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Abstract. Pelvic fractures pose significant diagnostic challenges, particularly in 

cases where fracture signs are subtle or invisible on standard radiographs. To 

address this, we introduce PelFANet, a dual-stream attention network that fuses 

raw pelvic X-rays with segmented bone images to improve fracture classification. 

The network employs Fused Attention Blocks (FABlocks) to iteratively ex-

change and refine features from both inputs, capturing global context and local-

ized anatomical detail. Trained in a two-stage pipeline with a segmentation-

guided approach, PelFANet demonstrates superior performance over conven-

tional methods. On the AMERI dataset, it achieves 88.68% accuracy and 0.9334 

AUC on visible fractures, while generalizing effectively to invisible fracture 

cases with 82.29% accuracy and 0.8688 AUC, despite not being trained on them. 

These results highlight the clinical potential of anatomy-aware dual-input archi-

tectures for robust fracture detection, especially in scenarios with subtle radio-

graphic presentations. 

Keywords: PelFANet, Invisible Fracture Detection, Anatomy-Guided Attention, 

Pelvic X-ray Classification 

1 Introduction 

Pelvic fractures are among the most critical injuries in emergency medicine, typi-

cally caused by high-energy trauma such as motor vehicle accidents or falls [1]. Due to 

the pelvis's anatomical complexity and its role in protecting vital organs and blood ves-

sels, such fractures can lead to severe complications, including hemorrhage and multi-

organ damage [2]. In-hospital mortality rates range from 5% to 20%, influenced by 

fracture severity, hemorrhagic shock, and associated injuries [3, 4]. 

Diagnosis relies heavily on radiographic evaluation and clinician expertise [5], 

which poses challenges in trauma settings. Subtle or complex fractures are often 

missed, even by skilled radiologists [6]. In high-pressure environments, diagnostic er-

rors are common, with up to 20% of pelvic fractures initially overlooked in trauma 

centers [7], resulting in delayed treatment, worsening injuries, and increased mortality 

[8]. Rapid and accurate detection is thus essential. 
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Recent studies have demonstrated strong performance in pelvic and femur fracture 

detection using deep learning frameworks, achieving accuracies in the range of 80–

98% [9, 10]. Segmentation-guided classification is a powerful method that enhances 

classification accuracy by localizing specific regions of interest before feature extrac-

tion and prediction. In the context of medical imaging, this technique is especially use-

ful for focusing on diagnostically relevant anatomical structures while ignoring irrele-

vant background noise. Segmentation-guided classification has proven effective across 

various domains, including colorectal cancer, liver cancer, and pneumonia, by improv-

ing diagnostic focus and reducing false negatives [11-15]. A recent study [16] proposed 

the APEx framework, leveraging a query-based segmentation transformer to jointly 

model anatomical and pathological features, resulting in improved segmentation per-

formance on FDG-PET-CT and chest X-ray datasets. These methods are particularly 

valuable in low-contrast or cluttered imaging scenarios common issues in pelvic X-rays 

where global analysis may be insufficient for accurate fracture detection. 

Recent studies have shown the effectiveness of segmentation-guided pelvic fracture 

classification. [17] Reported 96.32% DSC and 98.03% accuracy using Swin U-Net, 

while [18] achieved 0.96–0.97 DSC and 69–88% classification accuracy across pelvic 

ring fracture types using an Association for Osteosynthesis (AO) Foundation and Or-

thopedic Trauma Association (OTA) (AO/OTA)-guided system. 

However, fracture diagnosis in pelvic radiographs can benefit significantly from 

contextual background information beyond the bone boundaries. While some fractures 

show clear cortical disruptions, others present subtle signs such as abnormal alignment, 

joint spacing, or limb asymmetry indicators that may lie outside the segmented bone 

region. Studies have shown that non-local cues like limb rotation, joint dislocation, or 

pubic symphysis widening can suggest fractures even in the absence of visible cortical 

breaks [19, 20]. Segmenting out only the bone often removes these diagnostic cues, 

whereas raw pelvic X-rays preserve the full anatomical context, including soft tissue 

and alignment, which can be crucial for detecting such subtle injuries. 

