILL-LIST environment (shown in Fig. 2(b)) requires the
teacher, i.e. the data generation agent, to teach a specific set of skills. State representation: The
SKILL-LIST environment induces skills needed for the task on the training data (see Sec. 2.1.2) and
reports student performance on each of these skills. The input to the agent policy is a list of evaluated
predictions partitioned by skills. This informs the agent about what mistakes are being made on
questions requiring the skill. Action space: The action space is shared with OPEN-ENDED.

(3) SKILL-TREE Environment. The SKILL-TREE environment, shown in Fig. 2(c), disentangles
data generation from data control, adding structure to the action space s.t. its policy no longer

4



Published as a conference paper at ICLR 2025

Table 1: Summary of baseline environments for DATAENVGYM, with different components that
determine how to generate training examples for each iteration.

Environments Trainer/Evaluator Skill Discovery Skill Organization
(Sec. 2.1.1) (Sec. 2.1.2) (Sec. 2.1.3)

OPEN-ENDED ✓ - -
SKILL-LIST ✓ ✓ -
SKILL-TREE ✓ ✓ ✓

directly generates data specifications but simply dictates how much data is to be generated and for
which subskills. This constrains the action space and provides the agent with additional scaffolding.
State representation: The surface form of the state representation is shared with the SKILL-LIST
environment. However, the SKILL-TREE environment also maintains an underlying skill forest
composed of skill trees, where each tree is a hierarchical representation of a skill and its subskills (see
Sec. 2.1.3 for details, see Fig. 3 for an example). Thus, while the input is similar (skill names and
the student’s performance on each skill) the actual skills differ from those give in the SKILL-LIST
environment, which does not have any hierarchy. Action space: The SKILL-TREE environment
affords the agent a more structured action space. At each iteration, rather than directly generating data,
the agent chooses, for each skill (and its corresponding skill tree) to either exploit the existing
skill set by rebalancing the skill tree for an existing skill, i.e., re-allocating the data budget to its
subskills, or to explore, which grows the skill tree by creating new subskills. The action is applied
to the skill tree and produces a new skill tree that has either had new subskills added or had the
amount of data allocated to each subskill changed. The data generation engine then consumes each
skill tree and produces the planned amount of training data for each subskill within each skill tree.

Below, we describe the constituent modules (Sec. 2.1) and the data generation agent (Sec. 2.2) that
are instantiated in DATAENVGYM.

2.1 ENVIRONMENT MODULES

2.1.1 TRAINER AND EVALUATOR

Given training data dt from the data generation engine, the trainer performs a training run (i.e., a
certain number of training steps on the dataset) updating the student model: mt+1 = Train(mt, dt).
Then, the evaluator tests the student model and outputs its performance: st+1 = Eval(mt+1). See
Appendix C.1 for implementation details.

2.1.2 SKILL DISCOVERY

SKILL-LIST and SKILL-TREE environments have a skill discovery module that takes a set of training
samples dt and returns a set of skills that would be needed to solve these examples; in the beginning
of training t = 0, the environments use the skill discovery module to discover a set of skills over
the validation set. Alternatively, the environments can be parameterized by a set of user-specified
target skills. The skill discovery module will assign a discovered skill label to each evaluated student
prediction in the validation set. The list of skills and evaluated student predictions are consumed
directly by the SKILL-LIST environment. In the SKILL-TREE environment, skills are used as input
by the skill organization module.

Baseline implementation. To discover the skills, our baseline instantiation of the skill discovery
module employs a two-stage approach, following Didolkar et al. (2024). First, we assign a specific
skill to each instance of a task, using a template that asks the LLM to identify the high-level skill
required to solve the question. Second, we aggregate these skills into categories using another
template that asks the LLM to group similar skills.

In the SKILL-TREE environment, we use the same process to propose subskills for existing skills in
a hierarchical fashion. For example, given the skill “Algebra”, subskills might be “Solving Linear
Equations” or “Polynomial Factorization”. Implementationally, we provide the LLM with a skill and
existing subskills for that skill. It is instructed to propose subskills that are unique and belong to the
given skill. We can repeat this process again on top of an existing skill to induce a set of subskills for
each skill, as needed. The LLM prompts are shown in Appendix C.2.

5



Published as a conference paper at ICLR 2025

Skills

Subskills

# Data Allocation
10 10 15

(+15)
10 30

(+20)
0

(-15)
10

(+10)
10

(+10)

Fractions
Linear

Equations

Polynomial

Factorization

Algebra

Fractions
Linear

Equations

Polynomial

Factorization

Algebra

Polynomial

Factorization

Linear

Equations

AlgebraAlgebra

Explore Explore Exploit

Figure 3: Example skill tree updates over time for MATH task’s “Algebra” skill in the SKILL-TREE
environment. Starting from a empty single node, the data generation policy (Sec. 2.2.1) iteratively
chooses actions between explore (grow skill tree) and exploit (rebalance skill tree). Then
the skill organization module (Sec. 2.1.3) accordingly adds/removes subskills and re-allocates the
training data for each subskill.

2.1.3 SKILL ORGANIZATION

To solve complex problems by adaptively growing the set of skills the student can perform, it is
natural to organize skills into some kind of hierarchy. In the SKILL-TREE environment, the skill
organization module takes as inputs a set of skills, and outputs a forest of “skill-trees”, an organized
hierarchical structure that encodes skills and stores their metadata (e.g., how much data is allocated to
each skill). This is the state st in the SKILL-TREE environment. Fig. 3 shows an example skill tree.

Baseline implementation. In the SKILL-TREE environment, the skill forest captures the student’s
proficiency at increasing levels of granularity, with the root of each tree corresponding to a high-
level skill domain and the children corresponding to subskills. Each tree in the forest contains key
information about subskills, including the amount of training data allocated to each subskill (i.e.,
the data allocation) and the student’s performance on the training split for each subskill. Note that
the specific implementation of the skill forest is left to the user; DATAENVGYM provides a default
version of the skill forest, but other implementations can be plugged in.

2.2 DATA GENERATION AGENT MODULES

2.2.1 DATA GENERATION POLICY

The data generation policy π takes as input the student performance state st (list of per-example errors
for OPEN-ENDED environment, skill-specific errors and the skill list for SKILL-LIST environment,
and skill-specific errors and the skill tree for SKILL-TREE environment), and outputs as an action the
data generation plan (the inputs to a data generation engine): pt ∼ π(pt|st). In the OPEN-ENDED
and SKILL-LIST environments, the data generation plans are lists of specifications for training data,
one for each training datum to be produced. The training datum is rendered or formatted into the
appropriate format for instruction finetuning by the data generation engine. In the SKILL-TREE
environment, we shape the action space and provide two discrete actions: explore and exploit; note
that further actions can easily be added. Explore actions grow the skill tree by adding subskills.
Exploit actions change the allocation of data for existing subskills.

Baseline implementation. We drive the policies for the OPEN-ENDED and SKILL-LIST environ-
ments with an LLM by giving the verbalized the state to the LLM and prompting it to produce the
corresponding actions. For the SKILL-TREE environment, we implement a policy that grows the
skill tree to a fixed size and while maintaining a uniform data distribution by sequencing explore and
exploit actions. Details can be found in Appendix C.6.

2.2.2 DATA GENERATION ENGINE

The data generation engine’s role is to generate training examples based on the data generation
plan from the policy: dt = Engine(pt). The training examples will be used to teach the student.
Because each environment affords the agent with a different action space, the data generation engines
corresponding to them also differ. Specifically, for the OPEN-ENDED and SKILL-LIST environments,
the data generation engine receives actions in the form of datapoints to generate (since the policy’s
action space is unstructured) and formats the appropriate examples (e.g. for GQA, it generates images
using a T2I model). The OPEN-ENDED and SKILL-LIST generators have access to the task and a list
of examples to render into training data. For the SKILL-TREE environment, where the action space is

6



Published as a conference paper at ICLR 2025

{explore, exploit}, the data generation engine must first interpret these actions. Each action
triggers a modification to the skill tree. An explore action invokes a subskill discovery pipeline to
grow the skill tree by adding subskills. When emitting an exploit action, the agent has to specify
how to change the data allocation, or budget, for each subskill; executing the action means adjusting
the budget stored in the skill tree accordingly. Finally, the data generation engine consumes the skill
tree and generates the planned amount of data for each subskill.

Baseline implementation. For all tasks (mathematics, VQA, and programming), we generate training
data using an LLM (GPT-4o). For mathematics problems, we generate problems using an LLM,
where each problem consists of a question, a step-by-step solution, and a final answer. For VQA
tasks, we first use an LLM to generate image descriptions aligned with the task/skill/subskill given as
input. We then employ a text-to-image model to convert these descriptions into images. Then, the
LLM is instructed to generate a specified number of unique questions for the given task/skill/subskill.
For programming, we generate data in two stages. We generate a problem and starter code given
subskill information and detailed instructions about the expected format, and then solve it with an
independent LLM call. We provide details on the generators for each environment in Appendix C.3
and show generated training examples for each task in Appendix D.

3 EXPERIMENTS

We experiment with DATAENVGYM environments in four domains: visual question answering,
mathematics, programming and tool-use. For visual question answering, we use GQA (Hudson &
Manning, 2019) and NaturalBench (Li et al., 2024); for mathematics, we use MATH (Hendrycks
et al., 2021); for programming, we use LiveCodeBench (Jain et al., 2024); for tool-use, we use
MnMs (Ma et al., 2024). For most experiments (reported in Sec. 3.1), we start from instruction-tuned
models rather than base models because we believe it is a more realistic and challenging setting since
starting from instruction-tuned models is standard for applications, and these models have undergone
post-training on large amounts of task-specific data. For GQA and NaturalBench, we use PaliGemma-
3b-pt-224 (Beyer et al., 2024) as our student model and we use GPT-4o OpenAI (2024) as the teacher
agent policy, augmented with SDXL-Turbo (Sauer et al., 2023) for T2I generation. For MATH, we
use Gemma-2-2B-Instruct (Gemma Team, 2024) as a student. For LiveCodeBench and MnMs, we
use Llama-3-8B-Instruct (Llama Team, 2024) as a student. For all domains, we generate data with
GPT-4o. Note that the student models we use are typically already proficient at the target task and
thus are difficult to improve. For each domain, we choose the student model to satisfy the following
criteria: 1) the student should be strong enough to perform the given task (e.g., LiveCodeBench is too
challenging for a Gemma2-2B student). 2) The student should not have been heavily post-trained
s.t. further improvements are unlikely (e.g., Llama3-8B has been extensively trained for math and
further improvements with additional training are unlikely, regardless of the data generation agent).
Details can be found in Appendix C.7 (validation and test splits) and Appendix C.3 (data generation).
Experiments on tool-use (MnMs) and additional multimodal experiments (NaturalBench) are detailed
in Appendix C.

