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A CONNECTIONS TO ADVERSARIAL CLUSTERING

We consider clustering problems that arise naturally from stochastic mixture models such as Gaus-
sian, Mallows, categorical and so on (Sanjeev & Kannan, 2001; Vempala & Wang, 2004; Lu &
Boutilier, 2011; Charikar et al., 2017; Diakonikolas et al., 2018; Liu & Moitra, 2018). We can then
formulate such a clustering problem in the Latent Simplex Model as follows: Given n data points
A∗,1,A∗,2, . . . ,A∗,n ∈ Rd, such that the data is a mixture of k distinct clusters, C1,C2, . . . ,Ck,
with means M∗,1,M∗,2, . . . ,M∗,k, the goal is to approximately learn the means. Further, we can set
each of the n latent vectors P∗,j to denote the mean of the cluster that the point A∗,j belongs to, and
thus P∗,j ∈ {M∗,1,M∗,2, . . . ,M∗,k}. Prior work of (Kumar & Kannan, 2010) and (Awasthi & Shef-
fet, 2012) shows that if the minimum cluster size is δn and for all ` 6= `′, ‖M∗,` −M∗,`′‖ ≥ ck σ√

δ

the M∗,` can be found within error O(
√
kσ/
√
δ).

However, the aforementioned algorithms are not robust to adversarial perturbations. Therefore, we
describe the perturbations we can handle in the Latent Simplex Model. The adversarial model is the
same as the one considered in (Bhattacharyya & Kannan, 2020). The adversary is allowed to select a
subset S` of each cluster C` of cardinality at most δn and perturb each point A∗,j for j ∈ S` by ∆j

such that :

• P∗,j + ∆j is still in the convex hull of M∗,1,M∗,2, . . . ,M∗,k

• The norm of the perturbation is bounded, i.e., |∆j |2 ≤ 4σ/
√
δ.

Intuitively, the adversary can move a 1 − δ fraction of the data points in each cluster an arbitrary
amount towards the convex hull of the means of the remaining clusters. For the remaining δn points,
the perturbation should have norm at most O(σ/

√
δ). The goal is to still learn the means M∗,`

approximately. (Bhattacharyya & Kannan, 2020) shows that the aforementioned model satisfies
Well-Separateness, Proximate Latent Points and Spectrally Bounded Perturbations assumptions. The
proof for the Significant Singular Values assumption follows from Lemma 2.1.

B FULL ANALYSIS

We first give the proof of Lemma 2.1.

Proof. Assumptions (2) and (3) follow from Lemma 7.1 in (Bhattacharyya & Kannan, 2020). By
Claim 8.1 in (Bhattacharyya & Kannan, 2020), σk(A) ≥ cα

√
δ/kmin` M∗,`. Each column of A

sums to 1, so ‖A‖2F = O(n) and σk(A) ≥ α
√
δ/k‖A‖F . Since ‖A−P‖2 ≤ σ

√
n by definition

of σ, and P consists of n point in the convex hull of k points and thus σk+1(P) = 0, we have
σk+1(A) ≤ σk+1(P) + ‖A − P‖2 ≤ σ

√
n ≤ σ‖A‖F . Thus if σ ≤ α

√
δ/poly(k) for a large

enough poly(k), our Significant Singular Values assumption holds.

In the remainder of this section, we analyze Algorithm 1 and show that it outputs a set of k vectors
that approximate the vertices of the latent simplex K. Formally, the main theorem we prove is as
follows:

Theorem 1.2 (Restated.) Given input data A from the Latent Simplex Model, there exists an
algorithm that takes Õ (nnz(A) + (n+ d)poly(k)) time to output k vectorsR1, . . . ,Rk such that
upon permuting the columns of M, for all ` ∈ [k], we have

‖R` −M∗,`‖2 ≤
300k4

α

σ√
δ
,

with probability at least 1− 1
Ω(
√
k)

.

