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Supplemental Information

A Baselines and network architectures

This section details the neural network architectures we employ in our experiments, as well as
implementation details of the baselines to which we compare the reparameterized optimization.

Network architectures. We deliberately use generic off-the-shelf neural network architectures. In
all performed experiments, the solution space consists of a finite number of scalars while the initial
and final simulation states often involve spatial data, i.e. grids. For grid data, we use convolutional
layers on multiple resolution levels while fully-connected layers process non-grid data. Applying this
approach to our problems results in the following scenarios:

* Grid to scalars (G2S). We use a standard architecture for classification that largely follows
by VGG [SZ14]. It consists of multiple convolutional blocks followed by fully-connected
layers. Each convolutional block consists of one or multiple convolutional layers with kernel
size 3% where d denotes the number of grid dimensions. A batch normalization, activation,
and max pooling layer follows each convolutional layer, reducing the resolution by half
at the end of each block. The result is passed to a multilayer perceptron (MLP) which
alternates linear, activation, and batch normalization layers before the result is outputted by
a final linear layer.

* Scalars to scalars (S2S). When no grid data is involved, we simply use MLPs [GBCB16] to
map inputs to outputs, optionally with positional encoding at the inputs. The MLP consists
of multiple linear layers and activation layers but we do not use batch normalization layers
since our networks are relatively shallow with no more than three hidden layers.

e Grid to grid (G2G). This case is only needed for the surrogate network required by
the neural adjoint method. Here, we use the popular U-Net [REB15] architecture with
residual connections. Multiple convolutional blocks progressively decrease the spatial
resolution, followed by upsampling convolutional blocks. The downsampling blocks match
the ones described above. The upsampling blocks linearly interpolate the result to double the
resolution before concatenating the corresponding processed input of the same resolution
for the residual connections.

The specific hyperparameter values used for these generic architectures are given in the corresponding
experimental details sections.

BFGS. We use the BFGS Implementation from SciPy [VGO™20] which runs the optimizer-internal
computations on the CPU. All loss and gradient evaluations are bundled and dispatched to the GPU
to be processed in parallel.

Neural adjoint. The neural adjoint method [RPM20] employs a neural network N to act as a
surrogate for F'. N is then used in place of F in an iterative optimization. Since A cannot be
expected to produce accurate results outside of the region covered by its training data, a boundary
loss term is added to the optimization to prevent the optimizer from leaving that region [RPM20].
We formulate this boundary loss in a differentiable manner to make it compatible with higher-order
optimizers. First, we determine the minimum &7, = and the maximum &/, value in the training set
for each parameter j. Then, we formulate the boundary loss as

<max(fj _ grj‘-ﬂa)m gfnin — §])>

rjnax - gﬁnm

B(¢) = Z SoftPlus,

J

where SoftPlus, (z) = = log(1 + €7%).

1
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B Experimental details

This section lists additional details about the experiments showcased in the main paper. An overview
of the symbols introduced with the experiments is given in Tab. [I]

Table 1: Physical quantities corresponding to the abstract symbols used in Eqs. 1 and 2 for each
experiment.

Experiment & x Y

Wave packet fit to e(t) u(t)

Billiards o Initial ball positions  Final ball positions
Kuramoto—Sivashinsky — «, 3 w(x)|i=0 u(x)|i=25

Incompr. Navier-Stokes  xg, Ty u(,y)|t=0 w(z,y)|t=s6

Software and hardware. We used PyTorch [PGM™ 19] and ®f,,, [HKT20] to run our experiments.
The full source code is part of the supplemental material. The first three experiments were run on a

GeForce RTX 3090. Due to memory requirements, the fluid experiment was run partly on a Quadro
RTX 8000 which allowed 128 simulations to be held in GPU memory.

Hyperparameter selection. For each network, we select one of the three generic architectures
listed above. Our main objective in choosing the values of the hyperparameters, such as the number
of layers and layer width, is keeping the total number of parameters large enough to fit the problem
easily but low enough to train the network quickly. The only hyperparameter which we tune is the
Adam [KB15] learning rate . We start with 7 = 0.01 and progressively reduce it by a factor of 10
until the loss decreases during the optimization. The exact hyperparameter values are given in the
corresponding experiment section.