We train all models for a fixed number of steps and terminate episodes after a fixed number of
iterations, and use validation accuracy to select the training dataset iteration corresponding to the
highest student accuracy. For each environment and domain, we report two values: first, we report
the increase in student performance achieved by the baseline implementations of the teacher policy
described in Sec. 2.2.1; this policy takes in the state st, i.e., it is given by π(pt|st). We refer to this
setting as With State. Second, we report the increase in student performance achieved by the same
policy without conditioning on the state information, i.e. sampling an action from π(pt|·) without
conditioning on st. For the OPEN-ENDED environment policy, we replace the list of student errors
with random train samples. For the SKILL-LIST policy, we do the same. For the SKILL-TREE policy,
we take explore and exploit actions with equal probability. We refer to this setting as No State.

3.1 PRIMARY RESULTS: VQA, MATHEMATICS, PROGRAMMING

Tab. 2 presents results on example instantiations of environments within DATAENVGYM. Here,
we compare students before and after a multi-step trajectory of training across environments, with
different data generation policies. For each setting, we report the relative gain or loss (in blue)
compared to student model before training in DATAENVGYM. Note also that the models used here
are already instruction-tuned on large datasets (including task-specific datasets), making obtaining
further improvements particularly challenging.

7



Published as a conference paper at ICLR 2025

Table 2: Agents in DATAENVGYM’s environments are able to improve students across tasks and
teaching environments. ∗Note that No State is the same for OPEN-ENDED and SKILL-LIST because
these environments only differ in their state representation, so their No State policies (which do not
condition on the state) are identical.

Setting/Env. GQA MATH LiveCodeBench Avg. Improvement(PaliGemma 3B) (Gemma2 2B) (Llama3 8B)

Before teaching 44.18 15.78 16.50 -

OPEN-ENDED environment
+No State∗ π(pt|·) 43.48 (-0.70%) 19.78 (+4.00%) 16.50 (-0.00%) (+1.10%)
+With State π(pt|st) 47.90 (+3.72%) 23.44 (+7.66%) 18.91 (+2.41%) (+4.60%)

SKILL-LIST environment
+No State∗ π(pt|·) 43.48 (-0.70%) 19.78 (+4.00%) 16.50 (-0.00%) (+1.10%)
+With State π(pt|st) 48.18 (+4.00%) 19.48 (+3.70%) 18.25 (+1.75%) (+3.15%)

SKILL-TREE environment
+No State π(pt|·) 49.53 (+5.35%) 17.15 (+1.37%) 16.50 (-0.00%) (+2.24%)
+With State π(pt|st) 49.76 (+5.58%) 18.90 (+3.12%) 17.75 (+1.25%) (+3.32%)

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
(a) Average Question Level

0.050

0.025

0.000

0.025

0.050

0.075

Ac
cu

ra
cy

 D
iff

. (
Af

te
r -

 B
ef

or
e)

Alg. & Eqns.

Logs and Exps.

Series & Seqs.

Fxn. Analysis & Manip.

Prob. & Comb.

Calc. & Optim.

Trig.
0.002 0.004 0.006 0.008 0.010

(b) Skill Rarity (1/Freq.)

Alg. & Eqns.

Logs and Exps.

Series & Seqs.

Fxn. Analysis & Manip.

Prob. & Comb.

Calc. & Optim.

Trig.

Figure 4: Per-skill accuracy improvements of Gemma-2B trained on MATH in the SKILL-TREE
environment, as a function of (a) question difficulty and (b) skill rarity (inverse of frequency) in
the training data. In both cases, the biggest performance increases occur in the middle range.

LLM policies can make use of state information to provide better training data for the student.
Students trained in the “No State” setting generally perform worse than those trained in the “With
State” setting. This is true across environments, with the largest difference (3.5%) for the OPEN-
ENDED environment and the smallest difference (1.08%) for the SKILL-TREE environment. On
LiveCodeBench, policies without state information are not able to improve the student at all, whereas
on MATH, a policy without state information is still able to improve a student in all environments.
The support provided to the teacher by the SKILL-TREE environment is particularly robust for GQA,
where a policy without state information reaches almost identical performance to a policy with
state information. However, absent SKILL-TREE’s structured actions, removing state information
actually hurts performance on GQA, with slight drops from the baseline for the “No State” setting on
OPEN-ENDED and SKILL-LIST environments. For both these environments, “With State” improves
the student model. Taken together, these results highlight the importance of the state information.

Teaching is easier in some environments than others. With a fixed student and task (i.e. looking
at “With State” entry across the columns of Tab. 2), teachers typically elicit the highest student
performance in the unconstrained OPEN-ENDED environments, where they are not required to teach
a specific set of skills. However, there may be domain specific effects here as the teachers in the
SKILL-TREE environment perform the best on the multimodal GQA dataset (+5.58%), whereas this
is reversed for MATH, where teachers in the OPEN-ENDED environment perform the best (+7.66%).

These difference may relate to the level of constraint imposed: in the OPEN-ENDED environment, the
teacher can produce any data without any constraints, while in the skill-structured environments, we
require the teacher to improve the student along specified skills. This may be a more difficult task, as
it may impose suboptimal constraints on the teacher, i.e., the teacher may have difficulty teaching
the specified skills, whereas in the unconstrained OPEN-ENDED environment, the teacher may be
implicitly able to identify and teach the skills it is best at teaching. However, unconstrained teaching
(which has no clear link between errors and generated data) may not always be useful in practice, e.g.
when a user wants to control the training and make targeted improvements to certain skills.

8



Published as a conference paper at ICLR 2025

3.2 ANALYSIS: DIFFICULTY/RARITY, TRAINING DYNAMICS, SKILL DISCOVERY QUALITY

0 2 4 6 8
Iteration

0.40

0.45

0.50

0.55

0.60

0.65

A
cc

ur
ac

y

Task: GQA

0 2 4 6 8
Iteration

0.10

0.12

0.14

0.16

0.18

Task: LiveCodeBench

0 2 4 6 8
Iteration

0.10

0.15

0.20

0.25

0.30
Task: MATH

Environment
OPEN-ENDED
SKILL-LIST
SKILL-TREE

Figure 5: Training dynamics across three tasks. Each line is split
into a solid segment terminating in a vertical line (the maximum
performance achieved by the student) and a dashed line showing
the effect of continued training beyond this point.

Iterative training dynamics. In
Fig. 5, we plot the change in
the student model’s performance
on the validation set through-
out a full run in DATAEN-
VGYM on each task and for
each environment. Each ex-
periment is truncated once the
performance saturates (consis-
tently fails to increase for mul-
tiple iterations). We use the
“With State” baseline agents
for each environment, and use the same models as in Tab. 2. Fig. 5 shows
that the students generally improve across iterations. In other words, the baseline
agents do uncover new datapoints that further improve the student at each iteration.
Moreover, the behavior of agents trained in the three environments differs across tasks: on GQA,
SKILL-TREE improves for more iterations than the other environments, while on MATH it reaches a
plateau and on LiveCodeBench it is truncated after two rounds of data generation.

Table 3: DATAENVGYM allows us to test various
implementations of environment components. Here,
we compare oracle vs. inferred skills for GQA and
MATH. Better skills result in better teaching and thus
an improved student.

Skill Type GQA MATH
(PaliGemma 3B) (Gemma2 2B)

Before teaching 44.18 15.78

SKILL-LIST
+Oracle Skills 53.02 (+8.84%) 19.52 (+3.74%)
+Inferred Skills 48.18 (+4.00%) 18.25 (+2.47%)

Impact of skill discovery quality. In Tab. 3,
we show the result of training students us-
ing data generated by SKILL-LIST environ-
ments with different skill discovery modules.
For each domain, we determine a set of ora-
cle skills. For GQA, the oracle skills are the
human-annotated skills. Because MATH does
not have human-annotated skills, we approx-
imate oracle skills by running the skill discov-
ery module on the test data, thereby creating
skills from privileged information. In both
settings the oracle skills allow the teacher to
produce better data and improve student per-
formance. The increases from oracle skills are higher for GQA than MATH, possibly due to the
fact that the MATH skills still rely on the same skill discovery module as the inferred skills. This
is a promising signal, as it indicates that further performance improvements can be obtained by
improving the skill discovery module. These results also highlight the utility of DATAENVGYM in
allowing us to swap in different components: by creating a modular framework for developing data
generation agents, we enable future work to test modules and components in the framework using
student performance as a metric.

Skill learning across rarity and difficulty levels. Tab. 2 shows that skill-based learning in the
SKILL-TREE environment can improve overall performance of student models. Two core questions
are (1) how interpretable these skills are and (2) how learning correlates with features like question
average difficulty or skill frequency. In Fig. 4, we plot the accuracy improvement of a Gemma-2B
student model after training in DATAENVGYM’s SKILL-TREE environment for MATH; most skills
improve, some more than others. In Fig. 4(a) we plot improvement across the average question
difficulty (provided by MATH on a scale of 1 to 5). Training in DATAENVGYM boosts student
performance the most in the middle difficulty region (around 3.5). On the edges, we see smaller
boosts, with close to 0 difference for Calculus and Optimization (high difficulty) and even decreases
for Trigonometry (low difficulty). In Fig. 4(b) we compare performance to skill rarity (inverse
frequency) in the training data. Here also, the least and most represented skills benefit less. Taken
together, the results in Fig. 4 suggest that there is a sweet-spot of difficulty and frequency. At the
low end this could be due to saturation: easy and frequent skills benefit less from training because
the model already performs well on them or has saturated. At the other end, difficult skills or very
rare skills may be underrepresented in teacher’s training data or be harder to generate questions for,
making learning less effective. Alternatively, the questions generated may be too hard for the student.
In the middle, the teacher generates helpful examples, allowing the student to learn. Similar theories
have been put forth for human learning, e.g., Vygotsky (1962)’s Zone of Proximal Development,

9



Published as a conference paper at ICLR 2025

where learning is most effective given problems slightly harder than those students could solve alone,
but not so difficult that they would have no hope of solving them.