We show that the subspace Y obtained via spectral low-rank approximation is a good approximation
to the subspace Uk in angular distance. The appropriate measure of angular distance between
subspaces can be formalized as the principal angle between the subspaces and the corresponding
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sin Θ function. (Wedin, 1972) bounded the sin Θ between the SVD subspace of a matrix and the
SVD subspace of a slight perturbation of the matrix.
Theorem B.1 (Wedin’s sin Θ theorem (Wedin, 1972)). Let R,S ∈ Rd×n and 0 < m ≤ ` be integers.
Let Rm and Sσ` denote the subspaces spanned by the top m singular vectors of R and top ` singular
vectors of S, respectively. Suppose γ = σm(R)− σ`+1(S). Then

sin Θ(Rm,Sσ`) ≤
‖R− S‖2

γ
.

(Bhattacharyya & Kannan, 2020) use Wedin’s sin Θ theorem to measure the distance between the
subspace Uk spanned by the top k left singular vectors of A and the subspace returned by their
iterative subspace power method. Since we create the sketch Y for Uk, we would instead like to
argue that Y and Uk are close in sin Θ distance.

Lemma 3.6 (Proximity of Subspace Projections, Restated.) Let Y be obtained from Lemma 3.4 and
let Uk be the subspace spanned by the top k left singular vectors of A. Let PY and PUk

be the
d× d projection matrices onto the row span of Y and Uk. Then ‖PY −PUk

‖2 ≤ 1
1000k10 .

Proof. Suppose by way of contradiction that ‖PY −PUk
‖2 ≥ 1

1000k10 . Note that since Y and Uk

are each orthonormal matrices with rank k, then

‖UkU
T
k −YYT ‖2F ≥ ‖UkU

T
k −YYT ‖22 ≥

1

(1000k10)2

so that

‖UkU
T
k −YYT ‖2F = ‖Uk‖2F + ‖Y‖2F − 2‖UkY

T ‖2F

= 2k − 2‖UkY
T ‖2F ≥

1

(1000k10)2

Hence, ‖UkY
T ‖2F ≤ k − 1

(1000k10)2 . Now we would like to show for the sake of contradiction that
‖A−PYA‖2 is large. Thus, for the singular value decomposition A = UΣVT , we write

‖A−PYA‖2 = ‖UTΣ−YYTUTΣ‖2
≥ ‖UkU

TΣ−UkYYTUTΣ‖2
since ‖Uk‖2 ≤ ‖U‖2 ≤ 1. Thus, there exist matrices C1,C2 such that

UkU
TΣ−UkYYTUTΣ = [C1 C2]

[
Σk 0
0 Σn−k

]
,

where Σk is the diagonal matrix consisting of the top k singular values of A and Σn−k is the diagonal
matrix consisting of the bottom n − k singular values of A. Now we know that one of the top k
eigenvalues of UT

kYYTUk is at most 1− 1
(1000k10)2 . Thus, one of the top k eigenvalues of Ik −C1

is at least 1
(1000k10)2 . In particular, let λ be such an eigenvalue and let x be the corresponding unit

eigenvector of I−C1. Then we have

‖UkU
TΣ−UkYYTUTΣ‖2 ≥ ‖(I−C1)Σkx‖2 ≥ σk(A)λ ≥ 1

(1000k10)2
σk(A).

Since the Significant Singular Values assumption implies that 1
(1000k10)2σk(A) > (1 + ε)σk+1(A),

this implies that ‖A − PYA‖2 > (1 + ε)σk+1(A), which contradicts the assumption that Y is a
good low-rank approximation to A. Thus we have ‖PY −PUk

‖2 ≤ 1
1000k10 , as desired.

(Bhattacharyya & Kannan, 2020) showed lower bounds on the k-th singular values of P and M,
given the Well-Separateness and Spectrally Bounded Perturbations assumptions.
Lemma B.2. (Bhattacharyya & Kannan, 2020) If the underlying points M follow the Well-
Separateness and Spectrally Bounded Perturbation assumptions, then

σk(M) ≥ 1000k8.5

α2

σ√
δ
, σk(P) ≥ 995k8.5

√
n

α2
σ.
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We can then show a low sin Θ distance between Y and Uk.

