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A APPENDIX

A.1 ADDITIONAL FIGURES
A.1.1 SAMPLE SIZE AND MIA EFFECTIVENESS

It is known that Membership Inference Attacks benefit from low sample sizes of T', R, and S. We
explore the effect of the size of these samples across all models and datasets in figure Here,
we see that performance drops off between N=250 and N=1000; however it is relatively the same
across all MIAs between N=1000 and N=4000. Across all N-sizes, Gen-LRA has a greater average
AUC-ROC then all other MIAs. This further demonstrates that Gen-LRA is an excellent choice for
a privacy auditing adversarial attack.
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Figure 1: Average MIA AUC-ROC across different sample sizes. There is little decrease in perfor-
mance after N=1000 and Gen-LRA has the highest global attack performance across N-sizes.

A.1.2 AVERAGE ACCURACY TABLE
A.1.3 MODEL UTILITY AND GEN-LRA EFFECTIVENESS

We benchmark various statistical metrics used to describe the quality of tabular synthetic data across
architectures and datasets. We plot the mean Wasserstein distance and Maximum Mean Discrepancy
between the corresponding training and synthetic data against the mean AUC-ROC of Gen-LRA in
figure 2] Here, it seems there is some relationship between measures of statistical distance and
Gen-LRA’s global effectiveness. As these metrics are often used in utility benchmarks for tabular
synthetic data, it is important to note that for practitioners, statistical fidelity in synthetic data can
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Table 1: Average AUC-ROC for each Membership Inference Attack across model architectures and

datasets.

Model Gen-LRA (Ours) MC DCR DCR-Diff DPI DOMIAS  LOGAN 2017
AdsGAN 0.524 (0.02) 0513 (0.02) 0513(0.02) 0513(0.02) 0515(0.02) 0513(0.02) _ 0.503 (0.02)
ARF 0.539 (0.02) 0.524 (0.02)  0.524 (0.02)  0.529 (0.02)  0.526(0.02)  0.524(0.02)  0.503 (0.02)
Bayesian Network 0.619 (0.05) 0.629 (0.05)  0.629 (0.05)  0.621 (0.05) 0538 (0.02)  0.599(0.05)  0.504 (0.02)
CTGAN 0.523 (0.02) 0.509 (0.02)  0.509 (0.02)  0.511(0.02) 0513(0.02) 0.511(0.02)  0.504 (0.02)
Tab-DDPM 0.58 (0.04) 0.564 (0.05)  0.564 (0.05)  0.563 (0.05)  0.537(0.02)  0.563(0.04)  0.504 (0.02)
Normalizing Flows 0.517 (0.02) 0.504 (0.02)  0.504 (0.02)  0.504 (0.02)  0.505(0.02)  0.504(0.02)  0.501 (0.02)
PATEGAN 0.514 (0.02) 0.501(0.02)  0.501(0.02)  0.499 (0.02)  0.499 (0.02)  0.500 (0.02)  0.501 (0.02)
TVAE 0.533 (0.02) 0.520 (0.02)  0.520(0.02)  0.522(0.02) 0517(0.02)  0.518(0.02)  0.503 (0.02)
Rank 13 32 34 36 36 3.9 55

come at a privacy cost. It also illustrates that measures of utility should include some kind of holdout

testing method to consider overfitting.

Average of Wasserstein Distance vs Gen-LRA AUC-ROC

Average Mean Discrepancy vs Gen-LRA AUC-ROC

0.68 kBayesian Network 0.68 ./Bayeswan Network
0.66 0.66
PA Tab-DDPM . Tab-DDPM
0.64 0.64
I8} )
8 0.62 8 0.62
o 3
o o
2 E:
0.60 0.60
2 =
i} 5
< <
@ o
O 058 O 058
ARF  TVAE ARF TVAE
0.56 e . 0.56 L ..
AdsGAN ?SGAN
o o—CTGAN
054 CTGAN - 0.54 .
Normalizing Flow Normalizing Flow
o~ -—
PATEGAN PATEGAN
0.52 A 0.52 *

0.20 0.25 0.30 0.35 0.40 0.45

Average Wasserstein Distance

0.50 0.55

0.005 0.010 0.015 0.020 0.025

Average Maximum Mean Discrepancy

0.030

Figure 2: Average Wasserstein Distance and Average Maximum Mean Discrepancy plotted against
Gen-LRA AUC-ROC for benchmarked models. Bayesian Network and Tab-DDPM outperform
other models in these performance metrics but have higher privacy risk.