This is particularly relevant in cases of invisible fractures, pelvic X-ray (PXR) im-

ages without obvious fracture signs but confirmed via 3D-CT imaging. As demon-

strated in recent work, these cases are challenging for existing deep learning methods 

[21]. Our work addresses this by leveraging both raw and segmented inputs to retain 

global structure and enhance diagnostic robustness. 

To address the limitations of relying solely on either segmentation or raw image 

analysis, we propose PelFANet, a Pelvic Fused Attention Network that integrates both 

segmented bone structures and raw pelvic X-rays through a dual-stream attention-

guided fusion architecture. By combining localized anatomical detail with full-field 

context, PelFANet is designed to detect both overt and subtle fracture cues. The streams 

are fused using Convolutional Block Attention Module (CBAM)-based attention [22], 

allowing the model to learn feature combinations from both inputs that contribute to 

improved classification. PelFANet outperforms existing approaches by accurately de-

tecting both visible fractures and invisible fractures, by leveraging subtle contextual 

and anatomical cues indicative of underlying injury.  
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2 Methodology 

2.1 Overview 

 

Fig. 1. (a) Single-stream baseline using raw PXR for direct fracture prediction. (b) Proposed 

PelFANet pipeline combining raw PXR and segmented bone via a dual-stream attention network. 

Our framework consists of a two-stage pipeline: a segmentation model generates seg-

mented bones from raw pelvic X-rays, which are then combined with the original PXRs 

and fed into PelFANet, a dual-stream network with attention-based fusion. This setup 

integrates anatomical detail with global context for improved fracture detection illus-

trated in Figure 1. 

2.2 Bone Segmentation 

To incorporate anatomical context into the classification process, we first generate 

segmented bones using a U-Net with a Mix Transformer B0 encoder [23-25]. This hy-

brid architecture combines U-Net’s spatial accuracy with the transformer’s global con-

text modeling, enabling precise delineation of pelvic bones. The implementation fol-

lows the [25] segmentation library, which provides modular support for both the U-Net 

structure and transformer-based encoders.  

Considering the full Pelvic region as a single class we train a one-class segmentation 

model. Once trained, the model infers bone masks, which are cropped to produce the 

segmented bones used as the second input to PelFANet, guiding fracture classification 

with structure-aware features. 

2.3 PelFANet 

Input. PelFANet uses a dual-input design, combining each raw pelvic X-ray with its 

corresponding bone segmentation. Both inputs are resized into a 224x224 image, then 

passed into two streams for separate processing. This setup enables the network to lev-

erage both structural and contextual cues for accurate fracture classification. 
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Fig. 2. (a) PelFANet architecture: a dual-stream attention network that processes raw PXRs and 

bone segmentations via parallel branches, fused using stacked Fused Attention Blocks 

(FABlock). (b) Structure of the CBAM attention module. (c) FABlock design: stream-specific 

convolution, CBAM-based fusion, and residual redistribution into both branches. 

Network Architecture. PelFANet is a dual-stream convolutional architecture specifi-

cally designed to fuse global context from raw pelvic X-rays and fine-grained anatom-

ical structure from bone segmentations. The network is composed of three main stages: 

parallel feature extraction, attention-guided fusion through stacked Fused Attention 

Blocks (FABlock), and final aggregation and classification. 

In the initial stage, the raw pelvic X-ray and its corresponding bone segmentation 

are passed through two independent convolutional branches. Each stream begins with 

a 3×3 convolution layer, followed by batch normalization, ReLU activation, and max 

pooling. These parallel branches extract low-level features specific to the raw and seg-

mented modalities. 

The core of the network consists of eight FABlocks. At each FABlock, the feature 

maps from the left and right branches are independently processed, concatenated, and 

passed through a CBAM to generate attention-refined fused features. These fused fea-

tures are then projected via a 1×1 convolution and split back into the two original 

streams. Residual connections and convolutional layers further refine the separated fea-

tures before concatenation. This repeated fusion and redistribution mechanism allows 

the model to dynamically integrate complementary features across modalities while 

maintaining stream-specific information. 

Following the FABlocks, the fused features undergo global attention refinement and 

pooling before final classification through a fully connected layer. 

