
A Missing Proofs of Section 3

Proof. (of Lemma 3.1)

For notation convenience, we define Sj,k and SOPT
j,k to be the set of bidders who get allocated to any

of the top-k slots of auction j in A and OPT, respectively.

The optimal welfare can be written, by exchanging summations, as

Wel(OPT) =
mX

j=1

sjX

k=1

X

i2SOPT
j,k

(posj,k � posj,k+1) · vi,j ,

and the welfare of A on bids b can be written as

Wel(A(b)) =
mX

j=1

sjX

k=1

X

i2Sj,k

(posj,k � posj,k+1) · vi,j .

We start by lower bounding Rev(A(b)). For each auction j, by the condition on payments and
rearranging terms, we get

Rev(A(b)) �
mX

j=1

sjX

k=1

(posj,k � posj,k+1) ·
X

i2Sj,k

max(b̂k+1,j � zi,j , vi,j · �).

For k-th slot in auction j, we partition the revenue into two components:
X

i2Sj,k

max(b̂k+1,j � zi,j , vi,j · �)

=
X

i2Sj,k\SOPT
j,k

max(b̂k+1,j � zi,j , vi,j · �) +
X

i2Sj,k\SOPT
j,k

max(b̂k+1,j � zi,j , vi,j · �)

For the first component, we simply have
X

i2Sj,k\SOPT
j,k

max(b̂k+1,j � zi,j , vi,j · �) �
X

i2Sj,k\SOPT
j,k

vi,j · �. (2)

For the second component, consider any i 2 SOPT
j,k \Sj,k. We know in A, bidder i ranks out of top-k

in auction j. This means b̂k+1,j is at least as high as bidder i’s score which is at least vi,j · ↵+ zi,j .
Since |SOPT

j,k | = |Sj,k| = k, we know |Sj,k\SOPT
j,k | = k � |Sj,k \ SOPT

j,k | = |SOPT
j,k \Sj,k|. Therefore,

X

i2Sj,k\SOPT
j,k

max(b̂k+1,j � zi,j , vi,j · �)

�|Sj,k\SOPT
j,k | · b̂k+1,j �

X

i2Sj,k\SOPT
j,k

zi,j

=|SOPT
j,k \Sj,k| · b̂k+1,j �

X

i2Sj,k\SOPT
j,k

zi,j

�

0

@
X

i2SOPT
j,k \Sj,k

vi,j · ↵+ zi,j

1

A�

0

@
X

i2Sj,k\SOPT
j,k

zi,j

1

A

�

0

@
X

i2SOPT
j,k \Sj,k

vi,j · (↵+ µ)

1

A�

0

@
X

i2Sj,k\SOPT
j,k

vi,j · ⌫

1

A (3)
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We also have

X

i2Sj,k\SOPT
j,k

max(b̂k+1,j � zi,j , vi,j · �) �
X

i2Sj,k\SOPT
j,k

vi,j · �. (4)

Therefore, by inequalities (3) and (4), we get

X

i2Sj,k\SOPT
j,k

max(b̂k+1,j � zi,j , vi,j · �)

=
�

� + ⌫

0

@
X

i2Sj,k\SOPT
j,k

max(b̂k+1,j � zi,j , vi,j · �)

1

A+
⌫

� + ⌫

0

@
X

i2Sj,k\SOPT
j,k

max(b̂k+1,j � zi,j , vi,j · �)

1

A

�

0

@
X

i2SOPT
j,k \Sj,k

vi,j · (↵+ µ) · �

� + ⌫

1

A�

0

@
X

i2Sj,k\SOPT
j,k

vi,j · ⌫ · �

� + ⌫

1

A+

0

@
X

i2Sj,k\SOPT
j,k

vi,j · � · ⌫

⌫ + �

1

A

=
X

i2SOPT
j,k \Sj,k

vi,j ·
(↵+ µ)�

� + ⌫
.

