GEN-LRA: TOWARDS A PRINCIPLED MEMBERSHIP INFERENCE ATTACK FOR GENERATIVE MODELS (SUP PLEMENTAL MATERIALS)

Anonymous authors

Paper under double-blind review

A APPENDIX

006

013

015

016 017

018

019

021

025

026

027

028

029

031

034

037

040

041 042

043

044 045

046 047

048

A.1 ADDITIONAL FIGURES

A.1.1 SAMPLE SIZE AND MIA EFFECTIVENESS

It is known that Membership Inference Attacks benefit from low sample sizes of T, R, and S. We explore the effect of the size of these samples across all models and datasets in figure 1. Here, we see that performance drops off between N=250 and N=1000; however it is relatively the same across all MIAs between N=1000 and N=4000. Across all N-sizes, Gen-LRA has a greater average AUC-ROC then all other MIAs. This further demonstrates that Gen-LRA is an excellent choice for a privacy auditing adversarial attack.

Average AUC-ROC by Sample Size Score Method Gen-LRA 0.56 DCR DCR-Diff 0.55 DOMIAS Average AUC-ROC DPI 0.54 Logan MC 0.53 0.52 0.51 0.50 1000 1500 2000 3000 3500 500 2500 4000 Ν

A.1.2 AVERAGE ACCURACY TABLE

A.1.3 MODEL UTILITY AND GEN-LRA EFFECTIVENESS

We benchmark various statistical metrics used to describe the quality of tabular synthetic data across architectures and datasets. We plot the mean Wasserstein distance and Maximum Mean Discrepancy between the corresponding training and synthetic data against the mean AUC-ROC of Gen-LRA in figure 2. Here, it seems there is some relationship between measures of statistical distance and Gen-LRA's global effectiveness. As these metrics are often used in utility benchmarks for tabular synthetic data, it is important to note that for practitioners, statistical fidelity in synthetic data can

.....

056								
057	Model	Gen-LRA (Ours)	MC	DCR	DCR-Diff	DPI	DOMIAS	LOGAN 2017
	AdsGAN	0.524 (0.02)	0.513 (0.02)	0.513 (0.02)	0.513 (0.02)	0.515 (0.02)	0.513 (0.02)	0.503 (0.02)
058	ARF	0.539 (0.02)	0.524 (0.02)	0.524 (0.02)	0.529 (0.02)	0.526 (0.02)	0.524 (0.02)	0.503 (0.02)
059	Bayesian Network	0.619 (0.05)	0.629 (0.05)	0.629 (0.05)	0.621 (0.05)	0.538 (0.02)	0.599 (0.05)	0.504 (0.02)
000	CTGAN	0.523 (0.02)	0.509 (0.02)	0.509 (0.02)	0.511 (0.02)	0.513 (0.02)	0.511 (0.02)	0.504 (0.02)
060	Tab-DDPM	0.58 (0.04)	0.564 (0.05)	0.564 (0.05)	0.563 (0.05)	0.537 (0.02)	0.563 (0.04)	0.504 (0.02)
061	Normalizing Flows	0.517 (0.02)	0.504 (0.02)	0.504 (0.02)	0.504 (0.02)	0.505 (0.02)	0.504 (0.02)	0.501 (0.02)
001	PATEGAN	0.514 (0.02)	0.501 (0.02)	0.501 (0.02)	0.499 (0.02)	0.499 (0.02)	0.500 (0.02)	0.501 (0.02)
062	TVAE	0.533 (0.02)	0.520 (0.02)	0.520 (0.02)	0.522 (0.02)	0.517 (0.02)	0.518 (0.02)	0.503 (0.02)
063	Rank	1.3	3.2	3.4	3.6	3.6	3.9	5.5

054 Table 1: Average AUC-ROC for each Membership Inference Attack across model architectures and 055 datasets.

064 065 066

067

come at a privacy cost. It also illustrates that measures of utility should include some kind of holdout testing method to consider overfitting.

Figure 2: Average Wasserstein Distance and Average Maximum Mean Discrepancy plotted against Gen-LRA AUC-ROC for benchmarked models. Bayesian Network and Tab-DDPM outperform other models in these performance metrics but have higher privacy risk.

