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A EXPERIMENTAL SETUP

A.1 DATASET

We used the ImageNet 1k (Deng et al., 2009) dataset for training. ImageNet1K contains 1,000 classes
and the number of training and validation images are 1.28 million and 50,000, respectively. We
validate the effectiveness of our models in the different datasets proposed in the Brain-Score (Schrimpf
et al., 2020a) competition.

A.2 CUSTOM SCHEDULER
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Figure 10: Custom scheduler used for training the
Vision Transformer.

The proposed learning rate scheduler is based
on Jeddi et al. (2020) and is formulated as
LR = 0.00012 × e − 0.0004 for e = 1 and
LR = 0.00002

2e−2 for 1 < e <= 6. As shown in
Figure 10, we start with a small learning rate
and then it is smoothly increased for one epoch.
We empirically found that fine-tuning the trans-
former for more than 1 epoch resulted in an
under-fitting behavior of the adversarial robust-
ness. After this first epoch, the learning rate
is reduced very fast so that model performance
converges to a steady state, without having too
much time to overfit on the training data.

A.3 TRAINING SETUP
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Figure 11: Training robust acc. of each Vision
Transformer model (Adv + Rot). We clearly ob-
served that ViT-S/16 has over-fitted during train-
ing.

We used a pretrained CrossViT-18† (Chen et al.,
2021) downloaded from the timm library that
is adversarially trained via a fast gradient sign
method (FGSM) attack and random initializa-
tion (Wong et al., 2020). We opted for this strat-
egy, known as "Fast Adversarial Training" as it
allows a faster iteration in comparison with other
common approaches (e.g. adversarial training
with the PGD attack). In particular, all experi-
ments used ϵ = 2/255 and step size α = 1.25ϵ
as proposed originally in (Wong et al., 2020).
However, in contrast to the previous method, we
follow a 5 epoch fine-tuning approach with a cus-
tom learning rate scheduler in order to avoid un-
derfitting. We optimize our networks with Adap-
tive Moment Estimation (Adam a la Kingma
& Ba (2014)) and employed mixed precision
for faster training. All input images were pre-
processed with resizing to 256× 256 followed
by standard random cropping and horizontal mirroring. In the case of our best performing model
(#991), we additionally incorporated a random grayscale transformation (p = 0.25) and a set of hard
rotation transformations of (0°, 90°, 180°, 270°) – implicitly aiding for rotational invariance – due to
the characteristics of images appearing in the behavioral benchmark of Rajalingham et al. (2018).
All our experiments were run locally on a GPU-Tesla V-100. Each adversarial training of a vision
transformer took around 48 hours.
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B ADDITIONAL ASSESSMENT OF CROSSVIT-18†-BASED MODELS

B.1 COMMON CORRUPTION BENCHMARKS

We also looked into how adversarial training would affect the performance of the different sets of
neural networks to common corruptions that are not adversarial. To do this, we ran our models and
benchmarked them to the ImageNet-C dataset (Hendrycks & Dietterich, 2019).

One would have expected Brain-Aligned models like our adversarially-trained + rotationally invariant
CrossViT to also present strong robustness to common corruptions. To our surprise, this was not
the case as seen in Table 4. This is a puzzling result, though there have been several bodies of
work suggesting that adversarial robustness and common corruptions robustness are independent
phenomena (Laugros et al., 2019), however Kireev et al. (2021) have proved otherwise contingent on
the l∞ radius 6 – but now see Li et al. (2022).

Network Clean Accuracy (↑) mce (↓) Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet50-Augmix 77.53 67.1 65.5 65.1 66.4 67.7 81 63.9 65.5 71.6 70.9 66.5 57.8 60.2 76.9 59.5 68.5

CrossViT-18† (Adv + Rot) 73.53 79.5 80.7 81.6 83.2 90.2 78.7 82.4 80 77.6 74 107.9 65 100.4 74.2 57.4 58.7

CrossViT-18† (Adv) 64.60 88.8 85 85.7 86.7 96.7 88 92.1 91.3 85.8 83.6 109.3 82.2 104.9 90 70.3 80.9

CrossViT-18† (Rot) 79.22 73.1 75.4 76.7 75 75.7 85.3 72.3 79.2 68.8 70.9 64.3 54.7 67.6 78.4 75.4 76.4

CrossViT-18† 83.05 51 46.1 48.8 46.4 61.2 72.6 54.4 65 44.9 42.1 37.2 41.5 37 67.2 46.8 54.2

Table 4: A table showing the comparison of mean corruption errors (mce)’s across CrossViT models
contingent on their training regime. A ResNet50-Augmix is shown as a reference of a particularly
strong model to common corruptions. Here lower scores are indicative of better robustness to the
different distortion types of Hendrycks & Dietterich (2019).

B.2 IMAGENET-R

We also looked into how adversarial training would affect the performance of generalization to
various abstract visual renditions. To do this, we ran our models and benchmarked them on the
ImageNet-Rendition (ImageNet-R) dataset (Hendrycks et al., 2021a).