Corollary B.3. Let Y be defined as in Algorithm 1 and let Uk be the subspace spanned by the top k
left singular vectors of A. Then sin Θ(Y,Uk) ≤ 1

1000k10 .

Proof. By setting m = k = ` in Theorem B.1, we have

sin Θ(Y,Uk) = sin Θ(PY,PUk
)

≤ ‖PY −PUk
‖2

σk(Y)− σk+1(Uk)
.

By definition of σ, we have that ‖A − P‖2 ≤ σ
√
n. Thus, Lemma B.2 implies that σk(A) � 1.

Since Y has rank k, we have σk+1(Y) = 0. By Lemma 3.6, sin Θ(Y,Uk) ≤ ‖PY − PUk
‖2 ≤

1
1000k10 .

They also showed that vectors in Uk are close to the subspace M:

Lemma B.4. (Bhattacharyya & Kannan, 2020) Let Uk be the subspace spanned by the top k left
singular vectors of A and let R be any k-dimensional subspace of Rd with

sin Θ(Uk,R) ≤ α2

1001k9
.

Let M be the underlying latent k-simplex. Then for each unit vector x ∈ R, there exists a vector
y ∈ Span (M) with ‖x− y‖2 ≤ α2

500k8.5 .

Since we have sin Θ(Y,Uk) ≤ 1
1000k10 from Corollary B.3, then it follows from Lemma B.4 and

the triangle inequality of sin Θ distance that vectors in Yk are close to the subspace M:

Corollary B.5. Let Y be defined as in Algorithm 1 and let R be any k-dimensional subspace of Rd
with

sin Θ(Y,R) ≤ α2

1000k9
.

Let M be the underlying latent k-simplex. Then for each unit vector x ∈ R, there exists a vector
y ∈ Span (M) with ‖x− y‖2 ≤ α2

500k8.5 .

(Bhattacharyya & Kannan, 2020) then show the following structural result between the first r points
selected by Algorithm 1 and the closest r points in the latent k-simplex M.

Lemma B.6. For r ∈ [k] letR1, . . . ,Rk ∈ Rd be points such that there exist distinct `1, . . . , `r ⊆
[n] with

‖Ri −M∗,`i‖2 ≤
300k4

α

σ√
δ

Let Â = R1 ◦ . . . ◦ Rt and M̂ = M∗,`1 ◦ . . . ◦M∗,`r . Then

‖M̂− Â‖2 ≤
k4.5

α

σ√
δ
.

Proof. Note that the claim follows immediately from the hypothesis and applying the Cauchy-
Schwarz inequality.

We first bound the sin Θ distance between Span (M) ∩ Null(M̂) and Y(Id −Pr). This essentially
says that we can work in the subspace Y(Id −Pr) rather than Span (M) ∩ Null(M̂) and we will
not incur too much error.

Lemma 3.8 (Angular Distance between Subspaces, Restated.) Let M̂ = M∗,`1 ◦ . . . ◦M∗,`r be the
r points in the latent k-simplex M closest toR1, . . . ,Rr, the first r points selected by our algorithm,
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respectively. Suppose ‖Ri −M∗,`i‖2 ≤ 300k4

α
σ√
δ

for each i ∈ [r]. Let Pr be the projection matrix
orthogonal toR1, . . . ,Rr. Then

sin Θ
(
Y(Id −Pr),Span (M) ∩ Null(M̂)

)
≤ α

100k4

sin Θ
(

Span (M) ∩ Null(M̂),Y(Id −Pr)
)
≤ α

100k4
.

Proof. Let y ∈ Y(Id −Pr) be a unit vector. By Corollary B.5, there exists x ∈ Span (M) with

‖x− y‖2 ≤
α2

500k8.5
. (B.1)

Let z = x− M̂M̂†x be the component of x in Null(M̂). Note that M̂M̂† is a projection matrix and
thus ‖M̂M̂†‖2 ≤ 1. Then we have

‖x− z‖2 ≤ ‖M̂M̂†(x− y)‖2 + ‖M̂M̂†y‖2
≤ ‖x− y‖2 + ‖M̂(M̂TM̂)−1(M̂T − ÂT )y‖2

where Â = R1 ◦ . . . ◦ Rt so that ÂTy = 0 since Pr projects away from Â. We also have
‖M̂(M̂TM̂)−1‖2 = 1

σr(M̂)
. Thus by (B.1) and Lemma B.6, we have

‖x− z‖2 ≤ ‖x− y‖2 +
1

σr(M̂)
‖(M̂T − ÂT )y‖2

≤ α2

500k8.5
+

k4.5σ

α
√
δσk(M̂)

.