This architecture illustrated in Figure 2, enables the network to reason jointly over 

global cues and localized bone structures, improving its ability to detect subtle or com-

plex fracture patterns that may not be captured by single-source models. 

FABlock. The FABlock is the core unit of PelFANet, enabling interactive feature re-

finement between the raw pelvic X-ray stream and the bone segmentation stream. Let 
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the input feature maps from these two streams be 𝐹1  ∈ ℝ𝐶×𝐻×𝑊 and 𝐹2  ∈ ℝ𝐶×𝐻×𝑊, 

where 𝐶, 𝐻, 𝑊 represent the number of channels, height, and width, respectively. 

First, each input is passed through a stream-specific convolution: 

 𝐹1
′ =  𝑓3×3(𝐹1), 𝐹2

′ =  𝑓3×3(𝐹2) (1) 

The outputs are concatenated channel-wise, where 𝐹𝑐𝑎𝑡  ∈ ℝ2𝐶×𝐻×𝑊: 

 𝐹𝑐𝑎𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹1
′, 𝐹2

′) (2) 

This combined feature map is refined using the CBAM. CBAM sequentially applies 

channel and spatial attention to highlight informative features. The CBAM-refined 

fused feature map is denoted as: 

 𝐶𝐹𝐴 =  𝑓1×1(𝐶𝐵𝐴𝑀(𝐹𝑐𝑎𝑡)) (3) 

This output, CFA (Combined Feature with Attention), is then used to update the 

original streams using additional convolution and residual addition: 

 𝑁𝐹1 =  𝐹1 + 𝑓3×3(𝐶𝐹𝐴),   𝑁𝐹2 =  𝐹2 + 𝑓3×3(𝐶𝐹𝐴) (4) 

where 𝑁𝐹1 and 𝑁𝐹2 are the updated feature maps for the raw X-ray and segmentation 

streams, respectively. These outputs are then forwarded to the next FABlock, enabling 

progressive cross-stream refinement with attention. 

Final Feature Aggregation and Classification. The fused feature map from the final 

FABlock is passed through a 3×3 convolution followed by CBAM attention, batch nor-

malization, and ReLU activation. Global features are then extracted using adaptive av-

erage pooling and flattened into a 1024-dimensional vector. This vector is passed 

through a fully connected layer to produce the final classification output, enabling pre-

diction of fracture presence based on the combined raw and anatomical information. 

3 Experiments 

3.1 Datasets 

AMERI Dataset. The Visible Fracture subset (VIS) of the AMERI PXR dataset con-

sists of 228 pelvic X-ray images, including 168 fracture cases and 60 normal cases. 

These were selected from a larger set of 481 pelvic X-rays collected from 315 subjects 

at Steel Memorial Hirohata Hospital in Japan between April 2013 and August 2019. 

All fracture cases were confirmed by experienced radiologists. To ensure data quality, 

cases with implants or incomplete pelvic coverage were excluded. 

We also curated a dedicated Invisible Fracture subset (INVIS) comprising 23 frac-

ture and 12 normal cases. These fractures are not visible in X-rays but were confirmed 

through corresponding 3D-CT scans, providing a challenging benchmark for evaluating 

the model’s ability to detect subtle and context-dependent fractures. 
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COVID QU-Ex Dataset. We utilize the COVID-QU-Ex dataset for pretraining, which 

comprises 33,920 chest X-ray (CXR) images categorized into three classes: COVID-

19 (11,956), Non-COVID infections such as viral or bacterial pneumonia (11,263), and 

Normal (10,701) [26-30]. Crucially, the dataset provides ground-truth lung masks for 

all images, making it one of the largest public sets. This paired data enabled effective 

pretraining before fine-tuning on pelvic X-rays. 

3.2 Segmentation Training and Setup 

We trained a U-Net with Mix Transformer B0 encoder (pretrained on ImageNet) on 

the AMERI dataset using 2-fold cross-validation (228 images split equally, resized to 

224×224). Data augmentation included geometric (ShiftScaleRotate, Perspective, 

Crop, Padding), intensity (CLAHE, Brightness-Contrast, Gamma), and texture/color 

(Sharpening, Blurring, Motion Blur, HSV) applied probabilistically. The binary seg-

mentation model employed a sigmoid activation in the final layer and was optimized 

using Dice Loss. It was trained for 300 epochs with the Adam optimizer (initial learning 

rate (LR) of 2×10⁻⁴), a cosine annealing scheduler (minimum LR 1×10⁻⁵, cycle length 

of 50), and a batch size of 25. 

