
A Batched Successive-Elimination Policy

For completeness, we include a description of the BaSE algorithm from Gao et al. [2019] below. The
algorithm itself is quite simple: it just eliminates all arms that are suboptimal with high probability
after each batch.

Algorithm 3: Batched Successive Elimination (BaSE) from Gao et al. [2019]
Input: Number K of arms, time horizon T , number of batches B, grid
t0 = 0 < t1, . . . , tB = T , parameter γ.

Set A = [K] (this will be the set of alive arms).
For each j ∈ [K], initialize nj = 0 and σj = 0.
for b← 1 to B − 1 do

for t← tb−1 + 1 to tb do
Let j be the (t mod |A|)th element of A.
Play arm j and receive reward xt.
nj ← nj + 1. σj ← σj + xt.

end
Let j∗ = arg maxj∈A σj/nj .
Let τ = maxj∈A nj (by construction, all nj for j ∈ A should be approximately equal).
for j ∈ A do

if σj∗/nj∗ − σj/nj ≥
√
γ/τ then

Remove j from A.
end

end
end
for t← tb−1 + 1 to tb do

Pull arm j∗ = arg maxj∈A σj/nj .
end

The authors show that when B = log log T , γ = O(log(KT )), and tb = O(T 1−1/2b) the above
algorithm incurs at most Õ(

√
KT ) regret. In our applications, we will set γ = O(log(NKT )); this

guarantees that the probability the best arm is ever eliminated from A is at most 1/poly(N,K, T )
(see Lemma 1 of Gao et al. [2019]), and therefore with high probability Algorithm 1 will never have
to abort.

B Simulations

In this appendix we empirically evaluate the learning algorithms we introduce on this paper on several
synthetic problem instances. We implement the following algorithms:

1. The Explore-Then-Commit algorithm (Algorithm 2) of Section 3.5.

2. Algorithm 1 with greedy decomposition, as defined in Section 3.4.1. Recall that this
decomposition algorithm simply assigns each of the users to the same arm, cycling through
the arms until all the demand is met.

3. Algorithm 1 with random decomposition, as defined in the beginning of Section 3.4.2.
This decomposition algorithm assigns each user to a random one of their active arms, and
generates such assignments until all demand is met.

4. Algorithm 1 with LP-based decomposition, as defined in Corollary 1 of Section 3.4.2. This
decomposition algorithm writes the demand vector as a convex combination of the vertices
of the polytope PC([K]) (each of which corresponds to a specific assignment).

5. A non-anonymous UCB algorithm, where each user independently runs UCB over the K
arms.

We evaluate these algorithms on two classes of instances, both with N = 50 users, K = 5 arms,
anonymity parameter C = 4, and T = 105 rounds. In the first class of instances (Figure 1), the
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Figure 1: Cumulative regrets over time of five different learning algorithms on instances with uniform
iid rewards (i.e., each user/arm distribution is a Bernoulli distribution with parameter independently
drawn from U([0, 1])). Grey regions represent 95% confidence intervals.

rewards for user i and arm j are drawn from a Bernoulli µij distribution, where µij is sampled
from the uniform distribution U([0, 1]) independently from all other means. The second class of
instances (Figure 2) is generated by the following linear model: each user i is assigned a random unit
norm 10-dimensional vector vi and each action j is assigned a random unit norm 10-dimensional
vector wj . The rewards for user i and arm j are drawn from a Bernoulli µij distribution, where
µij = 0.5(θij + 1), and where θij is the cosine similarity between vi and wj .

With these parameters, both classes of instances almost always satisfy the user-cluster assumption for
U ≥ C + 1, so the preconditions to apply Algorithm 1 (and the various decomposition algorithms)
almost always hold. Nonetheless, we implement Algorithm 1 semi-robustly: e.g., instead of aborting
when we don’t see a U -batched graph, we continue assigning users to random active arms. Similarly,
we implement all algorithms so that they are agnostic to U (essentially, we set U = C + 1 in
Algorithm 1 and compute an appropriate lower-bound on the approximation factor α). We optimize
various hyperparameters of our algorithm (e.g. the learning rate of BaSE) by validation on an
independent set of learning instances. See the attached code for additional details.