Together with inequality (2), we have

Rev(A(b)) �
mX

j=1

sjX

k=1

(posj,k � posj,k+1) ·
X

i2Sj,k

max(b̂k+1,j � zi,j , vi,j · �)

�
mX

j=1

sjX

k=1

(posj,k � posj,k+1)

0

@
X

i2Sj,k\SOPT
j,k

vi,j · � +
X

i2SOPT
j,k \Sj,k

vi,j ·
(↵+ µ)�

� + ⌫

1

A

�
mX

j=1

sjX

k=1

(posj,k � posj,k+1)
X

i2SOPT
j,k

vi,j ·min

✓
(↵+ µ)�

� + ⌫
,�

◆

=min

✓
(↵+ µ)�

� + ⌫
,�

◆
· Wel(OPT).

Now we lower bound Wel(A(b)). By the third condition, we know Wel(A(b)) � Rev(A(b)). Here
we prove a slightly different lower bound on Rev(A(b)) using inequalities (2) and (3):

Rev(A(b))

�
mX

j=1

sjX

k=1

(posj,k � posj,k+1) ·
X

i2Sj,k

max(b̂k+1,j � zi,j , vi,j · �)

�
mX

j=1

sjX

k=1

(posj,k � posj,k+1)

0

@
X

i2Sj,k\SOPT
j,k

vi,j · � +
X

i2SOPT
j,k \Sj,k

vi,j · (↵+ µ)�
X

i2Sj,k\SOPT
j,k

vi,j · ⌫

1

A

(5)
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There are two cases. If ↵+ µ� �  ⌫, we have

Wel(A(b))

� ⌫

1 + ⌫
· Wel(A(b)) +

1

1 + ⌫
· Rev(A(b))

�
mX

j=1

sjX

k=1

(posj,k � posj,k+1)

0

@
X

i2Sj,k\SOPT
j,k

vi,j +
X

i2Sj,k\SOPT
j,k

vi,j

1

A · ⌫

1 + ⌫

+
mX

j=1

sjX

k=1

(posj,k � posj,k+1)

·

0

@
X

i2Sj,k\SOPT
j,k

vi,j · � +
X

i2SOPT
j,k \Sj,k

vi,j · (↵+ µ)�
X

i2Sj,k\SOPT
j,k

vi,j · ⌫

1

A · 1

1 + ⌫

(by the definition of Wel(A(b)) and inequality (5))

=
mX

j=1

sjX

k=1

(posj,k � posj,k+1)

0

@
X

i2Sj,k\SOPT
j,k

vi,j ·
� + ⌫

1 + ⌫
+

X

i2SOPT
j,k \Sj,k

vi,j ·
↵+ µ

1 + ⌫

1

A

�↵+ µ

1 + ⌫
·

mX

j=1

sjX

k=1

(posj,k � posj,k+1)

0

@
X

i2Sj,k\SOPT
j,k

vi,j +
X

i2SOPT
j,k \Sj,k

vi,j

1

A

=
↵+ µ

1 + max(⌫,↵+ µ� �)
· Wel(OPT).

If ↵+ µ� � > ⌫, we have

Wel(A(b))

� ↵+ µ� �

1 + ↵+ µ� �
· Wel(A(b)) +

1

1 + ↵+ µ� �
· Rev(A)

� ↵+ µ

1 + ↵+ µ� �
·

mX

j=1

sjX

k=1

(posj,k � posj,k+1)

·

0

@
X

i2Sj,k\SOPT
j,k

vi,j +
X

i2SOPT
j,k \Sj,k

vi,j +
X

i2Sj,k\SOPT
j,k

vi,j ·
↵+ µ� � � ⌫

↵+ µ

1

A

(by the definition of Wel(A(b)) and inequality (5))

� ↵+ µ

1 + ↵+ µ� �
·

mX

j=1

sjX

k=1

(posj,k � posj,k+1)

0

@
X

i2Sj,k\SOPT
j,k

vi,j +
X

i2SOPT
j,k \Sj,k

vi,j

1

A

=
↵+ µ

1 + max(⌫,↵+ µ� �)
· Wel(OPT).

B Missing Proofs of Section 4.1

Proof. (of Lemma 4.1) We prove by contradiction. Suppose that there exists some b 2 ⇥ such that
bi0,j0 < vi0,j0 for some i0 2 [n], j0 2 [m], and vi0,j0 ranks in top-sj0 in auction j0. Define b0i0 to be the
same as bi0 except b0i0,j0 = vi0,j0 . We want to show b0i0 dominates bi0 .