Refinement. We apply BFGS refinement as a second stage to reparameterized optimization, super-
vised training, and the neural adjoint method. In all cases, we run a standard BFGS optimization on
the actual £, so the gradients are backpropagated through F'. For reparameterized optimization and
the neural adjoint method, we use the parameter estimate with the lowest recorded loss value. As
supervised training makes use of pre-trained network, we use the final parameter estimate &; as an
initial guess. The full evolution of the parameter estimates over the course of training is shown for all
experiments below.

Results. Complementary to Tab. 2 of the main paper, Tab. 2| gives an overview of how many exam-
ples were improved by the various neural-network-based approaches without refinement. Learning
curves, loss and improvement statistics, as well as example parameter trajectories are shown in the
following subsections.

Table 2: Fraction of inverse problems for which neural-network-based methods without refinement
find better or equal solutions than BFGS. Mean over multiple seeds and all n shown in subfigures (d)
of the main paper.

Experiment Reparameterized  Supervised Neural Adjoint
Better Equal  Better Equal Better Equal

Wave packet fit 80.5% 0.9% 559% 2.0%  282% 0.8%

Billiards 44.3% 9.0% 14.6% 199% 1.6%  29.3%

Kuramoto—Sivashinsky  42.8% 0.0% 144% 00% 64% 0.0%
Incompr. Navier-Stokes 62.5% 0.0% 23.5% 0.0% 1.1%  0.0%

B.1 Wave packet localization

For the wave packet experiment, we first determine the true position ¢, of the wave packet by sampling
random values from a uniform distribution between to, € [26, 230]. Noise €(t) is sampled from a
normal distribution with standard deviation o = 0.1 for every ¢ = 1, ..., 256 and superimposed on
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Figure 1: Loss and improvement over BFGS before and after refinement for the wave packet
experiment. Colors match figures from the main paper (blue: BEGS, orange: reparameterized, green:
supervised, red: neural adjoint).

the signal, as described in the main text. The noise pattern is only used to generate the reference data
and is not available to the optimizers. We run this experiment five times with varying initialization
seeds for both networks and data sets.

Networks. The surrogate network, required by the neural adjoint method, takes ¢y and €(¢) as input
and outputs an approximation of u(t). Since €(t) and u(t) are one-dimensional grids, we employ
the G2G architecture with two input feature maps of size 256 and one output feature map, totaling
13,073 parameters. The reparameterization network maps the grid «(¢) to the estimated scalar .
Consequently, we use the G2S architecture described in section [A] We use five blocks with one
convolutional layer with 16 feature maps each, reducing the resolution from 256 to 8. The MLP part
consists of two hidden fully-connected layers with sizes 64 and 32. In total, this network contains
13,925 parameters. All networks are trained using Adam with a learning rate of n = 0.001.
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Figure 2: Optimization curves for different data set sizes of the wave packet experiment before
refinement. Curves show the mean over 5 network and data set initialization seeds. Blue: BFGS,
orange: reparameterized, green: supervised, red: neural adjoint.
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Figure 3: Example parameter evolution during optimization of the wave packet experiment with
n = 128. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The dashed
gray lines indicate the reference solution from which the example was generated. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.

Additional results. Fig.[T|shows the resulting loss and improvement over BFGS, both before and
after refinement. The learning curves for four data set sizes n are shown in Fig.[2] and the parameter
evolution of four examples during optimization are shown in Fig. 3]

B.2 Billiards

For the billiards experiment, we set up a rigid body simulation of spherical balls with radius r = 0.2
moving in the x-y-plane. In each step, the simulator analytically integrates the evolution until the
time of the subsequent collision, allowing us to simulate the dynamics at little computational cost.
Collisions use a fixed elasticity of 0.8 and preserve momentum. Friction is assumed to be proportional
to the speed of the balls. The simulation stops once no more collisions take place and integrates up
to t = oo to let all balls come to rest. we sample initial states by randomly placing the second ball
between (1,0) and (1, 1) while keeping the target fixed at (2,0.5). The cue ball, located at z = 0
is given a starting initial velocity of 7§ = (1,0) so it will collide with the second ball in many
cases by default. Starting the optimization with 75" = 0 would yield VL; = 0 Vi and prevent any
optimization using F'. However, in none of these examples does the ball exactly reach the target.
As the distribution of actual solutions ¥y is unknown, the generated training sets for supervised and
surrogate network training must rely on this broader data set, making learning more difficult.