Figure 1 shows the average cumulative rewards (and confidence intervals) of twenty independent runs
of these algorithms on the class of instances with uniformly generated rewards. Unsurprisingly, the
one algorithm which violates anonymity (parallel UCB) does much better than all the C-anonymous
algorithms, obtaining a total regret about 10 times smaller than the next better (this is consistent with
our regret bounds, which indicate that at best our anonymous algorithms incur at least Ω(C) more
regret than non-anonymous algorithms). The ordering of the various anonymous algorithms is also as
expected. Explore-then-commit (which works without any guarantee on U and only uses one “batch”)
performs significantly worse than the variations of Algorithm 1 based off batched bandit algorithms.
Within the variations of Algorithm 1, the naive greedy decomposition performs worst. The variations
with random decomposition and LP decomposition perform similarly; this is not too surprising given
that the LP decomposition is in some sense a derandomization of the random decomposition.
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Figure 2: Same as Figure 1, but where reward distributions arise from a linear model instead of being
generated uniformly (see text).

Figure 2 shows the average cumulative rewards (and confidence intervals) of twenty independent runs
of these algorithms on instances generated by the linear model defined above. In most aspects, it is very
similar to Figure 1; one major qualitative difference, however, is that greedy decomposition appears
to perform much worse on this class of instances (whereas greedy decomposition outperformed
explore-then-commit in Figure 1, it does markedly worse than explore-then-commit here).

C Omitted proofs

C.1 Proof of Lemma 1

Proof of Lemma 1. First note that with a simple Hoeffding bound for an i and a b we have

Pr
(
|Ȳ i(tb)− µi| ≤

1

2

√
γ log(TK)

τb

)
< 2 exp

(
− 2τb

1

4

γ log(TK)

τb

)
= 2 exp

(
− 0.5γ log(TK)

)
≤ 1

(TK)2
. for large enough constant γ and K ≥ 2

By union bound this holds for all i and b with probability at least 1 − 1
TK . In the rest, w.l.g. we

assume this holds, since Db · E [maxj∈Ab
∆j ] × 1

TK ≤
Db

TK ≤ 1. This means that for any j that
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survives round b− 1, (i.e. ∀j ∈ Ab) we have

∆j = µ∗ − µj ≤ 2

√
γ log(TK)

τb−1

≤ 2

√
γ log(TK)

ub−1

K

= 2

√
γK log(TK)

a2−22−b

Therefore we have

Db · E
[
max
j∈Ab

∆j

]
≤ Db × 2

√
γK log(TK)

a2−22−b

≤ ub × 2

√
γK log(TK)

a2−22−b

= a2−2
1−b

× 2

√
γK log(TK)

a2−22−b

=
a2−2

1−b

a1−21−b × 2
√
γK log(TK)

= 2a
√
γK log(TK)

= Θ
(
T

1

2−21−B
√
γK log(TK)

)
= Θ

(√
γTK log(TK)

)
.

C.2 Proof of Lemma 2

Proof of Lemma 2. Assume (as above) that user i is the kth user in Gs. Let G′s = Gs,k = Gs \ {i}.
For each user i′ ∈ Gs, let Xi′ denote the r.v. representing the reward user i′ contributed in round 0 of
the above procedure, and for each user i′ ∈ G′s, let Yi′ denote the r.v. representing the reward user j
contributed in round k of the above procedure. Note that (by the definition of our setting), the value
Xi′ and Yi′ are independent r.v.s with E[Xi′ ] = E[Yi′ ] = µi′,π(i′). In addition, |Xi′ |, |Yi′ | ∈ [0, 1],
so Var(Xi′),Var(Yi′) ≤ 1

4 .

