
Supplemental Information15

A Baselines and network architectures16

This section details the neural network architectures we employ in our experiments, as well as17

implementation details of the baselines to which we compare the reparameterized optimization.18

Network architectures. We deliberately use generic off-the-shelf neural network architectures. In19

all performed experiments, the solution space consists of a finite number of scalars while the initial20

and final simulation states often involve spatial data, i.e. grids. For grid data, we use convolutional21

layers on multiple resolution levels while fully-connected layers process non-grid data. Applying this22

approach to our problems results in the following scenarios:23

• Grid to scalars (G2S). We use a standard architecture for classification that largely follows24

by VGG [SZ14]. It consists of multiple convolutional blocks followed by fully-connected25

layers. Each convolutional block consists of one or multiple convolutional layers with kernel26

size 3d where d denotes the number of grid dimensions. A batch normalization, activation,27

and max pooling layer follows each convolutional layer, reducing the resolution by half28

at the end of each block. The result is passed to a multilayer perceptron (MLP) which29

alternates linear, activation, and batch normalization layers before the result is outputted by30

a final linear layer.31

• Scalars to scalars (S2S). When no grid data is involved, we simply use MLPs [GBCB16] to32

map inputs to outputs, optionally with positional encoding at the inputs. The MLP consists33

of multiple linear layers and activation layers but we do not use batch normalization layers34

since our networks are relatively shallow with no more than three hidden layers.35

• Grid to grid (G2G). This case is only needed for the surrogate network required by36

the neural adjoint method. Here, we use the popular U-Net [RFB15] architecture with37

residual connections. Multiple convolutional blocks progressively decrease the spatial38

resolution, followed by upsampling convolutional blocks. The downsampling blocks match39

the ones described above. The upsampling blocks linearly interpolate the result to double the40

resolution before concatenating the corresponding processed input of the same resolution41

for the residual connections.42

The specific hyperparameter values used for these generic architectures are given in the corresponding43

experimental details sections.44

BFGS. We use the BFGS Implementation from SciPy [VGO+20] which runs the optimizer-internal45

computations on the CPU. All loss and gradient evaluations are bundled and dispatched to the GPU46

to be processed in parallel.47

Neural adjoint. The neural adjoint method [RPM20] employs a neural network Ñ to act as a48

surrogate for F . Ñ is then used in place of F in an iterative optimization. Since Ñ cannot be49

expected to produce accurate results outside of the region covered by its training data, a boundary50

loss term is added to the optimization to prevent the optimizer from leaving that region [RPM20].51

We formulate this boundary loss in a differentiable manner to make it compatible with higher-order52

optimizers. First, we determine the minimum ξjmin and the maximum ξjmax value in the training set53

for each parameter j. Then, we formulate the boundary loss as54

B(ξ) =
∑
j

SoftPlusγ

(
max(ξj − ξjmax, ξ

j
min − ξj)

ξjmax − ξjmin

)
,

where SoftPlusγ(x) ≡ 1
γ log(1 + eγx).55
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B Experimental details56

This section lists additional details about the experiments showcased in the main paper. An overview57

of the symbols introduced with the experiments is given in Tab. 1.58

Table 1: Physical quantities corresponding to the abstract symbols used in Eqs. 1 and 2 for each
experiment.

Experiment ξ x y

Wave packet fit t0 ϵ(t) u(t)
Billiards v⃗0 Initial ball positions Final ball positions
Kuramoto–Sivashinsky α, β u(x)|t=0 u(x)|t=25

Incompr. Navier-Stokes x0, v⃗0 u(x, y)|t=0 u(x, y)|t=56

Software and hardware. We used PyTorch [PGM+19] and ΦFlow [HKT20] to run our experiments.59

The full source code is part of the supplemental material. The first three experiments were run on a60

GeForce RTX 3090. Due to memory requirements, the fluid experiment was run partly on a Quadro61

RTX 8000 which allowed 128 simulations to be held in GPU memory.62

Hyperparameter selection. For each network, we select one of the three generic architectures63

listed above. Our main objective in choosing the values of the hyperparameters, such as the number64

of layers and layer width, is keeping the total number of parameters large enough to fit the problem65

easily but low enough to train the network quickly. The only hyperparameter which we tune is the66