Hence by the triangle inequality and Lemma B.2, we have ‖y − z‖2 ≤ α
100k4 . Since y ∈

Y(Id − Pr) and z ∈ Span (M) ∩ Null(M̂), then by definition of the sin Θ distance, it follows
that sin Θ

(
Y(Id −Pr),Span (M) ∩ Null(M̂)

)
≤ α

100k4 , proving the first part of the claim.

To prove the second half of the claim, it suffices to show that the dimension of Y(Id −Pr) is k − r,
since Span (M) ∩ Null(M̂) has dimension k − r and the sin Θ distance is symmetric between two
subspaces of the same dimension. By construction, Y has dimension k so that Y(Id − Pr) has
dimension at least k− r. But if Y(Id−Pr) has dimension larger than k− r, then there exists a set of
orthonormal vectors u1, . . . ,uk−r+1 ∈ Y(Id−Pr). By the first part of the claim and the definition of
the sin Θ distance, there exists a set of corresponding vectors v1, . . . ,vk−r+1 ∈ Span (M)∩Null(M̂)
such that ‖ui − vj‖2 < α

100k4 . But then for a 6= b, we have by the triangle inequality and the fact
that ua · ub = 0,

|va · vb| ≤ |ua · ub|+ |(va − ua) · ub|+ |va · (vb − ub)|

≤ α

50k4

Similarly, since ua · ua = 1, we have

|va · va| ≥ |ua · ua| − |(va − ua) · ua| − |va · (va − ua)|

≥ 1− α

50k4
.

Thus if V = v1 ◦ . . . ◦ vk−r+1 ∈ Rd×k−r+1 is formed by concatenating the vectors
v1, . . . ,vk−r+1, then VTV is diagonally-dominant. Hence, VTV is nonsingular, so v1, . . . ,vk−r+1

must be linearly independent vectors in Span (M) ∩ Null(M̂), which contradicts the fact that
its dimension is k − r. Therefore, the dimension of Y(Id − Pr) must be k − r, and so
sin Θ

(
Span (M) ∩ Null(M̂),Y(Id −Pr)

)
≤ α

100k4 .

We now recall a structural lemma from (Bhattacharyya & Kannan, 2020).
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Lemma B.7 (Claim 10.1 in (Bhattacharyya & Kannan, 2020)). Let a, b /∈ {`1, . . . , `r} be distinct
indices. Then

‖Proj(M∗,a −M∗,b,Null(M̂)‖2 ≥ αmax
`
‖M∗,`‖2.

We now show that if u = gYT (Id −Pr) ∈ Rd, then |u · x| has a clear optimum over x chosen from
the k vertices of the simplex M. This shows that our optimization procedure is well-defined.

Lemma 3.9 (Optimization is Well-Defined) Let M̂ = M∗,`1 ◦ . . . ◦M∗,`r be the r points in the latent
k-simplex M closest to the first r points selected by Algorithm 1,R1, . . . ,Rr, respectively. Suppose

‖Ri −M∗,`i‖2 ≤
300k4

α

σ√
δ

for each i ∈ [r]. Let u ∈ Rd be a random unit vector in the space of YT (Id −Pr), where Pr is the
orthogonal projection toR1, . . . ,Rr. Then there exists a constant c > 0 so that with probability at
least 1− c

k1.5 :

1. For all distinct a, b /∈ {`1, . . . , `r}, then |u · (M∗,a −M∗,b)| ≥ 0.097
k4 αmax` ‖M∗,`‖2.

2. For all a /∈ {`1, . . . , `r}, then |u ·M∗,a| ≥ 0.0989
k4 αmax` ‖M∗,`‖2.

Proof. For a /∈ {`1, . . . , `r}, let pa be the projection of M∗,a onto Null(M̂) and qa be the projection

of M∗,a onto Span
(
M̂
)

. By the Well-Separateness assumption, we have ‖pa‖2 ≥ αmax` ‖M∗,`‖2.