EXPERIMENT DETAILS A.2

A.2.1 SECTION 6.2

We conducted two experiments to evaluate the performance of DCR and Gen-LRA on different types of model failure, with the full results shown in table ??. The experiments were carried out as follows:

Data Copying Simulation In this setup, we let T and R be random samples from a 2-dimensional standard multivariate Gaussian distribution; i.e., $T, R \stackrel{\text{iid}}{\sim} \mathcal{N}_2(\mathbf{0}, \mathbf{I})$. Here, we assume a model \mathcal{M} that exactly reproduces the training examples in its output, meaning S = T. 100

102 **Overfitting Simulation** In this simulation, we again let $R \stackrel{\text{iid}}{\sim} \mathcal{N}_2(\mathbf{0}, \mathbf{I})$, but the sampling distribu-103 tion of T is modified to slightly differ from R, potentially due to sampling variation or bias. In this 104 case, the output S models T well, where $D, S \stackrel{\text{iid}}{\sim} \mathcal{N}_2(\mathbf{0}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}).$ 105 106

For both simulations, we set the sample size n = 500 for T, R, and S, and the AUC-ROC of DCR 107 and Gen-LRA was compared over 10,000 iterations.

085

087 088

090 091

092 093

094

096 097

098

099

101

108 A.3 ABLATION: DIFFERENT k sizes

Gen-LRA targets local fitting by selecting a subset of S to evaluate likelihoods with. This is im-plemented using the k-nearest neighbors in S to x^* . In practice, this means that k must be selected as a hyperparameter for the attack. In order to understand how k impacts the quality of the attack, we replicate section ?? benchmarking with various k values. We report the average AUC-ROC and standard deviations in table 2. Overall, we find that empirically usually smaller values of k are better although it depends on the model. As stated in section ??, a global attack over all S is unlikely to yield much membership signal. This is confirmed with k = N, where the AUC-ROC is always 0.5 and highlights that overfitting is a local phenomenon and that generative model adversarial attacks should focus on attacking locality to be successful.

Table 2:	Average AUC-ROC	at different k	values for	Gen-LRA.
14010 2		at annoitine to	ranaeo ioi	Oon Dian.

Model	k=1	k=3	k=5	k=10	k=15	k=20	k=N
AdsGAN	0.514 (0.02)	0.518 (0.02)	0.519 (0.02)	0.520 (0.02)	0.521 (0.02)	0.521 (0.02)	0.500 (0.00)
ARF	0.532 (0.02)	0.538 (0.02)	0.540 (0.02)	0.540 (0.03)	0.540 (0.03)	0.539 (0.03)	0.500 (0.00)
Bayesian Network	0.650 (0.07)	0.645 (0.07)	0.640 (0.07)	0.634 (0.07)	0.631 (0.07)	0.629 (0.07)	0.500 (0.00)
CTGAN	0.514 (0.02)	0.516 (0.02)	0.517 (0.02)	0.517 (0.02)	0.518 (0.02)	0.518 (0.02)	0.500 (0.00)
Tab-DDPM	0.595 (0.07)	0.595 (0.07)	0.594 (0.07)	0.592 (0.06)	0.591 (0.06)	0.589 (0.06)	0.500 (0.00
Normalizing Flow	0.503 (0.02)	0.503 (0.02)	0.505 (0.02)	0.506 (0.02)	0.506 (0.02)	0.506 (0.02)	0.500 (0.00)
TVAE	0.527 (0.03)	0.531 (0.03)	0.531 (0.03)	0.531 (0.03)	0.530 (0.03)	0.529 (0.03)	0.500 (0.00)

A.4 MIAs FOR GENERATIVE MODELS DESCRIPTIONS

The Membership Inference Attacks referenced in this paper is are described as follows:

- LOGAN Hayes et al. (2017): LOGAN consists of black box and shadow box attack. The black-box version involves training a Generative Adversarial Network (GAN) on the synthetic dataset and using the discriminator to score test data. A calibrated version improves upon this by training a binary classifier to distinguish between the synthetic and reference dataset. In this paper, we only benchmark the calibrated version.
- Distance to Closest Record (DCR) / DCR Difference Chen et al. (2020): DCR is a blackbox attack that scores test data based on a sigmoid score of the distance to the nearest neighbor in the synthetic dataset. DCR Difference enhances this approach by incorporating a reference set, subtracting the distance to the closest record in the reference set from the synthetic set distance.
- MC Hilprecht et al. (2019): MC is based on counting the number of observations in the synthetic dataset that fall into the neighborhood of a test point (Monte Carlo Integration). However, this method does not consider a reference dataset, and the choice of distance metric for defining a neighborhood is a non-trivial hyperparameter to tune.
 - **DOMIAS** van Breugel et al. (2023): DOMIAS is a calibrated attack which scores test data by performing density estimation on both the synthetic and reference datasets. It then calculates the density ratio of the test data between the learned synthetic and reference probability densities.
 - **DPI** Ward et al. (2024): DPI computes the ratio of k-Nearest Neighbors of x^* in the synthetic and reference datasets. It then builds a scoring function by computing the ratio of the sum of data points from each class of neighbors from the respective sets.
- A.5 GENERATIVE MODEL ARCHITECTURE DESCRIPTIONS

In all experiments, we use the implementations of these models from the Python package Synthety
Qian et al. (2023). For benchmarking purposes, we use the default hyperparameters for each model.
A brief description of each model is as follows:

• **CTGAN** Xu et al. (2019): Conditional Tabular Generative Adversarial Network uses a GAN framework with conditional generator and discriminator to capture multi-modal distributions. It employs mode normalization to better learn mixed-type distributions.