4 RELATED WORK
Training Environment Generation. In agent learning frameworks, designing training environ-
ments usually becomes a bottleneck, as it requires sophisticated human efforts (Park et al., 2024).
Unsupervised environment design (UED) (Dennis et al., 2020; Jiang et al., 2021; Parker-Holder
et al., 2022) explores progressively increased environment difficulty based on agent scores in simple
games. Liesen et al. (2024) introduce a meta-learning approach to create learning environments for
continuous control. In vision-language navigation (VLN), past work (Li et al., 2022; Li & Bansal,
2024; Wang et al., 2023c) propose augmenting the visual diversity of training environments with
image generation models. Generation has been applied to game environments as well: Cobbe et al.
(2020) generate a diverse set of game environments for training RL agents and measuring their
generalization. Zala et al. (2024) continuously adapt game environments for training RL agents,
using an LLM to generate different environments that teach core skills to the agent based on feedback
from the agents’ intermediate progress, which improves final performance of agents as well as
learning efficiency. Yang et al. (2024) generate 3D embodied environments from user-specified
prompts, generating rooms in different styles. Sudhakaran et al. (2023) and Todd et al. (2023) use
LLMs for open-ended generation of game levels for tile-based games. OMNI (Zhang et al., 2023)
uses LLMs for task selection in open-ended environments, while OMNI-Epic (Faldor et al., 2024)
augments OMNI with the ability to generate new tasks in simulated robotics settings. Generally,
past environment generation work has focused on environments like games or graphical simulations
with predefined actions and skills. Moreover, past environment generation work has focused on
developing students rather than improving the data generation process itself. In contrast, our work
focuses on data generation agents, creating a testbed for teachers and treating students as part of the
environment. Furthermore, our work introduces environments for data generation with automatic
skill discovery in a diverse set of open-ended and more realistic settings such as mathematics, visual
question answering, and programming.

Learning from Generated Data. DATAENVGYM involves transferring task knowledge from a
teacher agent to a student model in an effective way, based on the student model’s feedback. Past work
on knowledge transfer from one model to another has been centered around knowledge distillation,
where outputs from larger models are used to train smaller ones (Hinton et al., 2015; Buciluǎ
et al., 2006; Chen et al., 2020); unlike the process in DATAENVGYM, this process is typically not
adaptive, relying on fixed datasets of inputs that are processed by the larger teacher model and used
to train the student. In the context of LLMs, symbolic distillation (West et al., 2022) has become
increasingly common; here, text is generated from a large model and used to train a smaller one, e.g.,
in instruction tuning (Wang et al., 2023a) or distilling chain-of-thought reasoning (Wei et al., 2022)
from large proprietary models into smaller models (Magister et al., 2023; Shridhar et al., 2023; Fu
et al., 2023; Ho et al., 2023; Saha et al., 2023; Mukherjee et al., 2023; Mitra et al., 2023; Chen et al.,
2024). The kind of teaching that data generation agents are expected to perform in DATAENVGYM’s
environments differs from the knowledge distillation setting in that the inputs to the model themselves
are model-generated (as opposed to being sourced from an existing dataset). Moreover, the inputs are
dynamically determined based on the student model’s feedback and errors, whereas in knowledge
distillation they are determined by a fixed dataset or generated all at once. Note that DATAENVGYM
is compatible with different methods of training the student (i.e., symbolic distillation, logit-based
losses, etc.), and these can be swapped into our modular environments.

5 CONCLUSION
We propose DATAENVGYM, a testbed of teacher environments for developing modular data genera-
tion agents (i.e., teachers) and environments. In DATAENVGYM, a teacher agent generates training
data for a student model and receives feedback on the student’s performance from the environment.
We provide three environment instantiations with different levels of structure. Across four diverse
domains (visual question answering, mathematics, programming, and tool use), we demonstrate
that the example teachers we introduce can improve students in all DATAENVGYM environments.
We analyze DATAENVGYM, including its training dynamics, performance across difficulty levels,
and the impact of skill discovery module quality. We hope our work will foster future progress on
data generation agents, engines, and feedback mechanisms by providing a testbed for evaluating and
improving them.

10



Published as a conference paper at ICLR 2025

ETHICS STATEMENT

We experiment with improving skills of student models in visual question answering, mathematics,
and programming. In our DATAENVGYM task, data generation agents are expected to create training
data; we implement this process using LLMs and vision-language models, which can be biased
and reflect common stereotypes as well other negative information that is present in their training
data (Weidinger et al., 2021; Birhane et al., 2024). These problems impact all work seeking to
generate data via models or train LLMs, and merit further exploration.

REPRODUCIBILITY STATEMENT

We will publicly release our code and leaderboard. For all experiments, we use publicly available
datasets and student models. We provide the detailed hyperparameters and additional method details
in Appendix B.

ACKNOWLEDGMENTS

This work was supported by DARPA ECOLE Program No. HR00112390060, NSF-AI Engage
Institute DRL-2112635, DARPA Machine Commonsense (MCS) Grant N66001-19-2-4031, ARO
Award W911NF2110220, ONR Grant N00014-23-1-2356, Microsoft Accelerate Foundation Models
Research (AFMR) grant program, and a Bloomberg Data Science PhD Fellowship. The views
contained in this article are those of the authors and not of the funding agency.

REFERENCES

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in neural information
processing systems, volume 29, 2016.

Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz,
Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, Thomas
Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey Gritsenko,
Neil Houlsby, Manoj Kumar, Keran Rong, Julian Eisenschlos, Rishabh Kabra, Matthias Bauer,
Matko Bošnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender, Ioana Bica, Ivana Balazevic, Joan
Puigcerver, Pinelopi Papalampidi, Olivier Henaff, Xi Xiong, Radu Soricut, Jeremiah Harmsen, and
Xiaohua Zhai. Paligemma: A versatile 3b vlm for transfer, 2024. URL https://arxiv.org/
abs/2407.07726.

Abeba Birhane, Sanghyun Han, Vishnu Boddeti, Sasha Luccioni, et al. Into the laion’s den: Inves-
tigating hate in multimodal datasets. Advances in Neural Information Processing Systems, 36,
2024.

Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
535–541, 2006. URL https://dl.acm.org/doi/abs/10.1145/1150402.1150464.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H1lJJnR5Ym.

Justin Chen, Swarnadeep Saha, Elias Stengel-Eskin, and Mohit Bansal. Magdi: Structured distillation
of multi-agent interaction graphs improves reasoning in smaller language models. In Forty-first
International Conference on Machine Learning, 2024.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big self-
supervised models are strong semi-supervised learners. Advances in neural information processing
systems, 33:22243–22255, 2020. URL https://arxiv.org/abs/2006.10029.

11

https://arxiv.org/abs/2407.07726
https://arxiv.org/abs/2407.07726
https://dl.acm.org/doi/abs/10.1145/1150402.1150464
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://arxiv.org/abs/2006.10029


Published as a conference paper at ICLR 2025

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. Instructeval: Towards holistic
evaluation of instruction-tuned large language models. In Proceedings of the First edition of the
Workshop on the Scaling Behavior of Large Language Models (SCALE-LLM 2024), pp. 35–64,
2024.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. Advances in neural information processing systems, 33:13049–13061, 2020.

Aniket Didolkar, Anirudh Goyal, Nan Rosemary Ke, Siyuan Guo, Michal Valko, Timothy Lillicrap,
Danilo Rezende, Yoshua Bengio, Michael Mozer, and Sanjeev Arora. Metacognitive Capabilities
of LLMs: An Exploration in Mathematical Problem Solving, May 2024.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu, Maosong Sun, and Bowen
Zhou. Enhancing chat language models by scaling high-quality instructional conversations. In
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp.
3029–3051, 2023.

Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness via
models of human notions of interestingness with environments programmed in code, 2024.

Haotian Fu, Pratyusha Sharma, Elias Stengel-Eskin, George Konidaris, Nicolas Le Roux, Marc-
Alexandre Côté, and Xingdi Yuan. Language-guided skill learning with temporal variational
inference. In Forty-first International Conference on Machine Learning, 2024.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Bar-
bara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
10421–10430. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
fu23d.html.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda Askell, Yuntao Bai, Saurav Kadavath, Ben
Mann, Ethan Perez, Nicholas Schiefer, Kamal Ndousse, et al. Red teaming language models to
reduce harms: Methods, scaling behaviors, and lessons learned. arXiv preprint arXiv:2209.07858,
2022.

Tong Gao, Shivang Singh, and Raymond Mooney. Towards automated error analysis: Learning to
characterize errors. In The International FLAIRS Conference Proceedings, volume 35, 2022.

Gemma Team. Gemma 2: Improving open language models at a practical size, 2024. URL
https://arxiv.org/abs/2408.00118.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14953–14962, 2023.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015. URL https://arxiv.org/abs/1503.02531.

12

https://proceedings.mlr.press/v202/fu23d.html
https://proceedings.mlr.press/v202/fu23d.html
https://arxiv.org/abs/2408.00118
https://arxiv.org/abs/1503.02531


Published as a conference paper at ICLR 2025

Namgyu Ho, Laura Schmid, and Se-Young Yun. Large language models are reasoning teachers.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 14852–14882, Toronto, Canada, July 2023. Association for Com-
putational Linguistics. doi:10.18653/v1/2023.acl-long.830. URL https://aclanthology.
org/2023.acl-long.830.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Srinivasan Iyer, Xi Victoria Lin, Ramakanth Pasunuru, Todor Mihaylov, Daniel Simig, Ping Yu,
Kurt Shuster, Tianlu Wang, Qing Liu, Punit Singh Koura, et al. Opt-iml: Scaling language model
instruction meta learning through the lens of generalization. arXiv preprint arXiv:2212.12017,
2022.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021.