We start with proving the first requirement for b0i0 dominating bi0 . For any b0�i0 , let x, p be the
allocation of bids (bi0 , b0�i0), and x0, p0 be the allocation of bids (b0i0 , b

0
�i0). Since bids are the same in
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auctions other than j0, we know that xi0,j,k = x0
i0,j,k and pi0,j = p0i0,j for any j 6= j0 and k 2 [sj ].

Therefore, the payment difference for bidder i is
mX

j=1

(p0i0,j � pi0,j) = p0i0,j0 � pi0,j0 .

and the welfare difference for bidder i is
mX

j=1

sjX

k=1

(x0
i0,j,k � xi0,j,k) · vi0,j · posj,k =

sj0X

k=1

(x0
i0,j0,k � xi0,j0,k) · vi0,j0 · posj0,k

We want to show that

0  p0i0,j0 � pi0,j0 
sj0X

k=1

(x0
i0,j0,k � xi0,j0,k) · vi0,j0 · posj0,k.

There are two cases. The first case is that bidder i0 does not get allocated in auction j0 in allocation
x. In this case, we only need to show 0  p0i0,j0 

Psj0
k=1 x

0
i0,j0,k · vi0,j0 · posj0,k. Notice that

bi0,j0 = vi0,j0 . And we can derive from the payment definition of VCG that the payment is non-
negative and at most bid multiplied by the position normalizer. Therefore, we have 0  p0i0,j0 Psj0

k=1 x
0
i0,j0,k · vi0,j0 · posj0,k .

In the second case, bidder i0 gets allocated to some slot q in auction j0 in allocation x. Since
b0i0,j0 = vi0,j0 > bi0,j0 , we know bidder i0 gets allocated to some slot q0 in auction j0 in allocation x
and we have q0  q. Now we can write the welfare difference

sj0X

k=1

(x0
i0,j0,k � xi0,j0,k) · vi0,j0 · posj0,k = vi0,j0 · (posj0,q0 � posj0,q).

On the other hand, the payment difference p0i0,j0 � pi0,j0 can be upper bounded by (posj0,q0 � posj0,q)
multiplied by the maximum of ri0,j0 and vi0,j0 . And we also know that ri0,j0  vi0,j0 . Therefore,

0  p0i0,j0 � pi0,j0  (posj0,q0 � posj0,q) · vi0,j0

To sum up, we get that the payment difference is at most the welfare difference, and they are
non-negative, i.e.

0 
mX

j=1

(p0i0,j � pi0,j) 
mX

j=1

sjX

k=1

(x0
i0,j,k � xi0,j,k) · vi0,j · posj,k.

Since �i0 2 [0, 1], this implies that the objective is higher in (x0, p0) than in (x, p), i.e.
mX

j=1

sjX

k=1

x0
i0,j,k · vi0,j · posj,k � �i0 ·

mX

j=1

p0i0,j �
mX

j=1

sjX

k=1

xi0,j,k · vi0,j · posj,k � �i0 ·
mX

j=1

pi0,j .

And the constraint is better satisfied, i.e.
mX

j=1

sjX

k=1

x0
i0,j,k · vi0,j · posj,k �

mX

j=1

p0i0,j �
mX

j=1

sjX

k=1

xi0,j,k · vi0,j · posj,k �
mX

j=1

pi0,j .

They together imply the first requirement for b0i0 dominating bi0 is satisfied.

Now we continue to prove the second requirement for b0i0 dominating bi0 . Consider the following
b0�i0 :

• For auction j0, and bidder i 6= i0 with value ranks higher than bidder i in auction j0, set
b0i,j0 = vi,j0 + zi0,j0 .

• For auction j0, and bidder i 6= i0 with value ranks lower than bidder i in auction j0, set
b0i,j0 =

vi,j0+bi0,j0
2 + zi0,j0 � zi,j0 .
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• For other auction j 6= j0 and bidder i 6= i0, set b0i,j = 0.