We observe that the accuracy on ImageNet-R decreases when the CrossViT is adversarially trained.
However, when we combine the rotation invariance and adversarial training regimes, the accuracy on
ImageNet-R becomes competitive with its pretrained version. In addition, we also appreciate that this
combination does not affect the IID/OOD Gap with respect to the pretrained CrossViT.

Network ImageNet-200 (↑) ImageNet-R (↑) Gap (↓)

CrossViT-18† (Adv + Rot) 90.75 41.14 49.61
CrossViT-18† (Adv) 85.52 35.73 49.79

CrossViT-18† (Rot) 93.89 37.35 56.54

CrossViT-18† 95.64 45.7 49.94

Table 5: A table showing the comparison of the accuracy on Imagenet-R dataset across CrossViT
models contingent in their training regime.

B.3 CENTER KERNEL ALIGNMENT TO UNDERSTAND CROSSVIT REPRESENTATIONS

We also calculated the center kernel alignment (Kornblith et al., 2019) scores at each brain-region
layer and on the Behavior and Inversion layers using a linear kernel. Besides, CKA scores were
generated using the ‘ImageNette’ validation dataset (Howard, 2019) which is a subset of 10 easily
classified classes from ImageNet. The objective of this experiment is to understand how correlated are
the variance of internal representations across the different versions of the optimized CrossViT-18†.

6Also see Li et al. (2022) that shows that generally robust models (robust to adversarial + commmon
corruptions) have a preference for low-spatial frequency statistics.
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We can see in Figure 12 that intermediate brain-region layers (IT, Behavior) tend to have similar
representations across the 3 variants of CrossViT-18† (Rot. + Adv., Rot. and Adv.) based on the
CKA score. In addition, we also appreciate that our best model (Crossvit-18† + Rot. + Adv.) is more
correlated with their individual versions (Rot. and Adv.) than with its pretrained version.

It is also remarkable that at the penultimate layer of the largest branch (inversion layer), our best
CrossViT possesses a very weak similarity with its pretrained form. This suggests that adversarial
training and rotation invariance, either jointly or independently, strongly changes the representation
of the final layers with respect to its pretrained version (CrossViT-18†).
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Figure 12: Similarity of representations at V1, V2, V4, Behavior and Inversion layers across the
four versions of CrossViT-18† (pretrained, Adv., Adv. + Rot., Rot.). A score of 1.0 indicates highest
representational similarity, while a score of 0.0 indicated lowest.

C ADVERSARIAL ATTACKS EXPERIMENTS

C.1 TARGETED ADVERSARIAL ATTACKS

In this experiment, we maximize the probability of a specific class ("Goldfish" targeted attack) for the
4 flavors of the CrossViT-18†. We observed that as the average "Brain-Score" increases, the models
tend to resemble more accurately the samples of the target class (Figure 3). In addition, we also
performed targeted attacks for different classes on the ImageNet dataset as can be seen in Figure 4.
Parameters used for these experiments can be found in Table 6

C.1.1 ADVERSARIAL ROBUSTNESS TO PGD ATTACKS

Results of PGD adversarial attacks on different versions of CrossViT-18† can be found in Table 7. All
experiments used ϵ ∈ {1/255, 2/255, 4/255, 6/255, 8/255, 10/255} and step-size = 2.5

#PGDiterations

as in the robustness Python library (Engstrom et al., 2019a).
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Dataset ϵ Steps Step size

ImageNet 300 500 1

Table 6: Parameters used for the targeted attacks

ϵ− test(↑)
Model 1/255 2/255 4/255 6/255 8/255 10/255

CrossViT-18† (Adv + Rot) 65.1/64.84/64.83 55.99/54.27/54.23 39.52/32/31.69 27.81/15.76/15.28 19.33/6.67/6.32 14.77/2.72/2.43
CrossViT-18† (Adv) 62.27/5.3/4.15 59.9/4.2/2.14 55.36/7.18/0.996 51.02/14.97/0.66 47.16/12.84/0.6 43.76/6.37/0.6
CrossViT-18† (Rot) 48/1.75/1.5 4.87/0/0 2.17/0/0 1.89/0/0 1.87/0/0 2.13/0/0

CrossViT-18† 48.31/14.87/6.64 44.01/5.56/1.1 41.58/1.47/0.09 40.96/0.59/0.02 40.79/0.35/0.01 40.9/0.13/0

Table 7: PGD adversarial attacks on different flavors of CrossViT-18†. Results represent adversarial
accuracy at 1/10/20 PGD-iterations

D BRAIN-SCORE

D.1 METRICS

Brain-Score is a composite of multiple neural and behavioral benchmarks that score most of the
artificial neural networks on how similar they are to the primate’s brain mechanisms for core object
recognitionSchrimpf et al. (2020a).

In the same direction, the Brain-Score competition was held for 4 months from December 21 to March
22. The objective was to evaluate models that engage with the whole ventral visual stream. These
models were evaluated in 33 neuronal and behavioral benchmarks related to activity in macaque
visual cortical areas V1, V2, V4, and IT and human psychophysical performance in a set of object
classification tasks. The metrics used in the evaluation are the followings:

Neural predictivity: Measures how well the responses to given images in a model area predict the
responses of a neuronal population of the corresponding area in the macaque brain. First, the model
responses are mapped to the neuronal recordings using a linear transformation (PLS regression with
25 components) on a training set of images. Then the model’s predictivity is determined for held-out
images by computing the Pearson correlation coefficient between the model’s predictions and the
neuronal responses.