Networks. The surrogate neural network is given a value for the initial velocity v and the balls’
positions as input, and it outputs the predicted final position of the ball. We use positional encoding
for the input using sine, cosine functions with four equidistant frequencies. The surrogate network
follows the S2S architecture from section [A] It is an MLP with three hidden layers containing 128
neurons, each, and comprises 37,506 parameters in total. The reparameterization network predicts
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Uy based on the initial and final ball positions, and we use the same network architecture as for the
surrogate network. All networks are trained using Adam. For the reparameterized optimization, we
use a learning rate of 7 = 10~* while all other methods use 7 = 0.001.

Additional results. Fig.[dshows the resulting loss and improvement over BFGS, both before and
after refinement. The learning curves for four data set sizes n are shown in Fig.[5] and the parameter
evolution of four examples during optimization are shown in Fig.
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Figure 4: Loss and improvement over BFGS before and after refinement for the billiards experiment.
Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint.

B.3 Kuramoto-Sivashinsky equation

For this experiment, we set up a differentiable simulation of the Kuramoto—Sivashinsky (KS) equation
in one dimension with a resolution of 128. We simulate the linear terms of KS equation in frequency
space and use a Runge-Kutta-2 scheme for the non-linear term. The initial state is sampled
from random noise in frequency space with smoothing applied to suppress high frequencies. In each
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Figure 5: Optimization curves for different data set sizes of the billiards experiment before refinement.
Envelopes show the standard deviation over 4 network and data set initialization seeds. Blue: BFGS,
orange: reparameterized, green: supervised, red: neural adjoint. BFGS-based optimization curves
stop when all examples have fully converged to an optimum.
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Figure 6: Example parameter evolution during optimization of the billiards experiment with n = 128.
Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The purple crosses
indicate the reference from which the example was generated and is not a valid solution in this
experiment. BFGS-based optimization curves stop when all examples have fully converged to an
optimum.

simulation step, we add a forcing of the form G(z) = 0.1 cos(x) — 0.01 cos(x/16) - (1 — 2 sin(z/16)
which is controlled by the parameter « as described in the main text.

Networks. The surrogate network maps the initial state u(x, t = 0) and parameters c, ( to the final
state u(z,t = 25). Since u is sampled on a grid, we use the G2G architecture from sectionwith
three input and one output feature map, operating on four resolution levels. The reparameterization
network maps u(z,t = 0) and u(z,t = 25) to «, 8 and we employ the G2S architecture with four
convolutional layers of widths 32, 32, 64, 64, followed by two hidden fully-connected layers with
64 neurons each. We train both networks using Adam with a learning rate of 7 = 0.001 for 1000
iterations.

Additional results. Fig.[/|shows the resulting loss and improvement over BFGS, both before and
after refinement. The learning curves for four data set sizes n are shown in Fig.[8] and the parameter
evolution of four examples during optimization are shown in Fig. [0}



140

141
142
143
144
145
146
147
148
149
150

Loss without refinement

2 4 8 16 32 64 128 256
Dataset Size

Loss with refinement

40
20
0
2 4 8 16 32 64 128 256
Dataset Size
Improvement without refinement over BFGS
1.0 1
- L L L h— h—. ‘—
0.0 ﬁ...
T T T T T T T T
2 4 8 16 32 64 128 256
Dataset Size
Improvement with refinement over BFGS
1.0
0.5
0.0

16 32 64 128 256
Dataset Size

Figure 7: Loss and improvement over BFGS before and after refinement for the Ku-
ramoto—Sivashinsky experiment. Blue: BFGS, orange: reparameterized, green: supervised, red:
neural adjoint.

B.4 Incompressible Navier-Stokes

We simulate an incompressible two-dimensional fluid in a 100 by 100 box with a resolution of 64 by
64, employing a direct numerical solver for incompressible fluids from ®g,,, [HKT20]. Specifically,
we use the marker-in-cell (MAC) method which guarantees stable simulations even
for large velocities or time increments. The velocity vectors are sampled in staggered form at the face
centers of grid cells while the marker density is sampled at the cell centers. The initial velocity vy is
specified at cell centers and resampled to a staggered grid for the simulation. Our simulation employs
a second-order advection scheme to transport the marker and the velocity vectors. We do
not simulate explicit diffusion as the numerical diffusion introduced by the advection scheme on this
resolution is sufficient for our purposes. Incompressibility is achieved via Helmholtz decomposition
of the velocity field using a conjugate gradient solve.
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Figure 8: Optimization curves for different data set sizes of the Kuramoto—Sivashinsky experiment
before refinement. Envelopes show the standard deviation over 10 network and data set initialization
seeds. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.