Adam [KB15] learning rate η. We start with η = 0.01 and progressively reduce it by a factor of 1067

until the loss decreases during the optimization. The exact hyperparameter values are given in the68

corresponding experiment section.69

Refinement. We apply BFGS refinement as a second stage to reparameterized optimization, super-70

vised training, and the neural adjoint method. In all cases, we run a standard BFGS optimization on71

the actual L, so the gradients are backpropagated through F . For reparameterized optimization and72

the neural adjoint method, we use the parameter estimate with the lowest recorded loss value. As73

supervised training makes use of pre-trained network, we use the final parameter estimate ξi as an74

initial guess. The full evolution of the parameter estimates over the course of training is shown for all75

experiments below.76

Results. Complementary to Tab. 2 of the main paper, Tab. 2 gives an overview of how many exam-77

ples were improved by the various neural-network-based approaches without refinement. Learning78

curves, loss and improvement statistics, as well as example parameter trajectories are shown in the79

following subsections.80

Table 2: Fraction of inverse problems for which neural-network-based methods without refinement
find better or equal solutions than BFGS. Mean over multiple seeds and all n shown in subfigures (d)
of the main paper.

Experiment Reparameterized Supervised Neural Adjoint
Better Equal Better Equal Better Equal

Wave packet fit 80.5% 0.9% 55.9% 2.0% 28.2% 0.8%
Billiards 44.3% 9.0% 14.6% 19.9% 1.6% 29.3%
Kuramoto–Sivashinsky 42.8% 0.0% 14.4% 0.0% 6.4% 0.0%
Incompr. Navier-Stokes 62.5% 0.0% 23.5% 0.0% 1.1% 0.0%

B.1 Wave packet localization81

For the wave packet experiment, we first determine the true position t0 of the wave packet by sampling82

random values from a uniform distribution between t0 ∈ [26, 230]. Noise ϵ(t) is sampled from a83

normal distribution with standard deviation σ = 0.1 for every t = 1, ..., 256 and superimposed on84
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Figure 1: Loss and improvement over BFGS before and after refinement for the wave packet
experiment. Colors match figures from the main paper (blue: BFGS, orange: reparameterized, green:
supervised, red: neural adjoint).

the signal, as described in the main text. The noise pattern is only used to generate the reference data85

and is not available to the optimizers. We run this experiment five times with varying initialization86

seeds for both networks and data sets.87

Networks. The surrogate network, required by the neural adjoint method, takes t0 and ϵ(t) as input88

and outputs an approximation of u(t). Since ϵ(t) and u(t) are one-dimensional grids, we employ89

the G2G architecture with two input feature maps of size 256 and one output feature map, totaling90

13,073 parameters. The reparameterization network maps the grid u(t) to the estimated scalar t0.91

Consequently, we use the G2S architecture described in section A. We use five blocks with one92

convolutional layer with 16 feature maps each, reducing the resolution from 256 to 8. The MLP part93

consists of two hidden fully-connected layers with sizes 64 and 32. In total, this network contains94

13,925 parameters. All networks are trained using Adam with a learning rate of η = 0.001.95
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Figure 2: Optimization curves for different data set sizes of the wave packet experiment before
refinement. Curves show the mean over 5 network and data set initialization seeds. Blue: BFGS,
orange: reparameterized, green: supervised, red: neural adjoint.

101 103

Iterations

0.0

0.5

1.0

1.5

Va
lu

e

pos, example 0

101 103

Iterations

0.0

0.5

1.0

Va
lu

e

pos, example 1

101 103

Iterations

1.0

0.5

0.0

0.5

1.0
Va

lu
e

pos, example 2

101 103

Iterations

0.0

0.5

1.0

1.5

Va
lu

e

pos, example 3

Figure 3: Example parameter evolution during optimization of the wave packet experiment with
n = 128. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The dashed
gray lines indicate the reference solution from which the example was generated. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.