Then, since

µ̂i,π(i) = rs,0 − rs,k = Xi +
∑
i′∈G′

(Xi′ − Yi′),

it follows that

E[µ̂i,π(i)] = E[Xi] +
∑
i′∈G′s

(E[Xi′ ]− E[Yi′ ]) = E[Xi] = µi,π(i).

Furthermore, note that each of the r.v.s Xi′ and Yi′ are 1-subgaussian. Since µ̂i,π(i) is the sum of
at most 4C + 1 independent 1-subgaussian variables, µ̂i,π(i) itself is (4C + 1)-sub-Gaussian (and
hence O(C)-subgaussian).

C.3 Proof of Theorem 1

Proof of Theorem 1. Fix a user i. We will show that the expected regret incurred by user i is at most
Õ(C
√
αKT ), thus implying the theorem statement. As mentioned in Appendix A, the guarantees
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of BaSE imply that with high probability this algorithm will never abort, so from now on we will
condition on the algorithm not aborting.

Consider the expected regret incurred by user i during batch b of Algorithm 1. Since i is only ever
assigned to arms in Ai,b during this batch, and since user i gets matched a total of α(2C + 2)Db

times during this batch, this expected regret is at most

α(2C + 2)Db · E
[

max
j∈Ai,b

∆i,j

]
,

where ∆i,j = (maxj′ µi,j′) − µj . On the other hand, by Lemma 1 (and using the fact that the
feedback we provide to BaSE is O(C)-subgaussian by Lemma 2), this is at most

α(2C + 2) · Õ
(√

C ·
√
KT ′

)
= Õ(C

√
αKT ),

as desired.

C.4 Proof of Lemma 3

Proof of Lemma 3. By Caratheodory’s theorem, if βw ∈ PC , we can write βw as the convex
combination of at most NK + 1 vertices v(1), v(2), . . . v(NK+1) ∈ PC . Let us write

βw =

NK+1∑
`=1

λ`v
(`) (2)

where
∑
` λ` = 1. In particular, we have that:

Dw =

NK+1∑
`=1

Dλ`
β

v(`). (3)

Consider the decomposition which contains dDλ`/βe instances of the assignment v(`) for each
1 ≤ ` ≤ NK+1 (here, “the assignment v(`)” refers to any assignment which sends i to j if v(`)ij = 1).
By (3), this assignment is guaranteed to contain at least Dwij = D/|Ai| assignments which are
informative for the pair (i, j), so this is a valid C-anonymous decomposition. Moreover, the number
of assignments in this decomposition is at most

NK+1∑
`=1

⌈
Dλ`
β

⌉
≤ (NK + 1) +

NK+1∑
`=1

Dλ`
β

=
1

β
D +NK + 1.

Likewise, if there are R = αD assignments M1,M2, . . .MR which form a C-anonymous decompo-
sition of G, let v(1), v(2), . . . , v(R) be the vertices of PC corresponding to these assignments. Then
we are guaranteed that

Dw ≤ v(1) + v(2) + · · ·+ v(R),

so in particular we must have

1

α
w = λ · v

(1) + v(2) + · · ·+ v(R)

R
+ (1− λ) · 0

for some λ ∈ [0, 1]. Note that the RHS is a convex combination of vertices of PC (in particular,
0 ∈ PC), so 1

αw ∈ PC .
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C.5 Proof of Lemma 4

Proof of Lemma 4. Note that the vertices ofPC(S) satisfy all the constraints in (1), and every integral
point satisfying (1) satisfies the conditions to be a vertex of PC(S). It therefore suffices to show that
the polytope defined by (1) is integral.

But this immediately follows, since the matrix of constraints in (1) are equivalent to the totally
unimodular matrix defining the bipartite matching polytope between [N ] and [K].