Again, let x, p be the allocation of bids (bi0 , b0�i0), and x0, p0 be the allocation of bids (b0i0 , b
0
�i0). For

auction j0, let bidder i0’s value ranks at q. With bid b0i0,j0 = vi0,j0 , it’s easy to check that bidder i0’s
score ranks also at q. On the other hand, with bid bi0,j0 < vi0,j0 , bidder i0 ranks the last. So in x0 the
allocation is better and it’s easy to see that the welfare improvement in x0 is larger than the payment
increase. For other auction j 6= j0, bidder i0 gets the same allocation and payments in (x, p) and
(x0, p0). Therefore, we know

Weli0(x0, p0)� �i0 · Revi0(x
0, p0) > Weli0(x, p)� �i0 · Revi0(x, p).

In auction j 6= j0, competing bids are 0 and therefore, we bound payments by reserves:

p0i0,j 
sjX

k=1

x0
i0,j,k · ri0,j · posj,k 

sjX

k=1

x0
i0,j,k · vi0,j .

In auction j0, we bound payments by the bid b0i0,j0 = v0i0,j0 :

p0i0,j0 
s0jX

k=1

x0
i0,j0,k · bi0,j0 · posj0,k =

s0jX

k=1

x0
i0,j0,k · vi0,j0 .

They together give Revi0(x0, p0)  Weli0(x0, p0).

With Weli0(x0, p0) � �i0 · Revi0(x0, p0) > Weli0(x, p) � �i0 · Revi0(x, p) and Revi0(x0, p0) 
Weli0(x0, p0), we know the second requirement for b0i0 dominating bi0 is satisfied. Now we have
b0i0 dominates bi0 . Thus, we get a contradiction.

C Missing Proofs of Section 4.2

Proof. (of Lemma 4.5) We prove by contradiction. Suppose that there exists some uniform bids
b 2 ⇥u such that bi0,j0 < vi0,j0 for some i0 2 [n], j0 2 [m]. Since bi0 is a uniform bidding, we can
write bi0,j = �i0 · vi0,j , 8j 2 [m], and we know �i0 < 1.

Define b0i0 to be a uniform bidding such that b0i0,j = vi0,j , 8j 2 [m]. We want to show b0i0 dominates
bi0 .

We start with proving the first requirement for b0i0 dominating bi0 . For any b0�i0 , let x, p be the allocation
of bids (bi0 , b0�i0), and x0, p0 be the allocation of bids (b0i0 , b

0
�i0). Since bi0,j � b0i0,j , 8j 2 [m], we

know that bidder i0 is ranked no worse in x than in x0 for each auction j 2 [m]. This implies that

Weli0(x0, p0) � Weli0(x, p)

On the other hand, we know that in GSP with reserve, the payment in each auction for each bidder is
at most its bid multiplied by the position normalizer. Therefore, we have

Revi0(x0, p0) 
mX

j=1

sjX

k=1

x0
i0,j,k · b0i0,j · posj,k 

mX

j=1

sjX

k=1

x0
i0,j,k · vi0,j · posj,k = Weli0(x0, p0).

Now we continue to prove the second requirement for b0i0 dominating bi0 . Consider the following
b0�i0 :

• For auction j0, and bidder i 6= i0 with value ranks higher than bidder i in auction j0, set
b0i,j0 = vi,j0 + zi0,j0 .

• For auction j0, and bidder i 6= i0 with value ranks lower than bidder i in auction j0, set
b0i,j0 =

vi,j0+bi0,j0
2 + zi0,j0 � zi,j0 .

• For other auction j 6= j0 and bidder i 6= i0, set b0i,j to be consistent with b0i,j0 according to
uniform bidding.

17



Again, let x, p be the allocation of bids (bi0 , b0�i0), and x0, p0 be the allocation of bids (b0i0 , b
0
�i0). For

auction j0, let bidder i0’s value ranks at q. With bid b0i0,j0 = vi0,j0 , it’s easy to check that bidder i0’s
score ranks also at q. On the other hand, with bid bi0,j0 < vi0,j0 , bidder i0 ranks the last. So in x0 the
allocation is better and it’s easy to see that the welfare improvement in x0 is larger than the payment
increase. For other auction j 6= j0, bidder i0 gets the same allocation and payments in (x, p) and
(x0, p0). Therefore, we know

Weli0(x0, p0)� �i0 · Revi0(x
0, p0) > Weli0(x, p)� �i0 · Revi0(x, p).