Let wa be defined so that qa = M̂wa. Since ‖qa‖2 ≤ ‖M∗,a‖2 and σr(M̂) ≤ σk(M), then
Lemma B.2 gives

‖wa‖2 ≤
‖qa‖2
σr(M̂)

≤ ‖M∗,a‖2α2

1000k8.5

√
δ

σ
. (B.2)

Since Âu = 0, we can also write

u ·M∗,a = u · pa + u · qa
= u · Proj(pa,YT (Id −Pr)) + uT (M̂− Â)wa.

By Lemma B.6, (B.2), and normalizing so that ‖u‖2 = 1, we have

|u · (M∗,a − ·Proj(pa,YT (Id −Pr)))| ≤ ‖M̂− Â‖2‖wa‖2

≤ α‖M∗,a‖2
1000k4

.
(B.3)

The same holds for u · (M∗,a −M∗,b), so that

|u · (M∗,a −M∗,b)− u · Proj(pa − pb,Y
T (Id −Pr))|

≤ ‖M∗,a −M∗,b‖2α
1000k4

.
(B.4)

Let E be the event that:

1. For all a, |u · Proj(pa,YT (Id −Pr))| ≥ 1
10k4 ‖Proj(pa,YT (Id −Pr))‖2.

2. For all a 6= b, |u · Proj(pa − pb,Y
T (Id −Pr))| ≥ 1

10k4 ‖Proj(pa − pb,Y
T (Id −Pr))‖2.

Note that |u · Proj(pa,YT (Id − Pr))| ≥ 1
10k4 ‖Proj(pa,YT (Id − Pr))‖2 holds as long as u ·

Proj(pa,YT (Id−Pr)) 6= 0. Since the volume of the set {x ∈ YT (Id−Pr) : u ·x = 0} is at most√
k times the volume of the unit ball {x ∈ YT (Id −Pr) : ‖x‖2 = 1}, then by taking a union bound

over at most k2 indices, it follows that E holds with probability at least 1− 1
k1.5 .
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By Lemma 3.8, there exists p′a ∈ YT (Id −Pr) such that ‖p′a − pa‖2 ≤ α‖pa‖2
100k4 . Hence for k ≥ 2,

‖pa − Proj(pa,YT (Id −Pr))‖2 ≤ α‖pa‖2
100k4 ≤

‖pa‖2
1600 . This implies ‖Proj(pa,YT (Id −Pr))‖2 ≥

0.999‖pa‖2. Then conditioning on E ,

|u · Proj(pa,YT (Id −Pr))| ≥
‖Proj(pa,YT (Id −Pr))‖2

10k4

≥ 0.999‖pa‖2
10k4

≥ 0.999 max` ‖M∗,`‖2
10k4

,

where the last inequality follows since ‖pa‖2 ≥ ‖Proj(M∗,a,Null(M \M∗,a))‖2 ≥ αmax` M∗,`
by the Well-Separateness assumption. Hence by (B.3), it follows that for all a /∈ {`1, . . . , `r},

|u ·M∗,a| ≥ |u ∗ Proj(u,YT (Id −Pr))−
α‖M∗,a‖2

1000k4

≥ 0.0989αmax` ‖M∗,`‖2
k4

,

which proves the second half of the claim.

To prove the first half of the claim, note that conditioned on E , then (B.4) implies

|u · (M∗,a −M∗,b)| ≥ |u · Proj(pa − pb,Y
T (Id −Pr))|

− ‖M∗,a −M∗,b‖2α
1000k4

≥ ‖Proj(pa − pb,Y
T (Id −Pr))‖2

10k4

− ‖M∗,a −M∗,b‖2α
1000k4

.