Additional results. Fig. 1 shows the resulting loss and improvement over BFGS, both before and96

after refinement. The learning curves for four data set sizes n are shown in Fig. 2, and the parameter97

evolution of four examples during optimization are shown in Fig. 3.98

B.2 Billiards99

For the billiards experiment, we set up a rigid body simulation of spherical balls with radius r = 0.2100

moving in the x-y-plane. In each step, the simulator analytically integrates the evolution until the101

time of the subsequent collision, allowing us to simulate the dynamics at little computational cost.102

Collisions use a fixed elasticity of 0.8 and preserve momentum. Friction is assumed to be proportional103

to the speed of the balls. The simulation stops once no more collisions take place and integrates up104

to t = ∞ to let all balls come to rest. we sample initial states by randomly placing the second ball105

between (1, 0) and (1, 1) while keeping the target fixed at (2, 0.5). The cue ball, located at x = 0106

is given a starting initial velocity of v⃗start0 = (1, 0) so it will collide with the second ball in many107

cases by default. Starting the optimization with v⃗start0 = 0 would yield ∇Li = 0∀i and prevent any108

optimization using F . However, in none of these examples does the ball exactly reach the target.109

As the distribution of actual solutions v⃗0 is unknown, the generated training sets for supervised and110

surrogate network training must rely on this broader data set, making learning more difficult.111

Networks. The surrogate neural network is given a value for the initial velocity v⃗0 and the balls’112

positions as input, and it outputs the predicted final position of the ball. We use positional encoding113

for the input using sine, cosine functions with four equidistant frequencies. The surrogate network114

follows the S2S architecture from section A. It is an MLP with three hidden layers containing 128115

neurons, each, and comprises 37,506 parameters in total. The reparameterization network predicts116
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v⃗0 based on the initial and final ball positions, and we use the same network architecture as for the117

surrogate network. All networks are trained using Adam. For the reparameterized optimization, we118

use a learning rate of η = 10−4 while all other methods use η = 0.001.119

Additional results. Fig. 4 shows the resulting loss and improvement over BFGS, both before and120

after refinement. The learning curves for four data set sizes n are shown in Fig. 5, and the parameter121

evolution of four examples during optimization are shown in Fig. 6.122
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Figure 4: Loss and improvement over BFGS before and after refinement for the billiards experiment.
Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint.

B.3 Kuramoto–Sivashinsky equation123

For this experiment, we set up a differentiable simulation of the Kuramoto–Sivashinsky (KS) equation124

in one dimension with a resolution of 128. We simulate the linear terms of KS equation in frequency125

space and use a Runge-Kutta-2 [PTVF07] scheme for the non-linear term. The initial state is sampled126

from random noise in frequency space with smoothing applied to suppress high frequencies. In each127
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Figure 5: Optimization curves for different data set sizes of the billiards experiment before refinement.
Envelopes show the standard deviation over 4 network and data set initialization seeds. Blue: BFGS,
orange: reparameterized, green: supervised, red: neural adjoint. BFGS-based optimization curves
stop when all examples have fully converged to an optimum.
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Figure 6: Example parameter evolution during optimization of the billiards experiment with n = 128.
Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The purple crosses
indicate the reference from which the example was generated and is not a valid solution in this
experiment. BFGS-based optimization curves stop when all examples have fully converged to an
optimum.

simulation step, we add a forcing of the form G(x) = 0.1 cos(x)−0.01 cos(x/16) · (1−2 sin(x/16)128

which is controlled by the parameter α as described in the main text.129

Networks. The surrogate network maps the initial state u(x, t = 0) and parameters α, β to the final130

state u(x, t = 25). Since u is sampled on a grid, we use the G2G architecture from section A with131

three input and one output feature map, operating on four resolution levels. The reparameterization132

network maps u(x, t = 0) and u(x, t = 25) to α, β and we employ the G2S architecture with four133

convolutional layers of widths 32, 32, 64, 64, followed by two hidden fully-connected layers with134

64 neurons each. We train both networks using Adam with a learning rate of η = 0.001 for 1000135

iterations.136

Additional results. Fig. 7 shows the resulting loss and improvement over BFGS, both before and137

after refinement. The learning curves for four data set sizes n are shown in Fig. 8, and the parameter138

evolution of four examples during optimization are shown in Fig. 9.139
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Figure 7: Loss and improvement over BFGS before and after refinement for the Ku-
ramoto–Sivashinsky experiment. Blue: BFGS, orange: reparameterized, green: supervised, red:
neural adjoint.