Baiqi Li, Zhiqiu Lin, Wenxuan Peng, Jean de Dieu Nyandwi, Daniel Jiang, Zixian Ma, Simran
Khanuja, Ranjay Krishna, Graham Neubig, and Deva Ramanan. Naturalbench: Evaluating vision-
language models on natural adversarial samples. In The Thirty-eight Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2024.

Jialu Li and Mohit Bansal. Panogen: Text-conditioned panoramic environment generation for
vision-and-language navigation. Advances in Neural Information Processing Systems, 36, 2024.

Jialu Li, Hao Tan, and Mohit Bansal. Envedit: Environment editing for vision-and-language naviga-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 15407–15417, 2022.

Jarek Liesen, Chris Lu, Andrei Lupu, Jakob N. Foerster, Henning Sprekeler, and Robert T. Lange.
Discovering minimal reinforcement learning environments, 2024. URL https://arxiv.org/
abs/2406.12589.

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. The flan collection: Designing data and methods for effective
instruction tuning. In International Conference on Machine Learning, pp. 22631–22648. PMLR,
2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Zixian Ma, Weikai Huang, Jieyu Zhang, Tanmay Gupta, and Ranjay Krishna. m&m’s: A benchmark
to evaluate tool-use for multi-step multi-modal tasks. EECV 2024, 2024.

Lucie Charlotte Magister, Jonathan Mallinson, Jakub Adamek, Eric Malmi, and Aliaksei Severyn.
Teaching small language models to reason. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 1773–1781, Toronto,
Canada, July 2023. Association for Computational Linguistics. doi:10.18653/v1/2023.acl-short.151.
URL https://aclanthology.org/2023.acl-short.151.

13

https://doi.org/10.18653/v1/2023.acl-long.830
https://aclanthology.org/2023.acl-long.830
https://aclanthology.org/2023.acl-long.830
https://arxiv.org/abs/2406.12589
https://arxiv.org/abs/2406.12589
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/v1/2023.acl-short.151
https://aclanthology.org/2023.acl-short.151


Published as a conference paper at ICLR 2025

Arindam Mitra, Luciano Del Corro, Shweti Mahajan, Andres Codas, Clarisse Simoes, Sahaj Agarwal,
Xuxi Chen, Anastasia Razdaibiedina, Erik Jones, Kriti Aggarwal, et al. Orca 2: Teaching
small language models how to reason. arXiv preprint arXiv:2311.11045, 2023. URL https:
//arxiv.org/abs/2311.11045.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707, 2023. URL https://arxiv.org/abs/2306.02707.

OpenAI. Hello gpt-4o, 2024. URL https://openai.com/index/hello-gpt-4o.

Younghyo Park, Gabriel B. Margolis, and Pulkit Agrawal. Automatic Environment Shaping is the
Next Frontier in RL, July 2024.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design. In
International Conference on Machine Learning, pp. 17473–17498. PMLR, 2022.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese,
Nat McAleese, and Geoffrey Irving. Red teaming language models with language models. arXiv
preprint arXiv:2202.03286, 2022.

Seungeun Rho, Laura Smith, Tianyu Li, Sergey Levine, Xue Bin Peng, and Sehoon Ha. Language
guided skill discovery. arXiv preprint arXiv:2406.06615, 2024.

Swarnadeep Saha, Peter Hase, and Mohit Bansal. Can language models teach weaker agents?
teacher explanations improve students via personalization. In NeurIPS, 2023. URL https:
//arxiv.org/abs/2306.09299.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation, 2023. URL https://arxiv.org/abs/2311.17042.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Pratyusha Sharma, Antonio Torralba, and Jacob Andreas. Skill induction and planning with latent
language. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1713–1726, 2022.

Luísa Shimabucoro, Sebastian Ruder, Julia Kreutzer, Marzieh Fadaee, and Sara Hooker. Llm
see, llm do: Guiding data generation to target non-differentiable objectives. arXiv preprint
arXiv:2407.01490, 2024.

Kumar Shridhar, Alessandro Stolfo, and Mrinmaya Sachan. Distilling reasoning capabilities into
smaller language models. In Findings of the Association for Computational Linguistics: ACL 2023,
pp. 7059–7073, 2023. URL https://arxiv.org/abs/2212.00193.

Shyam Sudhakaran, Miguel González Duque, Matthias Freiberger, Claire Glanois, Elias Najarro,
and Sebastian Risi. Mariogpt: Open-ended text2level generation through large language models.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
a9bbeb2858dfbdbd4c19814e5d80ec60-Abstract-Conference.html.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Graham Todd, Sam Earle, Muhammad Umair Nasir, Michael Cerny Green, and Julian Togelius.
Level generation through large language models. In Phil Lopes, Filipe Luz, Antonios Liapis, and
Henrik Engström (eds.), Proceedings of the 18th International Conference on the Foundations
of Digital Games, FDG 2023, Lisbon, Portugal, April 12-14, 2023, pp. 70:1–70:8. ACM, 2023.
doi:10.1145/3582437.3587211. URL https://doi.org/10.1145/3582437.3587211.

14

https://arxiv.org/abs/2311.11045
https://arxiv.org/abs/2311.11045
https://arxiv.org/abs/2306.02707
https://openai.com/index/hello-gpt-4o
https://arxiv.org/abs/2306.09299
https://arxiv.org/abs/2306.09299
https://arxiv.org/abs/2311.17042
https://arxiv.org/abs/2212.00193
http://papers.nips.cc/paper_files/paper/2023/hash/a9bbeb2858dfbdbd4c19814e5d80ec60-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a9bbeb2858dfbdbd4c19814e5d80ec60-Abstract-Conference.html
https://doi.org/10.1145/3582437.3587211
https://doi.org/10.1145/3582437.3587211


Published as a conference paper at ICLR 2025

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Lev Vygotsky. Thought and Language. MIT Press, Cambridge, MA, 1962.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instruc-
tions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Pa-
pers), pp. 13484–13508, Toronto, Canada, July 2023a. Association for Computational Lin-
guistics. doi:10.18653/v1/2023.acl-long.754. URL https://aclanthology.org/2023.
acl-long.754.

Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei Mi, Baojun Wang, Lifeng Shang, Xin Jiang,
and Qun Liu. Data management for training large language models: A survey, 2023b. URL
https://api.semanticscholar.org/CorpusID:265609639.

Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu, Mohit Bansal, Stephen Gould, Hao Tan, and
Yu Qiao. Scaling data generation in vision-and-language navigation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 12009–12020, 2023c.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Oxford, 1989.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022. URL https://arxiv.org/
abs/2201.11903.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, et al. Ethical and social risks of harm from
language models. arXiv preprint arXiv:2112.04359, 2021. URL https://arxiv.org/abs/
2112.04359.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu,
Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language models
to commonsense models. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir
Meza Ruiz (eds.), Proceedings of the 2022 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pp. 4602–4625, Seattle,
United States, July 2022. Association for Computational Linguistics. doi:10.18653/v1/2022.naacl-
main.341. URL https://aclanthology.org/2022.naacl-main.341.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama
Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pp. 38–45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel S Weld. Errudite: Scalable, repro-
ducible, and testable error analysis. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 747–763, 2019.

Xiyang Wu, Tianrui Guan, Dianqi Li, Shuaiyi Huang, Xiaoyu Liu, Xijun Wang, Ruiqi Xian, Ab-
hinav Shrivastava, Furong Huang, Jordan L. Boyd-Graber, Tianyi Zhou, and Dinesh Manocha.
Autohallusion: Automatic generation of hallucination benchmarks for vision-language models.
ArXiv, abs/2406.10900, 2024. URL https://api.semanticscholar.org/CorpusID:
270560551.

Yue Yang, Fan-Yun Sun, Luca Weihs, Eli VanderBilt, Alvaro Herrasti, Winson Han, Jiajun Wu, Nick
Haber, Ranjay Krishna, Lingjie Liu, et al. Holodeck: Language guided generation of 3d embodied
ai environments. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 16227–16237, 2024.

15

https://doi.org/10.18653/v1/2023.acl-long.754
https://aclanthology.org/2023.acl-long.754
https://aclanthology.org/2023.acl-long.754
https://api.semanticscholar.org/CorpusID:265609639
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2112.04359
https://doi.org/10.18653/v1/2022.naacl-main.341
https://doi.org/10.18653/v1/2022.naacl-main.341
https://aclanthology.org/2022.naacl-main.341
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://api.semanticscholar.org/CorpusID:270560551
https://api.semanticscholar.org/CorpusID:270560551


Published as a conference paper at ICLR 2025

Abhay Zala, Jaemin Cho, Han Lin, Jaehong Yoon, and Mohit Bansal. Envgen: Generating and
adapting environments via llms for training embodied agents. In COLM, 2024.

Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models of
human notions of interestingness. arXiv preprint arXiv:2306.01711, 2023.

Jieyu Zhang, Weikai Huang, Zixian Ma, Oscar Michel, Dong He, Tanmay Gupta, Wei-Chiu Ma,
Ali Farhadi, Aniruddha Kembhavi, and Ranjay Krishna. Task me anything. arXiv preprint
arXiv:2406.11775, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. LIMA: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

APPENDIX

In the appendix, we present additional related work (Appendix A), additional method details (Ap-
pendix B), results on additional benchmarks (Appendix C) qualitative examples (Appendix D),
experiments showing accuracy on generated data (Appendix E) and ablations on the relative impor-
tance of data vs training time (Appendix F).