By Lemma 3.8, there exists v ∈ YT (Id − Pr) such that ‖v − (pa − pb)‖2 ≤ α‖pa−pb‖2
100k4 . Thus,

‖Proj(pa − pb,Y
T (Id − Pr))‖2 ≥ 0.99‖pa‖2 ≥ 0.99αmax` ‖M∗,`‖2, by Lemma B.7. Since

‖M∗,a−M∗,b‖2α
1000k4 ≤ 2αmax` ‖M∗,`‖2

1000k4 , it follows that |u·(M∗,a−M∗,b)| ≥ 0.097
k4 αmax` ‖M∗,`‖2.

We next show that the selected index is not among the previously selected indices. Thus, we obtain a
new index at each iteration, which implies that we only need k iterations.

Lemma B.8. Let M̂ = M∗,`1 ◦ . . . ◦M∗,`r be the r points in the latent k-simplex M closest to the
first r points selected by Algorithm 1,R1, . . . ,Rr, respectively. Suppose

‖Ri −M∗,`i‖2 ≤
300k4

α

σ√
δ

for each i ∈ [r]. Let u ∈ Rd be a random unit vector in the space of YT (Id −Pr), where Pr is the
orthogonal projection toR1, . . . ,Rr. Let

`r+1 =

{
argmax` u ·M∗,` if u · Rr+1 ≥ 0

argmin` u ·M∗,` if u · Rr+1 < 0
.

Then `r+1 /∈ {`1, . . . , `r}.

Proof. We consider the case u · Rr+1 ≥ 0 as the analysis for the case u · Rr+1 < 0 is symmetric.
Let `r+1 = argmax` u ·M∗,`. Suppose by way of contradiction that `r+1 ∈ {`1, . . . , `r}. Without
loss of generality, let `r+1 = `1. Since ‖R1 −M∗,`1‖2 ≤ 300k4

α
σ√
δ

and u · R1, then

u ·M∗,`i‖2 ≤ u · Ri +
300k4

α

σ√
δ

=
300k4

α

σ√
δ
.
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Since `1 = argmax` u ·M∗,`, then u ·M∗,` ≤ u ·M∗,`1 for all `. Thus u · P∗,S ≤ 300k4

α
σ√
δ

for
any set of indices S ⊆ [n] inside the convex hull of M. In conjunction, Lemma B.9 implies

u ·A∗,Rr+1
≤ u ·P∗,Rr+1

+
σ√
δ
≤
(

300k4

α
+ 1

)
σ√
δ
. (B.5)

Recall that by Lemma 3.4, ‖A−YZT ‖22 ≤ (1+ε)‖A−Ak‖22+ ε
k‖A−Ak‖2F and thus ‖A−YZT ‖ ≤

(1 + 2ε)‖A−Ak‖2, given the Significant Singular Values assumption. Since A∗,Rr+1
is a subset of

δn columns of A andRr+1 is a subset of δn columns of Y, then for ε < 1,

u · Rr+1 ≤ u ·A∗,Rr+1 + u · (Rr+1 −A∗,Rr+1)

≤
(

300k4

α
+ 1

)
σ√
δ

+
3√
δn
‖A−Ak‖2,

where the last step follows from (B.5) and applying the Cauchy-Schwarz inequality and the fact
that u is a unit vector. Since P has rank k and Ak is the best rank k approximation to A, then
‖A−Ak‖2 ≤ ‖A−P‖2 so that

u · Rr+1 ≤
(

300k4

α
+ 1

)
σ√
δ

+
3√
δn
‖A−P‖2,

≤
(

300k4

α
+ 1

)
σ√
δ

+
3σ√
δ

(B.6)

=

(
300k4

α
+ 4

)
σ√
δ
, (B.7)

since ‖A − P‖2 ≤ σ
√
n by definition of σ. However for t /∈ {`1, . . . , `r}, Lemma B.9 and the

Proximate Latent Points assumption imply the existence of a set σt of δn columns such that

|u ·A∗,σt
| ≥ |u ·P∗,σt

| − σ√
δ

≥ |u ·M∗,t| −
5σ√
δ

≥ 0.0989

k4
αmax

`
‖M∗,`‖2 −

5σ√
δ
,

(B.8)

where the last step follows from Lemma 3.9. Moreover, σt has δn columns, so again by applying the
Cauchy-Schwarz inequality and the fact that u is a unit vector, we have

|u · (A∗,σt −Y∗,σt)| ≤
1√
δn
‖A−Ak‖2

≤ 1√
δn
‖A−P‖2 ≤

3σ√
δ
.