B.4 Incompressible Navier-Stokes140

We simulate an incompressible two-dimensional fluid in a 100 by 100 box with a resolution of 64 by141

64, employing a direct numerical solver for incompressible fluids from ΦFlow [HKT20]. Specifically,142

we use the marker-in-cell (MAC) method [HW65, Har72] which guarantees stable simulations even143

for large velocities or time increments. The velocity vectors are sampled in staggered form at the face144

centers of grid cells while the marker density is sampled at the cell centers. The initial velocity v0 is145

specified at cell centers and resampled to a staggered grid for the simulation. Our simulation employs146

a second-order advection scheme [SFK+08] to transport the marker and the velocity vectors. We do147

not simulate explicit diffusion as the numerical diffusion introduced by the advection scheme on this148

resolution is sufficient for our purposes. Incompressibility is achieved via Helmholtz decomposition149

of the velocity field using a conjugate gradient solve.150
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Figure 8: Optimization curves for different data set sizes of the Kuramoto–Sivashinsky experiment
before refinement. Envelopes show the standard deviation over 10 network and data set initialization
seeds. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.
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Figure 9: Example parameter evolution during optimization of the Kuramoto–Sivashinsky experiment
with n = 128. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The
dashed gray lines indicate the reference solution from which the example was generated. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.

We initialize the whole domain with a velocity field sampled from random noise in frequency space,151

resulting in eddies of various sizes. The initial velocity values have a mean of zero and a standard152

deviation of 0.5. Then, ground truth values for x0 and v⃗0 are sampled from uniform distributions with153

v⃗y0 ≥ 0 never pointing downward. These values are used to initialize a spherical force or wind blast154

near the bottom of the domain that moves upwards during the simulation and induces flow around all155

obstacles from the pressure computation. The velocity is only observable in the domain’s upper half,156

and all optimizers assume a zero-initialization in the unobservable bottom half.157

Networks. The surrogate network approximates the final state u(x, y ≥ 50, t = 56) in the upper158

half of the domain from the initial state u(x, y, t = 0) and the parameters x0, v⃗0. As before, we159

implement this as G2G (section A) with five input and two output feature maps, totaling 38.290160

parameters. The G2S reparameterization network comprises four convolutional layers with 16, 32,161

32, and 32 feature maps, respectively, followed by two fully-connected layers with 64 neurons each,162

resulting in 44.723 total parameters. Both networks are trained using Adam with a learning rate of163

η = 0.001.164

Additional results. As noted in the main text, the high loss value of the reparameterized opti-165

mization is largely due to a fraction of examples with considerably higher loss than the average. A166

summary of the individual loss values for n = 4, 128 is given in Figs. 10 and 11, respectively. While167
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the neural adjoint method produces the highest loss values before refinement, these all get mapped to168

relatively small values during the refinement stage. Meanwhile, the reparameterized training finds169

better solutions without refinement since it uses feedback from F . However, that also means that170

the secondary BFGS optimization cannot improve the estimates by nearly as much since many are171

already close to a (local) minimum. This leaves a fraction of examples stranded on sub-optimal172

solutions that contribute significantly to the total loss, despite most problems finding better solutions173

than BFGS. Fig. 12 shows the resulting loss and improvement over BFGS, both before and after174

refinement. The learning curves for four data set sizes n are shown in Fig. 13, and the parameter175

evolution of four examples during optimization are shown in Fig. 14.176
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Figure 10: Distribution of loss values for n = 4 in the Navier-Stokes experiment, with and without
refinement. The first six plots show the loss distribution along the ground truth value of one of the
parameters to be optimized. The right plots show the margin distribution of loss values. The results
of 4 network and data set initialization seeds are accumulated.
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parameters to be optimized. The right plots show the margin distribution of loss values. The results
of 4 network and data set initialization seeds are accumulated.
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Figure 12: Loss and improvement over BFGS before and after refinement for the Navier-Stokes
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refinement. Envelopes show the standard deviation over 4 network and data set initialization seeds.
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tion curves stop when all examples have fully converged to an optimum.
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Figure 14: Example parameter evolution during optimization of the Navier-Stokes experiment with
n = 128. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The dashed
gray lines indicate the reference solution from which the example was generated. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.
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