A ADDITIONAL RELATED WORK

Skill Discovery. A line of work in reinforcement learning has studied unsupervised skill discovery,
where agents learn diverse emergent behaviors without explicit rewards. The majority of this work
helps agents discover new skills by maximizing the diversity of agent trajectories, such as exploration-
encouraging rewards (Gregor et al., 2016; Bellemare et al., 2016) and adding randomness during
action sampling (Watkins, 1989; Burda et al., 2019). However, such methods require long exploration
steps, which is expensive if the cost for agent action is not negligible. Recent work has also proposed
using the knowledge contained in pretrained language models to help in skill discovery (Sharma et al.,
2022; Rho et al., 2024; Fu et al., 2024) and to sample new skills (Didolkar et al., 2024). Developments
and improvements to skill discovery are complementary to DATAENVGYM, where skill discovery
is used in the SKILL-LIST and SKILL-TREE environments in Sec. 2.1.2) to dynamically extract
human-interpretable skills from data and to create student feedback. These skills help identify model
weaknesses and condition the data generation process, and we find that improving skill discovery can
improve student model performance (cf. Tab. 3), pointing to directions for future work. Moreover, by
using skill discovery in its environments, DATAENVGYM not only helps develop and test interpretable
agents, but also provides a concrete extrinsic evaluation for skill discovery, allowing competing skill
discovery methods to be evaluated and compared on the basis of how well they improve downstream
agent performance.

Model Weakness Discovery. Testing a trained machine learning model in different scenarios is
crucial in mitigating unexpected malfunctions, so that developers can actively prevent such behaviors
and finetune models on weak skills. Traditionally, model weaknesses have been identified by hiring
human annotators and asking them to create adversarial inputs in different scenarios and check when
model outputs are incorrect or undesired (Ganguli et al., 2022). Recent work explores automatically
finding model weaknesses by creating test cases in different scenarios, with either with pipelines
consisting of traditional ML models (Gao et al., 2022; Wu et al., 2019) or LLMs (Perez et al., 2022;
Zhang et al., 2024; Wu et al., 2024). These methods tend to focus on adversarial scenarios such
as jailbreaking or redteaming, where a model is made more robust against an increasingly difficult
adversary. Our framing is orthogonal: rather than focusing on defending against adversaries, in
DATAENVGYM, students and teachers (data generation agents) are cooperative, working together to
improve student performance.

16

http://arxiv.org/abs/2403.13372


Published as a conference paper at ICLR 2025

GQA Validation Set

Image 
Question
Answer

Image 
Question

GT Answer

Student

VQA Task Instances
Evaluation

Student predicts an

answer for each task

instance.

Image 
Question

GT Answer
Student Answer

Image 
Question

GT Answer
Student Answer

Completed Task Instances

Data Generation Policy (LLM)

Instruction
T2I Prompt

Response

Instruction
T2I Prompt

Response

Instruction
T2I Prompt

Response

Data Generation Plan (Data Speci�cations)

T2I Rendering ✨

Instruction
Image 🖼

Response

Instruction
Image 🖼

Response

Instruction
Image 🖼

Response

Generated VQA
Training Data

Data Generation Engine

Teacher Agent

Student

Train Student

Re-Evaluate Student

Figure 6: A complete data generation loop for the multimodal domain in the OPEN-ENDED environ-
ment. Note that the teacher agent is modular. For domains such as mathematics or code generation, a
data generation engine may not be required.

B ADDITIONAL METHOD DETAILS

In Fig. 6, we provide a more detailed walkthrough of the core environment loop. The example in
Fig. 6 depicts one experience in the OPEN-ENDED environment for the multimodal domain using
the GQA dataset as the target dataset. The loop is highly modular, and can be changed to target a
different data distribution by changing the dataset used for evaluation. The data generation policy
and data generation engine can likewise be modified easily.

C ADDITIONAL MULTIMODAL AND TOOL-USE BENCHMARKS

In this section, we show results on additional challenging multimodal and tool-use tasks: Natural-
Bench (Li et al., 2024) and Table 4 and MnMs (Ma et al., 2024) in Table 5. MnMs and NaturalBench
include fine-grained metrics other than accuracy, which enables a more detailed view of how data
generated by different methods affects a student model. On both MnMs and NaturalBench, condition-
ing on the task and errors of the student allows the teacher to generate more effective training data
(compare “With State” against “No State” in Table 4 and Table 5).

On NaturalBench, the training data generated when conditioning on the student’s state is more
effective at improving the student on all metrics. The “Group Score” probes the consistency of
a model across four visual question-answer pairs that test the same concept. The “Group Score”
increase from generated data without conditioning on the state is zero, while conditioning on the state
results in an increase in the group score.

MnMs is a tool-use benchmark that requires a modified skill discovery mechanism, as the standard
pipeline applied to MnMs produces skills that are not tightly coupled to the underlying tools required.
For MnMs, we consider each combination of tools as a “skill”. This results in a very large number
of “skills” for tool-use. To generate data on a fixed budget, we must sample a subset of skills (tool
combinations) for which to generate data. We experiment with several sampling methods, and find
that the most effective sampling method is to randomly sample a subset of skills for which the student
does not have near-perfect accuracy.

17



Published as a conference paper at ICLR 2025

Table 4: Performance metrics for NaturalBench (Li et al., 2024) before and after teaching using the
OPEN-ENDED and SKILL-LIST environments.

Question Score Image Score Binary Score Group Score Avg. Improvement

Before teaching 3.92 3.92 48.53 0.00 -

OPEN-ENDED environment
+With State π(pt|st) 26.00 (+22.08%) 29.00 (+25.08%) 61.00 (+12.47%) 6.00 (+6.00%) (+16.41%)
+No State π(pt|·) 11.00 (+7.08%) 9.00 (+5.08%) 51.50 (+2.97%) 0.00 (+0.00%) (+3.78%)
SKILL-LIST environment
+With State π(pt|st) 25.00 (+21.08%) 26.00 (+22.08%) 59.50 (+10.97%) 2.00 (+2.00%) (+14.03%)
+No State π(pt|·) 11.00 (+7.08%) 9.00 (+5.08%) 51.50 (+2.97%) 0.00 (+0.00%) (+3.78%)

Table 5: Performance metrics for MnMs (Ma et al., 2024) before and after teaching using the
OPEN-ENDED and SKILL-LIST environments.

Plan Accuracy Tool Precision Tool Recall Tool F1 Avg. Gain

Before teaching 37.30 73.74 68.18 65.41 -

OPEN-ENDED environment
+With State π(pt|st) 72.00 (+34.70%) 87.32 (+13.98%) 82.62 (+14.44%) 82.25 (+16.84%) (+19.99%)
+No State π(pt|·) 62.13 (+24.83%) 87.94 (+14.60%) 87.09 (+12.91%) 80.51 (+15.10%) (+16.86%)
SKILL-LIST environment
+With State π(pt|st) 75.96 (+38.66%) 86.11 (+12.77%) 84.35 (+16.17%) 84.36 (+18.95%) (+21.64%)
+No State π(pt|·) 62.13 (+24.83%) 87.94 (+14.60%) 87.09 (+12.91%) 80.51 (+15.10%) (+16.86%)

We refer the reader to the GitHub repository for complete details of prompts and hyperparameters.

C.1 TRAINING DETAILS

We use supervised finetuning for training using the Transformers (Wolf et al., 2020) library. We
present data in an instruction-finetuning format of Alpaca (Taori et al., 2023) with the standard
language modeling loss. For evaluation, we use the standard training splits from the datasets we
test on. More details of the training process, including hyperparameters such as learning rates and
optimizers, are provided below.

C.1.1 GQA

We use the Transformers Wolf et al. (2020) library for training. We train PaliGemma-3b-pt-224 (Beyer
et al., 2024) for 10 epochs using the AdamW (Loshchilov & Hutter, 2017) optimizer with 2 warmup
steps and a learning rate of 2× 10−5, a weight decay of 10−6 using the BF16 datatype and batch
size of 16. We apply LoRA (Hu et al., 2022) with a rank of 16 and an alpha of 32, no bias, and a
dropout of 0.05. We apply LoRA to all linear layers.

C.1.2 LIVECODEBENCH AND MATH

We use Transformers (Wolf et al., 2020) and Llama-Factory (Zheng et al., 2024) libraries for training.
We format all data in the Alpaca format (Taori et al., 2023) as instruction-response pairs. We use the
Adam optimizer with a batch size of 16 and a cosine learning rate scheduler with a warmup ratio of
0.1 and train for 3 epochs in the FP16 datatype. We apply LoRA to all linear layers with a rank of 16
and an alpha of 32, no bias, and a dropout of 0.05. We truncate all training examples to a maximum
length of 1024 tokens.

C.2 LLM DETAILS

LLM configuration. We use gpt-4o-2024-08-06 (OpenAI, 2024) for the following mod-
ules: skill discovery (Sec. 2.1.2; in SKILL-LIST env), data generation policy (Sec. 2.2.1 in SKILL-
LIST env), data generation engine (Sec. 2.2.2; in OPEN-ENDED, SKILL-LIST, and SKILL-TREE
envs). We use a temperature of 0 and top-p of 1.0, which are default API settings. We use the
Instructor library1 to produce structured output from LLM calls and automatically parse LLM calls
into Python objects.

1https://github.com/jxnl/instructor

18

https://github.com/codezakh/dataenvgym
https://github.com/jxnl/instructor


Published as a conference paper at ICLR 2025

Table 6: Token expenditure and GPU time per iteration for each environment and domain.OPEN-
ENDED environments are typically the cheapest. The most expensive domain is LiveCodeBench,
although experiments in the OPEN-ENDED for code cost less than $3 per run. Training time for most
environments, even with a single A6000 GPU, is typically less than 30 minutes.

Domain Environment Num Tokens Cost $ (GPT-4o-mini) Cost $ (GPT-4o) GPU Minutes / Iteration

Math Open-Ended 173234 0.10 1.73 24
Math Skill-List 318528 0.19 3.19 24
Math Skill-Tree 355033 0.21 3.55 16

Coding Open-Ended 279304 0.17 2.79 16
Coding Skill-List 497787 0.30 4.98 16
Coding Skill-Tree 967610 0.58 9.68 16

Multimodal Open-Ended 25073 0.02 0.25 37
Multimodal Skill-List 82419 0.05 0.82 134
Multimodal Skill-Tree 33991 0.02 0.34 78

Prompt Templates. We provide the LLM prompt templates for skill discovery (Fig. 13), data
generation for GQA (Fig. 14) / MATH (Fig. 15) / LiveCodeBench (Fig. 16,), and data generation
policy for OPEN-ENDED (Fig. 17) and SKILL-LIST (Fig. 18) environments.

C.3 DATA GENERATION DETAILS

For all tasks, we use validation accuracy to identify when to terminate an episode. An episode is
terminated when when a fixed number of iterations is reached, and the best student is selected from
all students trained by the policy using validation accuracy.