A.2 EXPERIMENT DETAILS

A.2.1 SECTION 6.2

We conducted two experiments to evaluate the performance of DCR and Gen-LRA on different
types of model failure, with the full results shown in table ??. The experiments were carried out as
follows:

Data Copying Simulation In this setup, we let 7" and R be random samples from a 2-dimensional

.. . e . iid
standard multivariate Gaussian distribution; i.e., T', R ~ N>(0,T). Here, we assume a model M

that exactly reproduces the training examples in its output, meaning S = 7.

Overfitting Simulation In this simulation, we again let R N 2(0, 1), but the sampling distribu-
tion of 1" is modified to slightly differ from R, potentially due to sampling variation or bias. In this

case, the output S models T well, where D, S S N3 (0, (3 (1)) ).

For both simulations, we set the sample size n = 500 for T, R, and S, and the AUC-ROC of DCR
and Gen-LRA was compared over 10,000 iterations.
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A.3 ABLATION: DIFFERENT k SIZES

Gen-LRA targets local fitting by selecting a subset of S to evaluate likelihoods with. This is im-
plemented using the k-nearest neighbors in S to z*. In practice, this means that k¥ must be selected
as a hyperparameter for the attack. In order to understand how k impacts the quality of the attack,
we replicate section ?? benchmarking with various £k values. We report the average AUC-ROC and
standard deviations in table[2} Overall, we find that empirically usually smaller values of k are better
although it depends on the model. As stated in section ??, a global attack over all S’ is unlikely to
yield much membership signal. This is confirmed with k¥ = N, where the AUC-ROC is always 0.5
and highlights that overfitting is a local phenomenon and that generative model adversarial attacks
should focus on attacking locality to be successful.

Table 2: Average AUC-ROC at different k values for Gen-LRA.

Model k=1 k=3 k=5 k=10 k=15 k=20 k=N
AdsGAN 0514 (0.02) 0.518(0.02) 0519(0.02) 0.520(0.02) 0521 (0.02) _ 0.521(0.02) _ 0.500 (0.00)
ARF 0.532(0.02)  0.538(0.02)  0.540 (0.02)  0.540(0.03)  0.540 (0.03)  0.539(0.03)  0.500 (0.00)
Bayesian Network  0.650 (0.07)  0.645(0.07)  0.640 (0.07)  0.634 (0.07)  0.631(0.07)  0.629 (0.07)  0.500 (0.00)
CTGAN 0.514(0.02)  0.516(0.02) 0517(0.02)  0.517(0.02) 0.518(0.02)  0.518(0.02)  0.500 (0.00)
Tab-DDPM 0.595(0.07)  0.595(0.07)  0.594 (0.07)  0.592(0.06)  0.591 (0.06)  0.589(0.06)  0.500 (0.00
Normalizing Flow ~ 0.503 (0.02) ~ 0.503(0.02)  0.505 (0.02)  0.506 (0.02)  0.506(0.02)  0.506 (0.02)  0.500 (0.00)
TVAE 0.527 (0.03)  0.531(0.03)  0.531(0.03)  0.531(0.03)  0.530(0.03)  0.529(0.03)  0.500 (0.00)

A.4 MIAS FOR GENERATIVE MODELS DESCRIPTIONS

The Membership Inference Attacks referenced in this paper is are described as follows:

* LOGAN Hayes et al.| (2017): LOGAN consists of black box and shadow box attack. The
black-box version involves training a Generative Adversarial Network (GAN) on the syn-
thetic dataset and using the discriminator to score test data. A calibrated version improves
upon this by training a binary classifier to distinguish between the synthetic and reference
dataset. In this paper, we only benchmark the calibrated version.

 Distance to Closest Record (DCR) / DCR Difference |Chen et al.|(2020): DCR is a black-
box attack that scores test data based on a sigmoid score of the distance to the nearest
neighbor in the synthetic dataset. DCR Difference enhances this approach by incorporating
a reference set, subtracting the distance to the closest record in the reference set from the
synthetic set distance.