Single-neuron property distribution similarity: Measures whether single neurons in a model area
are functionally similar to single-neurons in the corresponding monkey brain area. This is done by
comparing the distribution of single-neuron response properties between the model area and the brain
area using a similarity score (using the KS distance).

Behavioral consistency: Measures the behavioral similarity between the model and humans in core
object recognition tasks. This metric does not measure the overall accuracy of the model but whether
it can predict the patterns of successes and failures of humans in a set of object recognition tasks.
Model’s and humans’ behavioral accuracies are first transformed to a d’statistic and then compared
using the Pearson correlation coefficient.

D.1.1 SELECTING BEST-BRAINSCORE LAYERS

Best performing layers on each vision transformer were selected by a brute-force approach. We
evaluate each layer of the vision transformer models on each brain region and behavior dataset
and select the layer that got the best score on the public benchmarks (in order to avoid overfitting)
proportioned by Brain-Score organization. After this step, the "Adv + Rot" & pretrained versions
of each transformer are submitted to the competition fixing best performing layers (See Table 8 ).
We achieved our highest score at the time of our 4th submission, which was the lowest number of
submissions in the competition (the winner of the competition performed nearly 60 submissions). All
our results reflect the private scores obtained by each vision transformer model.

Additionally to the experiments on CrossViT-18†, we also evaluate the brain-scores on vanilla Vision
transformers that can be seen in Table 9.
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Model V1 V2 V4 IT Behavior

CrossViT-18† blocks.1.blocks.1.0.norm1 blocks.1.blocks.1.0.norm1 blocks.1.blocks.1.0.norm1 blocks.1.blocks.1.4.norm2 blocks.2.revert_projs.1.2
ViT-S/16 blocks.1.mlp.act blocks.3.attn.proj blocks.3.norm2 blocks.9.norm1 pre_logits
ViT-S/16 blocks.1.mlp.act blocks.3.attn.proj blocks.3.norm2 blocks.9.norm1 pre_logits
ViT-S/32 blocks.1.mlp.act blocks.10.norm1 blocks.2.mlp.act blocks.10.norm1 pre_logits
ViT-B/16 blocks.1.mlp.act blocks.6.norm2 blocks.2.mlp.act blocks.8.norm1 pre_logits
ViT-B/32 blocks.1.mlp.act blocks.6.norm2 blocks.2.mlp.act blocks.11.norm1 pre_logits

Table 8: Layers selected for each brain region on each vision transformer.

ImageNet(↑) Brain-Score(↑)
Description Validation Acc. (%) Avg V1 V2 V4 IT Behavior

ViT-S/16 81.40 0.445 0.527 0.295 0.454 0.449 0.498
ViT-S/32 75.99 0.415 0.531 0.271 0.422 0.423 0.426
ViT-B/16 84.53 0.451 0.522 0.317 0.398 0.487 0.529
ViT-B/32 80.72 0.440 0.553 0.311 0.413 0.418 0.505

ViT-S/16 (Adv + Rot) 50.44 0.443 0.506 0.332 0.470 0.496 0.409
ViT-S/32 (Adv + Rot) 55.20 0.457 0.512 0.347 0.433 0.485 0.508
ViT-B/16 (Adv + Rot) 67.25 0.486 0.536 0.332 0.470 0.496 0.598
ViT-B/32 (Adv + Rot) 53.01 0.457 0.524 0.357 0.417 0.472 0.515

Table 9: ImageNet accuracy, Brain-Scores of each brain area & Behavior benchmark evaluated on
vanilla vision transformers. The spearman rank correlation between the validation accuracy and the
average Brain-Score is −0.28 suggesting an inverse correlation between clean ImageNet accuracy
and Brain-Score (Schrimpf et al., 2020a).

E IMAGE SYNTHESIS EXPERIMENTS

E.1 STANDARD & ROBUST STIMULI

We used publicly available transformer models from timm library which were trained adversarially
(ϵ = 2/255 and step size α = 1.25) as in (Wong et al., 2020) coupled with a set of hard rotation462
transformations of (0°, 90°, 180°, 270°) as proposed in this paper. In order to synthesize the standard
and robust images, we used the penultimate layer (norm layer) in all of our vision transformer models
except in the case of the CrossViT-18† versions in which we used the penultimate layer of the largest
branch for all variations. Parameters used in these experiments can be seen in Table 10.

Constraint ϵ Step-size Iterations

l2 1000 1 10000

Table 10: Parameters used for standard & robust stimuli by feature inversion
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Figure 13: An extended version of Figure 7
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Figure 14: Feature Inversion for CrossViT-18† (Adv) & CrossViT-18† (Rot).
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Figure 15: Feature Inversion for Vanilla Vision Transformers ViT-B/32 & ViT-B/16.
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Figure 16: Feature Inversion for Vanilla Vision Transformers ViT-S/32 & ViT-S/16.
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