GQA. We use stabilityai/sdxl-turbo with 4 inference steps to generate images at a
resolution of 1024× 1024. In the SKILL-LIST environment, our baseline policy exhausted its data
budget after 3 iterations, producing 7.5k data points. In the SKILL-TREE environment, the baseline
policy episode produced the top performing student after 20 steps at ≈ 3k datapoints. In the OPEN-
ENDED environment, the baseline policy episode produced the top performing student after 5 steps
and ≈ 3k data points.

MATH. For math, we follow the termination criteria as for GQA. In the SKILL-LIST environment,
the baseline policy produces roughly 2.1k datapoints and the its best student after 4 iterations. In the
SKILL-TREE environment, the baseline policy produces 2.8k datapoints over 20 steps to produce the
best performing student. In the OPEN-ENDED environment, the baseline policy requires 10 iterations
and 752 datapoints to produce its best student.

LiveCodeBench. For LiveCodeBench, we first generate problems, and then ask the LLM to solve
the problem. Termination criteria are the same as the other settings. In the OPEN-ENDED environment,
the baseline policy produces 1.6k datapoints and produces the best student after 5 iterations. In the
SKILL-LIST environment, the baseline policy produces 675 datapoints and produces the best student
after 11 iterations. In the SKILL-TREE environment, the baseline policy produces 3138 datapoints
and produces the best student after 10 iterations.

C.4 RESOURCE COSTS

In Tab. 6, we tabulate the token costs and GPU time required for each environment and domain. The
“Coding” domain and “Multimodal” domains are most expensive with respect to token expenditure
and GPU time, respectively. Moreover, we show that we can reduce the overall cost by using a
different teacher model. Specifically, we conduct experiments using GPT-4o-mini (which is less
expensive than GPT-4o) as the LLM powering the data generation agent, which we tabulate in Tab. 7.
Here, we continue to see performance improvements even with the reduced model. In general, we
expect performance improvements to remain positive but decrease as we reduce the size of the teacher
model.

19



Published as a conference paper at ICLR 2025

Table 7: Here, we replace GPT-4o inside the teacher agent with GPT-4o-mini to show that it is
possible to use a less powerful but inexpensive teacher to conduct experiments.

Setting/Env. GQA MATH LiveCodeBench Avg. Improvement(PaliGemma 3B) (Gemma2 2B) (Llama3 8B)

Before teaching 44.18 15.78 16.50 -

OPEN-ENDED environment
+GPT-4o-mini 45.51 (+1.33%) 15.78 (+0.00%) 17.50 (+1.00%) (+0.77%)
+GPT-4o 47.90 (+3.72%) 23.44 (+7.66%) 18.91 (+2.41%) (+4.60%)

SKILL-LIST environment
+GPT-4o-mini 46.74 (+2.56%) 16.92 (+1.14%) 17.25 (+1.25%) (+1.75%)
+GPT-4o 48.18 (+4.00%) 19.48 (+3.70%) 18.25 (+1.75%) (+3.15%)

SKILL-TREE environment
+GPT-4o-mini 48.83 (+4.65%) 16.06 (+0.28%) 17.00 (+0.50%) (+1.81%)
+GPT-4o 49.76 (+5.58%) 18.90 (+3.12%) 17.75 (+1.25%) (+3.32%)

C.5 SKILL FOREST DETAILS

The skill forest (used in SKILL-TREE environment) is a hierarchical structure representing skills and
subskills across various domains. It models the student model’s skill proficiency with increasing
detail. Each tree in the forest corresponds to a high-level skill domain and contains the following key
pieces of information for each subskill:

1. Data Allocation: The amount of training data allocated to each subskill.

2. Performance on Training Data: The student model’s performance on the training data for
each subskill.

3. Skill Name: The name of the skill.

4. Subskills: A list of subskills for the skill, which starts out empty.

The forest evolves through two mechanisms.

1. Growing: Adding new subskills to the tree.

2. Rebalancing: Adjusting data allocation for existing subskills based on performance.

These actions conceptually correspond to exploring and exploiting the skill tree.

This structure allows us to represent fine-grained skills, allocate resources for data generation, track
the student model’s progress, and prioritize skills in the data production process.

C.6 SKILL-TREE POLICY

We develop a policy as the baseline “With State” policy shown in Tab. 2. that aims to grow and balance
a skill tree. It operates in two phases: Growth Phase: The policy alternates between exploration
and exploitation actions until a predetermined maximum number of subskills is reached. During
exploration, new subskills are added to the tree. During exploitation, the policy resets data allocations
to zero, preparing for the next exploration. Filling Phase: Once the maximum number of subskills is
reached, the policy switches to a pure exploitation strategy. It calculates and executes actions that
incrementally allocate data to each subskill, aiming to reach a specified maximum amount of data per
subskill. The policy respects a maximum allocation limit per action and continues until all subskills
have reached their data capacity.

C.7 VALIDATION AND TEST SPLITS

For GQA, we create validation and test splits by doing a balanced stratified sampling of the validation
and testdev sets repeatedly. Specifically, we sample 5 questions from each of the 100 question types
in GQA, following Gupta & Kembhavi (2023). For MATH, we create a validation set by doing
balanced stratified sampling of the test set across all levels and topics in MATH, selecting 50 from

20



Published as a conference paper at ICLR 2025

Skill
Animal Identi�cation

Subskill
Identifying Animal

Characteristics

Subskill
Recognizing Animal Diet

Patterns

Skill
Object Attributes

Subskill
Understanding Shape

Transformations

Subskill
Identifying Color &

Texture

Q: Is the goat's beard long?
A: No

Q: Is the goat's horn curved?
A: Yes

Q: Do you see animals that
eat both plans and meat?

A: Yes

Q: Is there an animal that
only eats leaves?

A: Yes

Q: Does this shape have
more than 4 sides? A: Yes

Q: Is the shape symmetrical?
A: yes

Q: Is the material of the coat
textured? A: yes

Q: Is the door painted in a
bright color? A: no

Figure 7: A partial view of a skill forest for GQA. Depicted are 2 out of 13 discovered skills. For
each skill in the skill tree, we show 2 subskills and 2 examples of generated data for that subskill.
Note that all images are generated.

Skill
Function Analysis &

Manipulation

Subskill
Inverse Function

Identi�cation

Subskill
Asymptotic Behavior &

Analysis

Skill
Probability &

Combinatorics

Subskill
Permutations &

Combinations

Subskill
Stochastic Processes &

Markov Chains

Find the inverse function of .
To find the inverse, solve for  in terms of :  

 
Swap  and :  

 
Solve for :  

 
 
 

 
Therefore, the inverse function is .

Final Answer: The final answer is

.

Evaluate the asymptotic behavior of the function
 as .

To evaluate the asymptotic behavior, focus on the
highest degree terms both in the numerator and the
denominator. Here, the numerator is  and the

denominator is . Thus, the asymptotic behavior is
 as . As  approaches

infinity,  approaches 0.
Final Answer: The final answer is .

A handshake occurs whenever two people shake
hands. If there are 10 people at a party and everyone

shakes hands with everyone else, how many
handshakes occur?

Each handshake involves a unique pair from 10
people, equivalent to selecting 2 people from 10.

Thus, the number of handshakes is
.

Final Answer: The final answer is $\boxed{ 45 }$.

Problem: Suppose a Poisson process has rate
. What is the variance of the number of events

in the interval ?
For a Poisson process, the number of events in an

interval  is Poisson distributed with parameter .
The variance of a Poisson distribution  is

also .
With  and , the variance is .

Final Answer: The final answer is .

Figure 8: A partial view of a skill forest for MATH. Depicted are 2 out of 12 discovered skills. For
each skill in the skill tree, we show 2 subskills and 1 example of generated data for that subskill.

each group. We use the official test set for MATH. For LiveCodeBench, we create a validation set by
choosing all problems that are in the 2nd release but not in the 1st release as our validation set, and
use the entire 1st release as our test set. This results in a relatively small validation set of only 100
problems.

D QUALITATIVE EXAMPLES

Generated skill trees and examples. In Fig. 7, Fig. 8, and Fig. 9 we show qualitative examples of
skills and subskills discovered for GQA, MATH, and LiveCodeBench, respectively. For each subskill,

21



Published as a conference paper at ICLR 2025

Skill
Grid and Matrix

Processing

Subskill
Grid Navigation

Algorithms

Subskill
Matrix Transformation

Techniques

Skill
Game Theory &

Strategy

Subskill
Optimal Decision Making

Subskill
Stochastic Processes &

Markov Chains

### Question:
You are given a series of jobs where each job takes a certain
amount of time and has a deadline. Find the schedule that allows
you to complete all jobs such that the total penalty is minimized. A
penalty is incurred if you finish a job after its deadline.

Example 1:

Input: jobs = [(time, deadline)]: [(3, 5), (2, 3), (1, 4)]
Output: Schedule jobs as [(2, 3), (1, 4), (3, 5)]
Explanation: The total penalty is minimized.

No starter code.

### Format: Read the inputs from stdin solve the problem and write
the answer to stdout (do not directly test on the sample inputs).
Enclose your code within delimiters as follows.
```python
# YOUR CODE HERE
```

### Answer: (use the provided format with backticks)

```python
# YOUR CODE HERE
def minimize_penalty(jobs):
    # Sort jobs by their deadlines
    jobs.sort(key=lambda x: x[1])
    
    current_time = 0
    schedule = []
    
    for job in jobs:
        time, deadline = job
        schedule.append(job)
        current_time += time
        
        # If current time exceeds the deadline, we need to adjust
        if current_time > deadline:
            # Find the job with the maximum time in the current schedule
            max_time_job = max(schedule, key=lambda x: x[0])
            # Remove it from the schedule
            schedule.remove(max_time_job)
            # Adjust the current time
            current_time -= max_time_job[0]
    
    return schedule

import sys
input = sys.stdin.read
jobs = eval(input().strip())
result = minimize_penalty(jobs)
print(result)
```

### Question:
Two players play a game with a stack of chocolate bars. They take
turns breaking a selected chocolate bar either horizontally or
vertically into two smaller chocolate bars, each with positive integer
dimensions. The player who cannot make a move loses. Write a
function to determine if a player can force a win given the number of
chocolate bars and their dimensions. Assume both players play
optimally.