162	
163	• TVAE Xu et al. (2019): Tabular Variational Auto-Encoder is similar to CTGAN in its use of
164	mode normalizing techniques, but instead of a GAN architecture, it employs a Variational
165	Autoencoder.
166	• Normalizing Flows (NFlows) Durkan et al. (2019): Normalizing flows transform a simple
100	base distribution (e.g., Gaussian) into a more complex one matching the data by applying
167	a sequence of invertible, differentiable mappings.
168	• Bayesian Network (BN) Ankan & Panda (2015): Bayesian Networks use a Directed
169	Acyclic Graph to represent the joint probability distribution over variables as a product
170	of marginal and conditional distributions. It then samples the empirical distributions esti-
171	mated from the training dataset.
172	• Adversarial Random Forests (ARF) Watson et al. (2023): ARFs extend the random forest
173	model by adding an adversarial stage. Random forests generate synthetic samples which
174	are scored against the real data by a discriminator network. This score is used to re-train
175	the forests iteratively.
176	• Tab DDPM Kotelnikov et al. (2022): Tabular Denoising Diffusion Probabilistic Model
177	adapts the DDPM framework for image synthesis. It iteratively refines random noise into
178	synthetic data by learning the data distribution through gradients of a classifier on partially
179	corrupted samples with Gaussian noise.
180	• DATECAN Vers et al. (2010). The DATECAN model uses a neural encodente mon die
181	• PAIEGAN 10011 et al. (2019): The PAIEGAN model uses a neural encoder to map dis-
182	generation by the GAN discriminator and generator pair
183	the GANA in the GANA discriminator and generator pair.
184	• Ads-GAN Yoon et al. (2020): Ads-GAN uses a GAN architecture for tabular synthesis but
185	also adds an identifiability metric to increase its ability to not mimic training data.
186	
187	A.6 BENCHMARKING DATASETS REFERENCES
188	We provide the LIRL for the sources of each dataset considered in the paper. We use datasets com-
189	mon in the tabular generative modeling literature Sub et al. (2023)
189 190	mon in the tabular generative modeling literature Suh et al. (2023)
189 190 191	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort=</pre>
189 190 191 192	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active</pre>
189 190 191 192 193	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohayi (1996)</pre>
189 190 191 192 193 194	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Reap. (UCD): https://archive.icc.uci.edu/dataget/602/dru/beap/ </pre>
189 190 191 192 193 194 195	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset</pre>
189 190 191 192 193 194 195 196	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset </pre>
189 190 191 192 193 194 195 196 197	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ </pre>
189 190 191 192 193 194 195 196 197 198	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling</pre>
189 190 191 192 193 194 195 196 197 198 199	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+</pre>
189 190 191 192 193 194 195 196 197 198 199 200	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults</pre>
189 190 191 192 193 194 195 196 197 198 199 200 201	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2</pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/</pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download </pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/0218/</pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/ insurance</pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/ insurance </pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/ insurance 9. Magic (Kaggle): https://www.kaggle.com/datasets/abhinand05/ record and and and and and and and and and an</pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/ insurance 9. Magic (Kaggle): https://www.kaggle.com/datasets/abhinand05/ magic-gamma-telescope-dataset?resource=download </pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 203 204 205 206 207 208 209	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/ insurance 9. Magic (Kaggle): https://www.kaggle.com/datasets/abhinand05/ magic-gamma-telescope-dataset?resource=download 10. News (UCI): https://archive.ics.uci.edu/dataset/332/online+ </pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/ insurance 9. Magic (Kaggle): https://www.kaggle.com/datasets/abhinand05/ magic-gamma-telescope-dataset?resource=download 10. News (UCI): https://archive.ics.uci.edu/dataset/332/online+ news+popularity</pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 207 208 209 210	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/abhinand05/ magic-gamma-telescope-dataset?resource=download 10. News (UCI): https://archive.ics.uci.edu/dataset/332/online+ news+popularity 11. Nursery (Kaggle): https://www.kaggle.com/datasets/heitornunes/ </pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 205 206 207 208 209 210 211	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/ insurance 9. Magic (Kaggle): https://www.kaggle.com/datasets/abhinand05/ magic-gamma-telescope-dataset?resource=download 10. News (UCI): https://archive.ics.uci.edu/dataset/332/online+ news+popularity 11. Nursery (Kaggle): https://www.kaggle.com/datasets/heitornunes/ nursery</pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 206 207 208 209 210 211 212	<pre>mon in the tabular generative modeling literature Sub et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/abhinand05/ magic-gamma-telescope-dataset?resource=download 10. News (UCI): https://archive.ics.uci.edu/dataset/332/online+ news+popularity 11. Nursery (Kaggle): https://www.kaggle.com/datasets/heitornunes/ nursery 12. Obesity (Kaggle): https://www.kaggle.com/datasets/</pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/mirichoi0218/ insurance 9. Magic (Kaggle): https://archive.ics.uci.edu/dataset/332/online+ news+popularity 11. Nursery (Kaggle): https://www.kaggle.com/datasets/heitornunes/ nursery 12. Obesity (Kaggle): https://www.kaggle.com/datasets/ latestatus/ latesta</pre>
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214	<pre>mon in the tabular generative modeling literature Suh et al. (2023) 1. Abalone (OpenML): https://www.openml.org/search?type=data&sort= runs&id=183&status=active 2. Adult Becker & Kohavi (1996) 3. Bean (UCI): https://archive.ics.uci.edu/dataset/602/dry+bean+ dataset 4. Churn-Modeling (Kaggle): https://www.kaggle.com/datasets/ shrutimechlearn/churn-modelling 5. Faults (UCI): https://archive.ics.uci.edu/dataset/198/steel+ plates+faults 6. HTRU (UCI): https://archive.ics.uci.edu/dataset/372/htru2 7. Indian Liver Patient (Kaggle): https://www.kaggle.com/datasets/uciml/ indian-liver-patient-records?resource=download 8. Insurance (Kaggle): https://www.kaggle.com/datasets/abhinand05/ magic-gamma-telescope-dataset?resource=download 10. News (UCI): https://archive.ics.uci.edu/dataset/332/online+ news+popularity 11. Nursery (Kaggle): https://www.kaggle.com/datasets/heitornunes/ nursery 12. Obesity (Kaggle): https://www.kaggle.com/datasets/ 13. Shoppers (Kaggle): https://www.kaggle.com/datasets/ 13. Shoppers (Kaggle): https://www.kaggle.com/datasets/heitornuve/ </pre>

- 14. Titanic (Kaggle): https://www.kaggle.com/c/titanic/data
- 217 218

216

219 220 15. Wilt (OpenML): https://www.openml.org/search?type=data&sort= runs&id=40983&status=active