C.6 Proof of Lemma 5

Proof of Lemma 5. We show w satisfies the constraints of (1) for S = [K]. The only nontrivial
constraint is showing that

∑
i∈[N ]

wij ≥ C + 1, ∀j ∈ [K].

Note that by the definition of the user-cluster assumption, there are at least U choices of i for which
wij > 0. By the definition of wij , if wij > 0, Wij ≥ 1/K. Since U ≥ K(C + 1), the above
inequality immediately follows.

C.7 Proof of Theorem 2

Proof of Theorem 2. Note that, by construction, in the first Texp rounds of this algorithm, we obtain
≈ Texp/(K(2C+2)) independent unbiased estimators ˆµi,j from the feedback-eliciting sub-algorithm
for each user/arm pair (i, j). That is, for each (i, j) we are guaranteed that each nij ≥ Texp/(K(2C+
2)) and that σij is the sum of nij independent copies of an unbiased estimator for µij with C-
subgaussian noise.

It follows that σij/nij = mij is an unbiased estimator for µij with C/nij-subgaussian noise. Let
maxij C/nij = λ; note that λ ≤ KC(2C + 2)/Texp = Õ(K2/3C4/3T−2/3).

Since mij − µij is λ-subgaussian, it follows from Hoeffding’s inequality that

Pr [|mij − µij | ≥ ε] ≤ 2 exp

(
− ε

2

2λ

)
.

We will set ε =
√

4λ log(NKT ); it then follows that

Pr [|mij − µij | ≥ ε] ≤
2

(NKT )2
.

Union-bounding over all NK pairs (i, j) ∈ [N ]× [K], with high probability (at least 1− 1/T 2) all
estimates mij are within ε of µij . Fix i ∈ [N ]. It then follows that if we let ĵ = arg maxj σij/nij ,
that µiĵ ≥ maxj µij − 2ε. In particular, for each remaining round after round Texp, user i incurs at
most ε regret.

The total expected regret from rounds up to Texp is at most NTexp. The total expected regret
from rounds after Texp is at most NTε. It follows that the overall expected regret is at most
N(Texp + Tε) = Õ(NC2/3K1/3T 2/3) as desired.

C.8 Proof of Corollary 1

Proof of Corollary 1. Follows from Lemmas 3 and 5. The decomposition of w into vertices of
Pc([K]) can be found efficiently from formulation (1) of Pc([K]) as the intersection of a small
number of half-spaces and following the algorithmic proof of Caratheodory’s theorem (see e.g.
Hoeksma et al. [2016] for details).
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C.9 Proof of Lemma 6

Proof of Lemma 6. Fix a, and set w(a)
ij = 1/|Ai ∩ Sa| if j ∈ Ai ∩ Sa, and w(a)

ij = 0 otherwise. We
first claim w(a) ∈ Pc(Sa). As in Lemma 5, the only nontrivial condition to check is whether

∑
i∈[N ]

w
(a)
ij ≥ C + 1

holds for all j ∈ Sa. As before, for each j ∈ Sa, there must be at least U users i for which j ∈ Ai,
and thus at least U users i where w(a)

ij > 0. But now, if w(a)
ij > 0, then w(a)

ij ≥ 1/(U/(C + 1)) =

(C + 1)/U , and the above inequality follows.

To see that w ≤
∑α
i=1 w

(a), note that if j ∈ Ai ∩Sa, then wij = 1/|Ai| ≤ 1/|Ai ∩Sa| = w
(a)
ij .

C.10 Proof of Corollary 2

Proof of Corollary 2. By Lemma 6, we can partition K into α sets Sa and write

1

α
w = λ ·

(
1

α

α∑
a=1

w(a)

)
+ (1− λ) · 0

where λ ∈ [0, 1] and eachw(a) ∈ PC(Sa). This proves that 1
αw ∈ PC , and thus such a decomposition

exists by Lemma 3. Moreover, we can efficiently find such a decomposition by decomposing each of
the terms w(a) into a convex combination of 0 (which lies in PC(S) for all S) and at most N |Sa|
other vertices of PC(Sa) (since PC(Sa) is only N |Sa|-dimensional).