non_lin, example 0 non_lin, example 1 non_lin, example 2 non_lin, example 3
0.5 1 1 W e
s -\_—
2 oo+ E 3 o Sos h\_____
© o © ]
PN e : ”
-0.5 A 14+ A 0.0 przese
T T T T
forcing, example 0 forcing, example 1 forcing, example 2 forcing, example 3
1 1.0 0
E g o é R E
0.0
1 T - W, W N
10t 10° 10! 10° 10t 10° 10t 103
Iterations Iterations Iterations Iterations

Figure 9: Example parameter evolution during optimization of the Kuramoto—Sivashinsky experiment
with n = 128. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The
dashed gray lines indicate the reference solution from which the example was generated. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.

We initialize the whole domain with a velocity field sampled from random noise in frequency space,
resulting in eddies of various sizes. The initial velocity values have a mean of zero and a standard
deviation of 0.5. Then, ground truth values for xy and ¥y are sampled from uniform distributions with
¥y > 0 never pointing downward. These values are used to initialize a spherical force or wind blast
near the bottom of the domain that moves upwards during the simulation and induces flow around all
obstacles from the pressure computation. The velocity is only observable in the domain’s upper half,
and all optimizers assume a zero-initialization in the unobservable bottom half.

Networks. The surrogate network approximates the final state u(x,y > 50,¢ = 56) in the upper
half of the domain from the initial state u(z,y,t = 0) and the parameters xq, 7. As before, we
implement this as G2G (section [A)) with five input and two output feature maps, totaling 38.290
parameters. The G2S reparameterization network comprises four convolutional layers with 16, 32,
32, and 32 feature maps, respectively, followed by two fully-connected layers with 64 neurons each,
resulting in 44.723 total parameters. Both networks are trained using Adam with a learning rate of
n = 0.001.

Additional results. As noted in the main text, the high loss value of the reparameterized opti-
mization is largely due to a fraction of examples with considerably higher loss than the average. A
summary of the individual loss values for n = 4, 128 is given in Figs. [I0]and [T T} respectively. While
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the neural adjoint method produces the highest loss values before refinement, these all get mapped to
relatively small values during the refinement stage. Meanwhile, the reparameterized training finds
better solutions without refinement since it uses feedback from F'. However, that also means that
the secondary BFGS optimization cannot improve the estimates by nearly as much since many are
already close to a (local) minimum. This leaves a fraction of examples stranded on sub-optimal
solutions that contribute significantly to the total loss, despite most problems finding better solutions
than BFGS. Fig. [I2] shows the resulting loss and improvement over BFGS, both before and after
refinement. The learning curves for four data set sizes n are shown in Fig.[T3] and the parameter
evolution of four examples during optimization are shown in Fig. [T4]
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Figure 10: Distribution of loss values for n = 4 in the Navier-Stokes experiment, with and without
refinement. The first six plots show the loss distribution along the ground truth value of one of the
parameters to be optimized. The right plots show the margin distribution of loss values. The results
of 4 network and data set initialization seeds are accumulated.
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Figure 11: Distribution of loss values for n = 128 in the Navier-Stokes experiment, with and without
refinement. The first six plots show the loss distribution along the ground truth value of one of the
parameters to be optimized. The right plots show the margin distribution of loss values. The results
of 4 network and data set initialization seeds are accumulated.
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Figure 12: Loss and improvement over BFGS before and after refinement for the Navier-Stokes

experiment. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint.
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Figure 13: Optimization curves for different data set sizes of the Navier-Stokes experiment before
refinement. Envelopes show the standard deviation over 4 network and data set initialization seeds.
Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. BFGS-based optimiza-
tion curves stop when all examples have fully converged to an optimum.
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Figure 14: Example parameter evolution during optimization of the Navier-Stokes experiment with
n = 128. Blue: BFGS, orange: reparameterized, green: supervised, red: neural adjoint. The dashed
gray lines indicate the reference solution from which the example was generated. BFGS-based
optimization curves stop when all examples have fully converged to an optimum.
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