221 REFERENCES

- Ankur Ankan and Abinash Panda. pgmpy: Probabilistic graphical models using
 python. In Proceedings of the Python in Science Conference, SciPy. SciPy, 2015.
 doi: 10.25080/majora-7b98e3ed-001. URL http://dx.doi.org/10.25080/
 Majora-7b98e3ed-001.
- Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI: https://doi.org/10.24432/C5XW20.
- Dingfan Chen, Ning Yu, Yang Zhang, and Mario Fritz. Gan-leaks: A taxonomy of member ship inference attacks against generative models. In *Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security*, CCS '20. ACM, October 2020. doi: 10.1145/3372297.3417238. URL http://dx.doi.org/10.1145/3372297.3417238.
- Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. *Neural spline flows*. Curran Associates Inc., Red Hook, NY, USA, 2019.
- Jamie Hayes, Luca Melis, George Danezis, and Emiliano De Cristofaro. Logan: Membership infer ence attacks against generative models. *Proceedings on Privacy Enhancing Technologies*, 2019:
 133 152, 2017. URL https://api.semanticscholar.org/CorpusID:52211986.
- Benjamin Hilprecht, Martin Härterich, and Daniel Bernau. Monte carlo and reconstruction member ship inference attacks against generative models. *Proceedings on Privacy Enhancing Technolo- gies*, 2019:232 249, 2019. URL https://api.semanticscholar.org/CorpusID:
 199546273.
- Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling tabular data with diffusion models, 2022.
- Zhaozhi Qian, Bogdan-Constantin Cebere, and Mihaela van der Schaar. Syntheity: facilitating innovative use cases of synthetic data in different data modalities, 2023. URL https: //arxiv.org/abs/2301.07573.
- Namjoon Suh, Xiaofeng Lin, Din-Yin Hsieh, Merhdad Honarkhah, and Guang Cheng. Autodiff:
 combining auto-encoder and diffusion model for tabular data synthesizing, 2023. URL https:
 //arxiv.org/abs/2310.15479.
- Boris van Breugel, Hao Sun, Zhaozhi Qian, and Mihaela van der Schaar. Membership inference attacks against synthetic data through overfitting detection, 2023.
- Joshua Ward, Chi-Hua Wang, and Guang Cheng. Data plagiarism index: Characterizing the privacy
 risk of data-copying in tabular generative models. *KDD- Generative AI Evaluation Workshop*,
 2024. URL https://arxiv.org/abs/2406.13012.
- David S. Watson, Kristin Blesch, Jan Kapar, and Marvin N. Wright. Adversarial random forests for density estimation and generative modeling. In Francisco Ruiz, Jennifer Dy, and Jan-Willem van de Meent (eds.), Proceedings of The 26th International Conference on Artificial Intelligence and Statistics, volume 206 of Proceedings of Machine Learning Research, pp. 5357-5375. PMLR, 25-27 Apr 2023. URL https://proceedings.mlr.press/v206/ watson23a.html.
- Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular
 data using conditional gan. In *Neural Information Processing Systems*, 2019. URL https:
 //api.semanticscholar.org/CorpusID:195767064.
- Jinsung Yoon, James Jordon, and Mihaela van der Schaar. PATE-GAN: Generating synthetic data
 with differential privacy guarantees. In *International Conference on Learning Representations*, 2019. URL https://openreview.net/forum?id=Slzk9iRqF7.

270 271	Jinsung Yoon, Lydia N Drumright, and Mihaela Van Der Schaar. Anonymization through data synthesis using generative adversarial networks (ads-gan). <i>IEEE journal of biomedical and health</i>
272	informatics, 24(8):2378–2388, 2020.
273	
274	
275	
276	
277	
278	
279	
280	
281	
282	
283	
284	
285	
286	
287	
288	
289	
290	
291	
292	
293	
294	
295	
296	
297	
298	
299	
300	
301	
302	
303	
304	
305	
306	
307	
308	
309	
310	
311	
312	
313	
314	
315	
316	
317	
318	
310	
320	
320	
320	
323	