C.11 Proof of Theorem 3

Proof of Theorem 3. Consider the following variant of the anonymous bandits problem. As in the
anonymous bandits problem, an instance of this problem is specified by a number of users N , a
number of arms K, an anonymity parameter C, a time horizon T , and for every pair of user i and arm
j a 1-subgaussian reward distribution Di,j with mean µi,j ∈ [0, 1]. However, unlike the anonymous
bandits problem which has a centralized learner, in this variant each user is an independent learner
– moreover, we prohibit users from communicating with one another or observing the feedback of
other users (in this problem, users’ actiuns will not interact). On the other hand, we will tell each
user i all distributions Di′,j belonging to users i′ 6= i (so they only need to learn their own reward
distributions).

During each round t each user i will choose both a target arm ji,t (as in anonymous bandits), and
also a subset Fi,t ⊆ [N ] \ {i} of at least C − 1 other users. User i (indirectly) obtains reward ri,ji,t ,
but only observes as feedback the sum

ri,πt(i) +
∑
i′∈Fi,t

ri′,ji,t ,

where each ri,j is independently drawn from Di,j . The goal is to maximize the total reward among
all users, and regret is defined analogously to how it is in the anonymous bandits problem.

We first claim the above problem is strictly easier than the anonymous bandits problem, in the sense
that any algorithm for the anonymous bandits problem that achieves expected regret R on a specific
instance can be converted to an algorithm for the above problem that achieves expected regret R
on the analogous instance. To see this, fix an algorithm A for the anonymous bandits problem
and a user i in our variant of the problem. Note that user i can accurately simulate A with their
knowledge of other distributions Di′,j and the feedback provided in the variant: in particular, if A
plays assignment πt in round t, user i should set jt = πt(i) and set Fi,t = π−1t (i) (if |π−1t (i)| < C,
A got no information on i in round t and the user can set Fi,t arbitrarily). User i then receives as
feedback the aggregate reward from their group in the current execution of A, and can simulate
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aggregate rewards from other groups by sampling from Di′,j′ . By doing this, user i receives the same
expected reward in this problem as user i would in the analogous anonymous bandits problem.

We now show the above problem is hard. Consider the following distribution over instances of the
above problem. Fix K and C, and choose an N � K2(C + 1) and T � max(K,C,N). For each
i ∈ [N ], choose an arm j∗(i) uniformly at random from [K] (this will be user i’s unique favorite
arm; since N � K ·K(C + 1), with high probability this assignment will satisfy the user-cluster
assumption for U = K(C + 1)). For each pair i ∈ [N ] and j ∈ [K], let Di,j = N (0, 1) if j 6= j∗(i),

and let Di,j = N
(√

C/T , 1
)

if j = j∗(i).

Consider the problem faced by user i when faced with this distribution. If in round t user i selects
arm j, then regardless of their choice of set Fi,t, they will observe a random variable drawn from
N (µi,j +M,C), where M =

∑
i′∈Fi,t

µi′,j is an offset term known to user i. After subtracting out
M , this means that if user i selects arm j, they get an independent random variable from N (µi,j , C).
Since exactly one of the µi,j (as j ranges over [K]) equals

√
C/T and all other µi,j = 0, this is

exactly the hard distribution for classic C-Gaussian bandits. It is known (see Chapter 15 of Lattimore
and Szepesvári [2020]) that any algorithm must incur at least Ω(

√
CKT ) regret on this distribution

of problem instances. It therefore follows that each user i incurs at least Ω(
√
CKT ), and therefore

overall we incur at least Ω(N
√
CKT ) regret over all N users.