* MC Hilprecht et al.| (2019): MC is based on counting the number of observations in the
synthetic dataset that fall into the neighborhood of a test point (Monte Carlo Integration).
However, this method does not consider a reference dataset, and the choice of distance
metric for defining a neighborhood is a non-trivial hyperparameter to tune.

« DOMIAS jvan Breugel et al.| (2023): DOMIAS is a calibrated attack which scores test
data by performing density estimation on both the synthetic and reference datasets. It then
calculates the density ratio of the test data between the learned synthetic and reference
probability densities.

e DPI Ward et al.|(2024): DPI computes the ratio of k-Nearest Neighbors of 2* in the syn-
thetic and reference datasets. It then builds a scoring function by computing the ratio of the
sum of data points from each class of neighbors from the respective sets.

A.5 GENERATIVE MODEL ARCHITECTURE DESCRIPTIONS

In all experiments, we use the implementations of these models from the Python package Synthcity
Qian et al.| (2023). For benchmarking purposes, we use the default hyperparameters for each model.
A brief description of each model is as follows:

e CTGAN Xu et al| (2019): Conditional Tabular Generative Adversarial Network uses a
GAN framework with conditional generator and discriminator to capture multi-modal dis-
tributions. It employs mode normalization to better learn mixed-type distributions.
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TVAE Xu et al.|(2019): Tabular Variational Auto-Encoder is similar to CTGAN in its use of
mode normalizing techniques, but instead of a GAN architecture, it employs a Variational
Autoencoder.

Normalizing Flows (NFlows) | Durkan et al.|(2019): Normalizing flows transform a simple
base distribution (e.g., Gaussian) into a more complex one matching the data by applying
a sequence of invertible, differentiable mappings.

Bayesian Network (BN) |Ankan & Pandal (2015): Bayesian Networks use a Directed
Acyclic Graph to represent the joint probability distribution over variables as a product
of marginal and conditional distributions. It then samples the empirical distributions esti-
mated from the training dataset.

Adversarial Random Forests (ARF) Watson et al.| (2023)): ARFs extend the random forest
model by adding an adversarial stage. Random forests generate synthetic samples which
are scored against the real data by a discriminator network. This score is used to re-train
the forests iteratively.

Tab-DDPM [Kotelnikov et al.[ (2022): Tabular Denoising Diffusion Probabilistic Model
adapts the DDPM framework for image synthesis. It iteratively refines random noise into
synthetic data by learning the data distribution through gradients of a classifier on partially
corrupted samples with Gaussian noise.

PATEGAN |Yoon et al.| (2019): The PATEGAN model uses a neural encoder to map dis-
crete tabular data into a continuous latent representation which is sampled from during
generation by the GAN discriminator and generator pair.

Ads-GAN |Yoon et al.|(2020): Ads-GAN uses a GAN architecture for tabular synthesis but
also adds an identifiability metric to increase its ability to not mimic training data.

A.6 BENCHMARKING DATASETS REFERENCES

We provide the URL for the sources of each dataset considered in the paper. We use datasets com-
mon in the tabular generative modeling literature |Suh et al.| (2023)

1.

Abalone (OpenML): https://www.openml.org/search?type=data&sort=
runs&id=183&status=active

2. Adult Becker & Kohavi (1996)

. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+

dataset

Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/
shrutimechlearn/churn-modelling

. Faults (UCI): |https://archive.ics.uci.edu/dataset/198/steel+

plates+faults

6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru?2

10.

11.

12.

13.

. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/

indian-liver-patient-records?resource=download

. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/

insurance

Magic (Kaggle): https://www.kaggle.com/datasets/abhinand05/
magic—-gamma-telescope-dataset?resource=download

News (UCI): |https://archive.ics.uci.edu/dataset/332/online+
news+popularity

Nursery (Kaggle): |https://www.kaggle.com/datasets/heitornunes/
NUYSEry

Obesity (Kaggle): https://www.kaggle.com/datasets/
tathagatbanerjee/obesity-dataset—-uci—-ml

Shoppers (Kaggle): https://www.kaggle.com/datasets/henrysue/
online-shoppers—-intention
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14. Titanic (Kaggle): https://www.kaggle.com/c/titanic/data

15. Wilt (OpenML): https://www.openml.org/search?type=data&sort=
runs&id=40983&status=active
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