3.3 PelFANet Training and Setup 

The model was pretrained on the COVID-QU-Ex dataset because it exposed the net-

work to a wide range of anatomical structures and radiographic variations, reducing the 

likelihood of over-specialization to the training set. 

 The dataset was split into 80% training and 20% testing, with 20% of the training 

set used for validation. Each image was augmented four times using random rotation 

(within 25°), shearing (within 10%), horizontal flipping, and translation (within 10%), 

expanding the training set to 108,575 images. 

Pretraining was conducted using CrossEntropyLoss with a Stochastic Gradient De-

scent (SGD) optimizer (LR = 0.0001) and a StepLR scheduler that reduced the learning 

rate by a factor of 0.1 every 10 epochs. The model was trained for 100 epochs with a 

batch size of 64. 

For fine-tuning, a reshuffled 5-fold cross-validation was applied to the VIS subset. 

To address class imbalance, each fracture case was augmented into 2 variants and each 

normal case into 6, using the same augmentation strategy. The final classification layer 

was changed from three to two outputs, and the entire model was retrained using the 

same loss, optimizer, and scheduler. Fine-tuning ran for 30 epochs with a batch size of 

8. 

4 Result 

4.1 Segmentation Performance 

The bone segmentation model was evaluated using Intersection over Union (IoU) and  
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Fig. 3. Grad-CAM visualizations from PelFANet for different prediction scenarios, where GT 

stands for Ground Truth, F denotes Fracture and N denotes Normal. Heatmaps indicate regions 

influencing the model's decision. 

Dice Score. The model achieved high segmentation accuracy across both folds.  

An average IoU 90.28% and an average Dice Score of 92.78%, these results confirm 

the effectiveness of our segmentation setup, providing reliable and accurate anatomical 

masks that serve as critical inputs to the PelFANet classifier. 

4.2 PelFANet Classification Performance 

Following segmentation, the PelFANet architecture processes both the raw PXR and 

the segmentation mask to perform fracture classification. Performance metrics, aver-

aged across the 5-fold setup along with the fold variance, are shown in Table 1. On the 

VIS subset, PelFANet achieved an accuracy of 88.68% (± 0.11%), precision of 92.49% 

(± 0.09%), recall of 92.21% (± 0.17%), and an AUC of 0.9334 (± 0.10). While the 

model demonstrates strong sensitivity with high recall, the specificity of 78.33% (± 

1.27%) indicates a moderate rate of false positives, reflecting a trade-off between de-

tecting fractures and avoiding misclassification of normal cases. Most importantly, 

PelFANet was evaluated on the challenging INVIS subset, where fractures are not vis-

ible in the pelvic X-rays. Although trained exclusively on visible fracture cases, the 

model generalized well to this difficult set, achieving 82.29% (± 0.01%) accuracy, 

88.36% (± 0.07%) precision, 84.35% (± 0.07%) recall, 78.33% (± 0.44%) specificity, 

and an AUC of 0.8688 (± 0.04). The low variance values across metrics indicate con-

sistent performance, though specificity shows slightly higher variance on the VIS sub-

set, reflecting some variability in detecting fractures across folds. These results suggest 

that PelFANet captures deeper, more abstract fracture features by effectively integrat-

ing both global context and localized anatomical information. 

Table 1. PelFANet Performance on Visible (VIS) and Invisible (INVIS) Subsets 

Fracture Type Accuracy 

(Variance) 

Precision 

(Variance) 

Recall 

(Variance) 

Specificity 

(Variance) 

F1 Score 

(Variance) 

AUC 

(Variance) 

VIS 
88.68% 

(0.11%) 

92.49% 

(0.09%) 

92.21% 

(0.17%) 

78.33% 

(1.27%) 

84.71% 

(0.46%) 

0.9334 

(0.10) 

INVIS 
82.29% 

(0.01%) 

88.36% 

(0.07%) 

84.35% 

(0.07%) 