C.12 Proof of Theorem 4

Proof of Theorem 4. For a fixed value of T , we will randomize uniformly between the following two
instances. In both instances we will set N = K = 3, C = 2, and all reward distributions Di,j will be
Bernoulli distributions (defined by their mean µi,j). Let ε = T−1/3. In the first instance we set

[
µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

]
=

1 0 0
0 1

2 − ε
1
2 + ε

0 1
2 + ε 1

2 − ε

 ,
and in the second instance we set

[
µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

]
=

1 0 0
0 1

2 + ε 1
2 − ε

0 1
2 − ε

1
2 + ε

 .
Intuitively, user 1 likes only arm 1 (and arm 1 is only liked by user 1). User 2 either slightly prefers
arm 2 to arm 3 or arm 3 to arm 2, and user 3 has the opposite preferences of user 2. We will let the
random variable X denote which instance we are in, with X = 1 denoting the first instance and
X = −1 denoting the second.

Consider the set of actions that reveal information about the value of X . Since C = 2, we must
allocate at least 2 people to an arm. We know all the rewards (deterministically) for arm 1, so we
must allocate this group of people to either arm 2 or 3. Finally, if we allocate both user 2 and user 3
to arm 2 or 3, we learn nothing about the instance we belong to (since they have symmetric actions).
Therefore the only way to gain any information about X is to either allocate users {1, 2} or {1, 3} to
one of arms 2 or 3.

Any of these allocations gives us equivalent information about X; in one of the two instances, we
will receive a random variable 1 + Bern(1/2 + ε), and in the other instance we will receive a random
variable 1 + Bern(1/2 − ε). In addition, in any of these allocations, we incur at least a net regret
of 1 from querying this allocation (since we assign user 1 to an arm with reward 0). We call any
assignment involving one of these allocations an “information-revealing assignment”.

Assume we have an algorithm which sustains expected regret at most R. Since each information-
revealing assignment incurs regret at least 1, by Markov’s inequality the probability the algorithm
performs more than 2R information-revealing assignments is at most 1/2. Now, assume that at round
t, the algorithm has performed only r information-revealing assignments. By the discussion above,
this means that the only information the algorithm has regardingX is r samples from Bern(1/2+Xε).
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In general, the best statistical distinguisher between Bern(1/2 + ε) and Bern(1/2− ε) requires at
least C/ε2 samples (for some constant C > 0) to distinguish these two distributions with probability
at least 3/4. Therefore, if r ≤ C/ε2, our learning algorithm cannot distinguish between X = 0 and
X = 1 with probability greater than 3/4, and is therefore guaranteed to incur at least Ω(ε) regret (by
e.g. allocating user 2 to the wrong arm).

Now, if 2R < C/ε2, then in every round we have performed fewer than C/ε2 information-revealing
assignments, so we incur at least Ω(εT ) = Ω(T 2/3) regret. On the other hand, if 2R ≥ C/ε2, then
R ≥ C/2ε2 = Ω(T 2/3), so in this case the algorithm also incurs at least Ω(T 2/3) regret.

C.13 Proof of Theorem 5

Proof of Theorem 5. For a fixed value of T , we will randomize uniformly between the following two
instances. In both instances N = K = C = 2, and in both instances all reward distributions are
completely deterministic. In the first instance we set (µ11, µ12, µ21, µ22) = (1, 0, 0, 1) (user 1 likes
arm 1 and user 2 likes arm 2); in the second instance we set (µ11, µ12, µ21, µ22) = (0, 1, 1, 0) (user 1
likes arm 2 and user 2 likes arm 1).

Since C = 2, the only actions we can take which result in feedback are assigning both users to the
same arm, but in both problem instances this results in an aggregate reward of 1 (and hence provides
no information as to which instance we have chosen). By the choice of rewards, if an assignment
receives reward x in the first instance, it receives reward 2 − x in the second instance – since it is
impossible to learn any information about the choice of instance, this means any algorithm receives
expected reward 1 per round. On the other hand, the optimal algorithm for each instance receives an
expected reward of 2 per round. This implies the expected regret is at least T , as desired.
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