Example:
Input: chocolates = [(2, 3), (1, 2)]
Output: True

Explanation: There are winning strategies for initial positions, such as
breaking the 2 by 3 bar vertically.

### Format: You will use the following starter code to write the
solution to the problem and enclose your code within delimiters.
```python
class Solution:
    def canForceWinChocolateGame(self, chocolates: list[tuple[int,
int]]) -> bool:
        # YOUR CODE HERE
```

### Answer: (use the provided format with backticks)

```python
class Solution:
    def canForceWinChocolateGame(self, chocolates: list[tuple[int,
int]]) -> bool:
        def grundy(x, y):
            if x == 1 and y == 1:
                return 0
            if (x, y) in memo:
                return memo[(x, y)]
            
            moves = set()
            for i in range(1, x):
                moves.add(grundy(i, y) ^ grundy(x - i, y))
            for j in range(1, y):
                moves.add(grundy(x, j) ^ grundy(x, y - j))
            
            g = 0
            while g in moves:
                g += 1
            
            memo[(x, y)] = g
            return g
        
        memo = {}
        xor_sum = 0
        for x, y in chocolates:
            xor_sum ^= grundy(x, y)
        
        return xor_sum != 0
```

### Question:
You are given a 2D grid representing an ocean. The grid has islands,
represented by 1, and water, represented by 0. Determine the number of
closed islands, surrounded completely by water.

Example:
Input:
grid = [[1, 1, 1, 1, 1, 1, 1, 0],
        [1, 0, 0, 0, 0, 1, 1, 0],
        [1, 0, 1, 1, 0, 1, 1, 0],
        [1, 0, 0, 0, 0, 1, 0, 1],
        [1, 1, 1, 1, 1, 1, 1, 0]]
Output: 1
Explanation: There is one closed island at the center.

### Format: You will use the following starter code to write the solution to the
problem and enclose your code within delimiters.
```python
class Solution:
    def countClosedIslands(self, grid: list[list[int]]) -> int:
        # YOUR CODE HERE
```

### Answer: (use the provided format with backticks)

```python
class Solution:
    def countClosedIslands(self, grid: list[list[int]]) -> int:
        def dfs(x, y):
            if x < 0 or x >= len(grid) or y < 0 or y >= len(grid[0]):
                return False
            if grid[x][y] == 1:
                return True
            
            grid[x][y] = 1  # Mark as visited
            
            up = dfs(x - 1, y)
            down = dfs(x + 1, y)
            left = dfs(x, y - 1)
            right = dfs(x, y + 1)
            
            return up and down and left and right
        
        closed_islands = 0
        
        for i in range(len(grid)):
            for j in range(len(grid[0])):
                if grid[i][j] == 0:
                    if dfs(i, j):
                        closed_islands += 1
        
        return closed_islands
```

### Question:
Given a `m x n` boolean matrix, update it so that if any cell is True, all cells in
the same row and column are set to True.

Example:

Input:
[
 [False, False, False],
 [False, True, False],
 [False, False, False]
]

Output:
[
 [False, True, False],
 [True, True, True],
 [False, True, False]
]

Explanation: The cell at position (1, 1) is True, so all cells in its row and column
are set to True.

### Format: Read the inputs from stdin solve the problem and write the answer
to stdout (do not directly test on the sample inputs). Enclose your code within
delimiters as follows.
```python
# YOUR CODE HERE
```

### Answer: (use the provided format with backticks)

```python
# YOUR CODE HERE
def update_matrix(matrix):
    if not matrix:
        return matrix

    m, n = len(matrix), len(matrix[0])
    rows, cols = set(), set()

    # First pass to find all rows and columns that need to be updated
    for i in range(m):
        for j in range(n):
            if matrix[i][j]:
                rows.add(i)
                cols.add(j)

    # Second pass to update the matrix
    for i in range(m):
        for j in range(n):
            if i in rows or j in cols:
                matrix[i][j] = True

    return matrix

# Read input
import sys
input = sys.stdin.read
data = input().strip().split('\n')
matrix = [list(map(lambda x: x == 'True', line.split())) for line in data]

# Update the matrix
updated_matrix = update_matrix(matrix)

# Print the output
for row in updated_matrix:
    print(' '.join(map(str, row)))
```

Figure 9: A partial view of a skill forest for LiveCodeBench. Depicted are 2 out of 15 discovered
skills. For each skill in the skill tree, we show 2 subskills and 1 examples of generated data for that
subskill.

LiveCodeBench
Array Manipulation and Optimization  

Dynamic Programming and Combinatorics  
String Manipulation and Pattern Matching  

Game Strategy and Theory  
Graph and Traversal Algorithms  

Mathematical and Statistical Computations  
Subsequence and Subarray Analysis  

Greedy and Heuristic Approaches  
Frequency and Occurrence Analysis  

Bitwise Operations and Logic  
Grid and Matrix Processing  

Lexicographic and String Order  
Validation and Security  

Subarray and Interval Computations  
Probabilistic and Interactive Solutions  

GQA
Animal Identification

Furniture Recognition
Color Identification and Comparison

Spatial Relationships and Object Position
Material Identification and Comparison

Environment Classification
Human Activity Understanding

Object Recognition and Detection
Weather Condition Recognition

Object Attributes
Contextual Image Understanding

Specific Object Recognition
Animal Action Recognition

MATH
Algebra and Equation Solving

Function Analysis and Manipulation
Geometry and Spatial Reasoning

Trigonometry
Probability and Combinatorics

Polynomial Analysis
Series and Sequences

Calculus and Optimization
Number Theory and Modular Arithmetic

Matrix and Vector Calculations
Complex Numbers

Logarithms and Exponents

Figure 10: Skill lists for each domain. These were determined by the skill discovery module and used
in the SKILL-TREE and SKILL-LIST environments.

22



Published as a conference paper at ICLR 2025

Question
What is the material of the chair? 

Before Training (Wrong)
PaliGemma-3B: Wooden

After Training (Correct)
PaliGemma-3B: Plastic

Question
Does the forest look brown and tall?

Before Training (Wrong)
PaliGemma-3B: Yes

After  Training (Correct)
PaliGemma-3B: No

Skill
Material Identi�cation & Comparison

Skill
Environment Classi�cation

Figure 11: Qualitative examples of how training on generated data changes the response of a
PaliGemma-3B student.

we also show example datapoints generated by the teacher model. Note that these datapoints are
generated in their entirety, including the images shown in Fig. 7.

Model predictions before and after training. In Fig. 11 we show qualitative examples of how
training on generated data changes the response of a PaliGemma-3B student. The example on the
left falls under the “Material Identification and Comparison” skill that was identified during skill
discovery. Training on generated data leads to the model correctly identifying the material as “plastic”.
This may be a result of debiasing in terms of the possible materials for chairs in the synthetic data. On
the right is another tricky example, where the initial answer could be a result of the model confusing
the foreground (a giraffe) – for which “brown and tall” is true – with the background. After training
on synthetic data, this mistake is corrected.

E ACCURACY ON GENERATED DATA

We analyze the performance of the student on training data generated by the teacher over successive
iterations. We plot this data in Fig. 12. Concretely, for the Math and Multimodal environments,
we plot the accuracy of a student at iteration n on data generated in iteration n+ 1; thus, the data
is generated but it has not been seen by the student yet. The student improves on data generated
by the teacher through successive iterations as seen in Fig. 12. This shows that the data produced
by the teacher is consistent over iterations and the student is gradually improving at the target data
distribution. However, the data distribution produced by the teacher is complex enough that the
improvement is neither monotonic or accomplished in a single iteration.

F ABLATION: DATA VS TRAINING

To substantiate that claim student performance is increased due to added data points rather than
insufficient training, we take a subset of the data and increase the number of epochs such that the
student receives a fraction of the added data, but an equivalent number of epochs as training on the
full data. For example, if a student is normally trained for 10 epochs with 1000 generated training
datapoints, we take the data from the first data generation iteration (which might, for example, contain
200 training datapoints) and train an alternative student for 1000

200 ×10 = 50 epochs to isolate the effect
of the generated training data vs the added training epochs. We show the results in Tab. 8. In each case,

23



Published as a conference paper at ICLR 2025

0 2 4 6 8
Iteration

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

Accuracy on Generated Training Data
Generated Math Data
Generated Multimodal Data

Figure 12: Over successive iterations, the student becomes more proficient at data generated by the
teacher. Here, we plot the accuracy of a student from iteration n on data generated by the teacher in
iteration n+ 1, which has not been seen by the student.

Mutimodal (GQA) MATH Coding (LiveCodeBench)

Data Epochs Accuracy Data Epochs Accuracy Data Epochs Accuracy

Before Teaching - - 44.18 - - 15.78 - - 16.50
Less Data / Longer Training 20% 15 42.79 10% 30 13.98 20% 15 15.00
More Data / Standard Training 100% 3 47.90 100% 3 23.44 100% 3 18.91

Table 8: Training with less data but for more epochs produces significantly smaller improvements than
training with more data for fewer epochs, showing that data is responsible for increased performance
rather than more training.

training with less data but for more epochs produces substantially smaller improvements than training
with more data for fewer epochs, showing that data is responsible for increased performance rather
than more training. In fact, extending training without additional data typically hurts performance —
fresh data is essential. This highlights the importance of studying data generation as we do, as data
generation is one of the few ways of obtaining fresh data.

24



Published as a conference paper at ICLR 2025

QUESTION_TO_SKILL_TEMPLATE = jinja2.Template(
    """Consider this question about {{ topic }}.
The question tests the {{ topic }} skills of a {{ student_description }}.
Label this question with a specif�c skill that would be required to solve the question. 
You should be able to use the skill as a dictionary key in python. 
The skill name should be lower case letters only. 
The skill name should be very descriptive and you may use multiple words to describe the skills required in the question. 
If you do use multiple words per question, then join them by an underscore.