78.33% 

(0.44%) 

81.23% 

(0.06%) 

0.8688 

(0.04) 
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Combining both raw PXR images and bone segmentation masks with attention 

mechanisms likely contributed to this improved performance. The bone segmentations 

not only guide the model to focus on diagnostically important regions but also retain 

spatial correspondence with the raw input, which is especially useful for subtle or non-

local signs of fracture. As illustrated in Figure 3, Gradient-weighted Class Activation 

Mapping (Grad-CAM) visualizations reveal that correctly classified fracture cases ex-

hibit focused activation on relevant bone regions, while correctly classified normal 

cases show minimal activation. In contrast, misclassified samples tend to display scat-

tered or misplaced attention, reflecting uncertainty in the model’s decision-making. 

4.3 Comparison with Prior Methods 

Table 2. Comparison with Prior Methods 

Method VIS AUC VIS F1 Score INVIS AUC INVIS F1 Score 

ImageNet [20] 0.8961 80,00% 0.7549 72.70% 

DRR20 [20] 0.9290 85.20% 0.8002 78.60% 

ImageNet+DRR20 [20] 0.9280 83.90% 0.7140 72.10% 

ImageNet+DRR20_Full 

[20] 

0.9151 83.30% 0.6896 77.50% 

PelFANet (Ours) 0.9334 84.71% 0.8688 81.23% 

 

To validate the effectiveness of PelFANet, we compare it against multiple baselines 

from previous work that used ResNet-based classifiers [31] with various pretraining 

strategies, including ImageNet, Digitally Reconstructed Radiographs (DRR) synthetic 

data, and their combinations [21]. As shown in Table 2, PelFANet outperformed all 

prior models across both VIS and INVIS test sets. 

On the VIS test set, PelFANet achieved an AUC of 0.9334, slightly outperforming 

the previous best method DRR20 with an AUC of 0.9290. More importantly, Despite 

being trained only on the VIS set, PelFANet showed a substantial improvement on the 

challenging INVIS subset, achieving an AUC of 0.8688 and an F1 score of 81.23%, 

which is significantly higher than the prior best DRR20 with an AUC of 0.8002 and F1 

score of 78.60%. 

This comparative analysis highlights the distinct advantage of our dual-input, atten-

tion-fused framework, which enables PelFANet to capture both global context from 

raw images and precise anatomical boundaries from segmentations. Unlike conven-

tional single-stream or pretraining-only methods, our architecture dynamically refines 

features across both modalities through FABlocks and CBAM, leading to better perfor-

mance especially when facing complex or subtle fracture patterns. 

Despite the promising results, this work has several areas for further exploration. 

Our architecture combines segmentation with attention-based fusion to enhance frac-

ture detection, but detailed ablations of components like CBAM and FABlocks are 

planned to better understand their impact. Pretraining on chest X-rays was chosen for 
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their radiographic similarity and paired masks, though training from scratch will help 

assess the role of initialization. Comparisons were made using ResNet backbones to 

match prior work, and future evaluations will include modern architectures and other 

segmentation-guided or anatomy-aware approaches from related studies. Finally, we 

used bone segmentations over binary masks, assuming their richer detail aids classifi-

cation, an aspect we plan to analyze further. These investigations will further strengthen 

the generalizability and interpretability of our approach. 

5 Conclusion 

In this study, we proposed PelFANet, a segmentation-guided dual-stream attention net-

work designed to improve pelvic fracture classification, with a focus on invisible frac-

tures. By integrating raw pelvic X-rays and corresponding bone segmentations, 

PelFANet leverages global anatomical context alongside localized structural cues. Its 

Fused Attention Blocks enable effective feature interaction between inputs, guiding the 

model to attend to diagnostically relevant regions. Results show PelFANet outperforms 

prior methods, especially in detecting invisible fractures, highlighting the potential of 

anatomy-aware dual-input models for real-world diagnostic challenges. However, fur-

ther investigation is needed to fully understand the contributions of key components 

and to evaluate the model with more diverse architectures and datasets. Future work 

will address these limitations by expanding to other anatomical regions, incorporating 

more comprehensive ablations, and validating on larger, multi-center cohorts to support 

robust real-time clinical use. 
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