And we have already shown Revi0(x0, p0)  Weli0(x0, p0) for the first requirement.

With Weli0(x0, p0) � �i0 · Revi0(x0, p0) > Weli0(x, p) � �i0 · Revi0(x, p) and Revi0(x0, p0) 
Weli0(x0, p0), we know the second requirement for b0i0 dominating bi0 is satisfied. Thus, we have b0i0
dominates bi0 . And we get a contradiction.

Proof. (of Lemma 4.7) We prove by contradiction. Suppose that there exists some b 2 ⇥ such that
bi0,j0 < ri0,j0 for some i0 2 [n], j0 2 [m]. Define b0i0 to be the same as bi0 except b0i0,j0 = ri0,j0 . We
want to show b0i0 dominates bi0 .

We start with proving the first requirement for b0i0 dominating bi0 . For any b0�i0 , let x, p be the
allocation of bids (bi0 , b0�i0), and x0, p0 be the allocation of bids (b0i0 , b

0
�i0). Since bids are the same in

auctions other than j0, we know that xi0,j,k = x0
i0,j,k and pi0,j = p0i0,j for any j 6= j0 and k 2 [sj ].

Since bi0,j0 < ri0,j0 , we know bidder i0 is not allocated in auction j0 in x. So pi0,j0 = 0 and
xi0,j0,k = 0, 8k 2 [sj0 ]. Therefore, the payment difference for bidder i is

mX

j=1

(p0i0,j � pi0,j) = p0i0,j0 .

and the welfare difference for bidder i is
mX

j=1

sjX

k=1

(x0
i0,j,k � xi0,j,k) · vi0,j · posj,k =

sj0X

k=1

x0
i0,j0,k · vi0,j0 · posj0,k.

We want to show

0  p0i0,j0 
sj0X

k=1

x0
i0,j0,k · vi0,j0 · posj0,k.

There are two cases. The first case is that bidder i0 does not get allocated in auction j0 in allocation
x0. In this case, we simply have

0 = p0i0,j0 =

sj0X

k=1

x0
i0,j0,k · vi0,j0 · posj0,k.

In the second case, bidder i0 gets allocated to some slot q0 in auction j0 in allocation x0. We can
write

Psj0
k=1 x

0
i0,j0,k · vi0,j0 · posj0,k as posj0,q0 · vi0,j0 · �. Since in GSP with reserve, the payment in

each auction for each bidder is at most the bid multiplied by the position normalizer and we have bid
b0i0,j0 = ri0,j0 , we get

0  p0i0,j0 
sj0X

k=1

x0
i0,j0,k · ri0,j0 · posj0,k 

sj0X

k=1

x0
i0,j0,k · vi0,j0 · posj0,k.

Now we have

0 
mX

j=1

(p0i0,j � pi0,j) 
mX

j=1

sjX

k=1

(x0
i0,j,k � xi0,j,k) · vi0,j · posj,k.

The rest of the proof follows exactly as the proof for the first requirement in Lemma 4.1.
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Now we proceed to prove the second requirement for b0i0 dominating bi0 . Consider the simple b0�i0

with all zeroes. Again, let x, p be the allocation of bids (bi0 , b0�i0), and x0, p0 be the allocation of bids
(b0i0 , b

0
�i0). For auction j0, clearly bidder i0 gets allocated a slot in x0 but not in x due to bi0,j0 < ri0,j0 .

And in (x0, p0), this slot price is the reserve multiplied by the position normalizer which is lower than
the value multiplied by the position normalizer. For other auction j 6= j0, bidder i0 gets the same
allocation and price in (x, p) and (x0, p0). Therefore, we know

Weli0(x0, p0)� �i0 · Revi0(x
0, p0) > Weli0(x, p)� �i0 · Revi0(x, p).