Question: {{question}}
"""
)

SKILL_TO_CATEGORIES_TEMPLATE = jinja2.Template(
    """Here is a list of skills required by a {{ student_description }} to solve questions about {{ topic }}�
{% for skill in skills %}
- {{- skill -}}
{% endfor %}

Reduce the number of unique skills by grouping similar skills into categories and give a descriptive name to each category.
When choosing categories, consider the following:
- The categories should be mutually exclusive.
- The categories should be collectively exhaustive.
- The categories should be descriptive of the skills they contain.

When designing the skill categories, keep in mind that we want to use the skill categories to guide training data collection to improve a {{ student_descriptor
}}'s performance on {{ topic }} tasks.
Design the skill categories so that collecting data for each category will help improve the model's performance on the underlying skills.

{% if num_categories is not none %}
Group the skills into at least {{ num_categories }} categories.
{% endif %}
{% if no_function_calling %}
Respond with a list of lines, where each line is a category name followed by a colon and a list of representative skills for that category.
Here is a Python template demonstrating the expected format:
```python3
template = "{index}. {skill_category}� {representative_skills}
```

Here are examples:
1. Bird Identif�cation: identifying_birds, recognizing_birds, bird_species
2. Welding: welding_steel, welding_aluminum, welding_titanium 

A skill category may encompass as many skill as you think are appropriate, but only list up to 3 representative skills.
Produce plain text, do not wrap the your response in backticks or triple backticks.
Write nothing but the lines that follow the template.
{% endif %}
"""
)

LABEL_QUESTIONS_WITH_SKILL_CATEGORIES_PROMPT = jinja2.Template(
    """Your task is to identify the skill required to solve a question that tests {{ topic }}.
Here is a list of possible skills required by the question: 
{% for skill in skills %}
- {{- skill -}}
{% endfor %}
Label the question with one skill from the list, and provide a reason for your choice.

You must ALWAYS choose a skill from the list of skills provided.

Question: {{question}}
"""
)

Figure 13: LLM prompt templates for skill discovery.

25



Published as a conference paper at ICLR 2025

You are a experienced machine learning engineer and your role is create training data for a model. 

Here are some examples of the style of question the model will be answering, and the correct response to the question:
{% for example in examples %}
- instruction: {{ example.instruction }}
- response: {{ example.ground_truth_label }}
{% endfor %}

We will focus on improving skills underneath the category of "{{ subskill }}".

You will propose hypotheses about what training data the model needs to improve its skills under "{{ subskill }}".
The hypotheses will contain specifications of the training data, and we will generate the data from those specifications, and then train the model on the data.

The training data you produce must be valid JSON using the provided schema. 
Here are descriptions of the fields in the schema:
- "instruction": The instruction you want the model to respond to.
- "image": The description of an image the instruction is about. 
- "response": The correct response to the instruction. 

When crafting the training data, consider the following:
- the instructions should be similar in style, length, and complexity to the examples provided
- the images should be relevant to the instruction
- the responses should be similar in style, length, and complexity to the examples provided
- think about what knowledge the model might be missing that would help it answer the question correctly, and craft your training data to give it that knowledge
- each response should be a logically _correct_ response to the instruction in the context of the image description
- the training data should be diverse and help the model improve on "{{ subskill }}"

Produce {{ num_data_specs }} specifications for training data.

Figure 14: LLM prompt template for data generation - GQA.

You are an experienced math educator and your task is to create math problems for improving a student's skills in solving math problems.

{% if already_generated_data %}
Here are some problems that you have already written:
{% for data in already_generated_data %}
- Problem: {{ data.problem }}
  - Chain of Thought: {{ data.chain_of_thought }}
  - Final Answer: {{ data.final_answer }}
{% endfor %}
{% endif %}

Each problem should improve the student's ability to solve problems under the category of "{{ subskill }}".
Each problem should require the student to know the concept of "{{ subskill }}".
The problems you produce must be valid JSON using the provided schema. 
Here are descriptions of the fields in the schema:
- "problem": The math problem you want the model to solve. Ensure this is valid LaTeX that is properly escaped for representation as a string in Python.
- "chain_of_thought": A step-by-step explanation of how to solve the problem. Ensure this is valid LaTeX that is properly escaped for representation as a string in
Python.
- "final_answer": The final answer to the problem as a LaTeX string. For example '17' or '\\frac{1}{2} or `\\matrix{1 & 2 \\cr 3 & 4}`. Do not write a sentence here, just
the answer.

Propose {{ data_budget }} new problems.

Figure 15: LLM prompt template for data generation - MATH.

26



Published as a conference paper at ICLR 2025

You are an expert Python engineer and competitive programming tutor.
You are helping a junior engineer improve their coding skills.

{% if lcb_examples %}
Here are representative examples of the kind of coding problems the junior engineer is facing.
{% for example in lcb_examples %}
Problem: 
{{ example.instruction }}
{% if example.starter_code %}
Starter Code: 
{{ example.starter_code }}
{% endif %}
{% if example.solution %}
Solution:
{{ example.solution }}
{% endif %}
{% endfor %}
{% endif %}

You are focusing on problems requiring skills in the category of "{{ subskill }}".

You will propose a new set of problems that require applying skills in the category of "{{ subskill }}".
The problems you propose should be such that solving them will help the junior engineer improve their skills in the category of "{{ subskill }}".

Here are some guidelines:
- the problems should be similar to coding problems on platforms like LeetCode, Codeforces, etc.
- the problems should require applying skills in "{{ subskill }}"
- only propose problems that YOU KNOW the solution to. This is CRITICAL.

# Output Format
For each problem, you need to include the following:
- instruction: A complete problem statement that would be found in a place like LeetCode. This will be shown verbatim to the junior engineer.
    - This should include an example input / output and a concise explanation for why the output is correct.
    - Do not write "### Question", just output the problem statement.
- starter_code: The starter code to the problem. Not all problems need starter code.

If you are including starter code, it should be formatted as follows:
```python
class Solution: 
    def functionWithMeaningfulName(self, parameter_1: list[SomeType], parameter_2: AnotherType):
        # YOUR CODE HERE
```

Keep "# YOUR CODE HERE" in the code block so the junior engineer knows where to fill in the solution.
You can change functionWithMeaningfulName to anything you want.
Don't forget to also change the parameter names to something that makes sense for the problem.

Propose no more than {{ num_data_specs }} new problems.
{{ num_no_starter_code_problems }} should have no starter code. 
The remaining {{ num_data_specs - num_no_starter_code_problems }} should have starter code.

Figure 16: LLM prompt template for data generation - LiveCodeBench.

You are a experienced engineer and your role is to provide training data to correct a model. 

The model was given the following instruction and responded incorrectly.
Instruction: {{ vqa_task_error.task_instance.instruction }}
Model Response: {{ vqa_task_error.predictor_response }}
Correct Response: {{ vqa_task_error.task_instance.ground_truth_label }}

Craft training data to improve the model. The model will be trained on the data you provide.
The training data you produce must be valid JSON with the following fields:
- "inferred_weak_skill": A concise to-the-point description of why you think the model responded incorrectly and how you'll fix it. Produce this first to give yourself a
chance to think.
- "instruction": The instruction you want the model to respond to.
- "image": The description of an image the instruction is about. 
- "response": The correct response to the instruction. 

When crafting the training data, consider the following:
- the instructions should be similar in style, length, and complexity to the original instruction
- the images should be relevant to the instruction
- the responses should be similar in style, length, and complexity to the original response
- think about what knowledge the model might be missing that would help it answer the question correctly, and craft your training data to give it that knowledge
- each response should be a logically _correct_ response to the instruction in the context of the image description
- the training data should be diverse enough to help the model generalize to new examples

Produce no more than {{ num_training_data }} training data examples.

Figure 17: LLM prompt template for generation policy for OPEN-ENDED environment.

27



Published as a conference paper at ICLR 2025

You are an experienced math educator and your task is to create training data for improving a model's skills in solving math problems, especially under the category
of "{{ skill_category }}".

Here are examples of mistakes the model made while solving problems requiring "{{ skill_category }}".
The model was given a math problem and responded incorrectly.
{% for math_task_error in math_task_errors %}
- Problem: {{ math_task_error.task_instance.instruction }}
  - Model Response: {{ math_task_error.predictor_response }}
  - Correct Response: {{ math_task_error.task_instance.ground_truth_label }}
{% endfor %}

You will propose hypotheses about what training data the model needs to improve its skills under "{{ skill_category }}".
For certain skills, the model may not have made any mistakes. In that case, propose hypotheses that will help the model improve on harder examples of the skill.

The training data you produce must be valid JSON using the provided schema. 
Here are descriptions of the fields in the schema:
- "inferred_weak_skill": A concise description of the skill under "{{ skill_category }}" that the model is weak at, and what kind of (problem, response) data will help the
model improve.
- "problem": The math problem you want the model to solve. Ensure this is valid LaTeX that is properly escaped for representation as a string in Python.
- "chain_of_thought": A step-by-step explanation of how the model should solve the problem. Ensure this is valid LaTeX that is properly escaped for representation as
a string in Python.
- "final_answer": The final answer to the problem as a LaTeX string. For example '17' or '\\frac{1}{2} or `\\matrix{1 & 2 \\cr 3 & 4}`. Do not write a sentence here, just
the answer.

Produce {{ num_hypotheses }} hypotheses.
For each hypothesis and weak skill, produce {{ num_data_specs }} specifications for training data.

Figure 18: Example of a prompt for the SKILL-LIST environment for MATH.

28


	Introduction
	DataEnvGym Environments and Agents
	Environment Modules
	Trainer and Evaluator
	Skill Discovery
	Skill Organization

	Data Generation Agent Modules
	Data Generation Policy
	Data Generation Engine


	Experiments
	Primary Results: VQA, Mathematics, Programming
	Analysis: Difficulty/Rarity, Training Dynamics, Skill Discovery Quality

	Related Work
	Conclusion
	Additional Related Work
	Additional Method Details
	Additional Multimodal and Tool-Use Benchmarks
	Training Details
	GQA
	LiveCodeBench and MATH

	LLM Details
	Data Generation Details
	Resource Costs
	Skill Forest Details
	Skill-Tree Policy
	Validation and Test Splits

	Qualitative Examples
	Accuracy on Generated Data
	Ablation: Data vs Training

