

Majority Solutio	n:	#Reward	OPRM Solution:	#F
Let's call the number of meters in the hallway x.		0.97	To solve this problem, I need to find the relationship between the robot's distance, and time.	
We know the robot n	noved 1 km in 2.5 hours.			
That means it moved	v meters in 90 seconds	0.97	I can use the formula distance = speed * time to write an equa	tion for each case.
That means it moved x meters in 50 seconds.		0.28	Let s be the robot's speed in meters per hour.	
We can write that as the equation $\frac{1}{2.5}=\frac{1}{2.5}=\frac{1}{2.5}$. To solve for x, we can multiply both sides by 90 to get $36=x$.				
		0.11 0.07	Then the first case gives me $1000 = s * 2.5$, or $s = 1000 / 2.5 = 400$ meters per	
			The second case gives me the length of the hallway = $s * 90 / 3600$, or length =	3600, or length $=$
So the hallway is 36 meters long.			90/3600 = 10 meters.	
# Answor		0.03	# Answer	
# MISWEI			# Allswei	
36	#Final Reward: 6.7e-5		10 #Final Reward: 0.74	

Figure 3. Case Study 1. The evaluator can help identify and reduce the confidence of hallucinations caused by misleading information.

Voting V.S. Reward: {Answer: 0, Voting times: 132, OPRM	I reward: 0.03	, {Answer: 15, Voting times: 94, OPRM reward: 17.3}
Majority Solution:	#Reward	OPRM Solution:
So we know that the measure of an interior angle is 6.5 times the measuragle.	are of an exterior	I know that the sum of the interior angles of any polygon with n sides is (n-2 180 degrees, and the sum of the exterior angles is 360 degrees.
And we know that the sum of the measures of the interior angles of a performula $(n-2)180$, where n is the number of sides.	olygon is given	I can write an equation relating the interior and exterior angles of a regular p $(n\mathchar`-2)*180=6.5*360,$ where n is the number of sides.
Right. So we can say that $6.5(n-2)=(n-2)180$.	0.09	I can simplify this equation by dividing everything by 180: $n - 2 = 6.5 * 2$, we gives me $n - 2 = 13$
And that simplifies to 6.5=180, which is false.	0.12	Lean add 2 to both sides to isolate n: $n = 13 + 2$, which gives me $n = 15$.
So there is no such polygon.		

Figure 4. Case Study 2. The evaluator can assist in reducing the confidence of solutions that misuse mathematical theorems or formulas.