Since bidders other than bidder i0 bid all zeroes and there are no boosts, bidder i0 payment can be
bounded by reserves, i.e.

Revi0(x
0, p0) 

mX

j=1

p0i0,j =
mX

j=1

sjX

k=1

x0
i0,j,k·ri0,j ·posj,k 

mX

j=1

sjX

k=1

x0
i0,j,k·vi0,j ·posj,k = Weli0(x0, p0).

With Weli0(x0, p0) � �i0 · Revi0(x0, p0) > Weli0(x, p) � �i0 · Revi0(x, p) and Revi0(x0, p0) 
Weli0(x0, p0), we know the second requirement for b0i0 dominating bi0 is satisfied.

We get b0i0 dominates bi0 . And then we get a contradiction.

D Missing Proofs of Section 4.3

Proof. (of Lemma 4.9) Notice that in the proof Lemma 4.7, the only property we use about GSP
with reserve is that the payment in each auction for each bidder is at most its bid multiplied by the
position normalizer. This property also holds in FPA with reserve. Therefore, Lemma 4.9 simply
follows from the proof of Lemma 4.7.

E Instances with Matching Approximation Lower Bounds

First of all, for revenue approximation ratio, it is tight even for a setting with a single bidder and a
single auction. Assume the bidder’s value is 1 and the signal is between � and 1. The seller cannot
set a reserve larger than the signal; or otherwise when the signal is 1, the reserve would be larger than
the bidder’s value, leading to a 0-approximation. Therefore, when the signal is �, the reserve would
be at most �, leading to a �-approximation in revenue.

For welfare approximation ratios, we show three two-bidder examples for the settings with reserve
only, boost only, and reserve & boost. In all examples, buyers’ targets are 1 and there are two auctions.
The values of bidder 2 are always 0 for auction 1 and 1 for auction 2. We use different valuations of
bidder 1 in both auctions to establish the lower bounds. ✏ > 0 represents an arbitrarily small number.

E.1 Tight instance for reserve only auctions

Values in Auction 1 Values in Auction 2
Bidder 1 1/(1� �) ✏
Bidder 2 0 1

In the above example, the reserve signal for bidder 1 in auction 1 is s 2 [�/(1 � �), 1/(1 � �)].
When the realized signal s = �/(1� �), the reserve is at most s, and bidder 1 has incentive to win
both auctions, paying at most �/(1� �) + 1 = 1/(1� �), receiving 1/(1� �) + ✏ total value. This
leads to (1/(1� �) + ✏)/(1/(1� �) + 1) = 1/(2� �) in welfare approximation.

Moreover, as the signal could be as high as bidder 1’s value in auction 1, the reserve multiplier
cannot be larger than 1; or otherwise, bidder 1 would choose to skip the first auction. By using a
reserve multiplier that is at most 1, there is a realization of the signal in which the reserve is at most
�/(1� �).

E.2 Tight instance for boost only auctions

Values in Auction 1 Values in Auction 2
Bidder 1 1� � + ✏ �
Bidder 2 0 1
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When there is no boost, bidder 1 has the incentive to win both auctions, paying 1 and receiving
(1� � + ✏) + � = 1 + ✏ total value. This leads to an approximation ratio 1/(2� �) in welfare.

In the worst case scenario, consider that the boost signals in auction 2 are s = � for both bidders; and
thus, boosts are not effective in changing the auction outcome for auction 2.

E.3 Tight instance for auctions with both reserves & boost

Values in Auction 1 Values in Auction 2
Bidder 1 1 + ✏ �
Bidder 2 0 1

When there is no boost and the reserve for bidder 1 in auction 1 is at most � (realized signal s = �),
bidder 1 has the incentive to win both auctions, paying at most � + 1 and receiving (1 + ✏) + � total
value. This leads to an approximation ratio (1 + �)/2 in welfare. In the worst case scenario, consider
that the boost signals in auction 2 are s = � for both bidders; and thus, boosts are not effective
in changing the auction outcome for auction 2. As for the reserves, similar to our analysis in the
first example, the seller needs to set a reserve that is at most � for bidder 1 in auction 1 for some
instances.
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