(B.9)

where the last two inequalities come from the fact that P has rank k and ‖A − P‖2 ≤ σ
√
n by

definition of σ.

Thus from (B.8) and (B.9),

|u ·Y∗,σt | ≥ |u ·A∗,σt | − |u · (A∗,σt −Y∗,σt)|

≥ 0.0989

k4
αmax

`
‖M∗,`‖2 −

8σ√
δ
.

However by the Spectrally Bounded Perturbation assumption, we have |u ·Y∗,σt
| ≥ 2400k5

α
σ√
δ
− 8σ√

δ
,

which contradicts the maximality ofRr+1 in (B.7). Therefore, it holds that `r+1 /∈ {`1, . . . , `r}.

Before showing that the selected index completes the inductive step, we recall the following:

Lemma B.9 (Lemma 3.1 in (Bhattacharyya & Kannan, 2020)). For a subset S ⊆ [n], let A∗,S =
1
|S|
∑
i∈S A∗,i. For all S ⊆ [n], |A∗,S −P∗,S | ≤ σ

√
n/|S|.
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Finally, we show that the selected index completes the inductive step.
Lemma 3.10 (Recovery Guarantees, Restated). Let M̂ = M∗,`1 ◦ . . . ◦M∗,`r be the r points in the
latent k-simplex M closest to the first r points selected by Algorithm 1, R1, . . . ,Rr, respectively.
Suppose

‖Ri −M∗,`i‖2 ≤
300k4

α

σ√
δ

for each i ∈ [r]. Let u ∈ Rd be a random unit vector in the space of YT (Id −Pr), where Pr is the
orthogonal projection toR1, . . . ,Rr. Let

`r+1 =

{
argmax` u ·M∗,` if u · Rr+1 ≥ 0

argmin` u ·M∗,` if u · Rr+1 < 0
.

Then

‖Rr+1 −M∗,`r+1
‖2 ≤

300k4

α

σ√
δ
.

Proof. We consider the case u ·Rr+1 ≥ 0 as the analysis for the case u ·Rr+1 < 0 is symmetric. Let
`r+1 = argmax` u ·M∗,`. By Lemma B.8, we have `r+1 /∈ {`1, . . . , `r}. Thus applying Lemma 3.9,

u ·M∗,`r+1
≥ 0.0989

k4
αmax

`
‖M∗,`‖. (B.10)

By the Proximate Latent Points assumption, there exists a set σ`r+1
of size δn so that ‖P∗,j −

M∗,`r+1
‖2 ≤ 4σ√

δ
for all j ∈ σ`r+1

so that ‖P∗,σ`r+1
−M∗,`r+1

‖2 ≤ 4σ√
δ

. Then by Lemma B.9,

u ·A∗,σ`r+1
≥ u ·P∗,σ`r+1

− σ√
δ
≥ u ·M∗,`r+1

− 5σ√
δ
.

By the same reasoning as B.9, we have ‖Rr+1 −A∗,σ`r+1
‖2 ≤ 3σ√

δ
and thus,

u · Rr+1 ≥ u ·M∗,`r+1
− 8σ√

δ
. (B.11)

Now for any a /∈ {`1, . . . , `r+1}, Lemma 3.9 says

u ·M∗,a ≤ u ·M∗,`r+1
− 0.097

k4
αmax

`
‖M∗,`‖2. (B.12)

Similarly, for a ∈ {`1, . . . , `r}, we have ‖Ra −M∗,a‖ ≤ 300k4

α
σ√
δ

by the inductive hypothesis.
Since u · Ra = 0, then

u ·M∗,a ≤ u · Ra +
300k4

α

σ√
δ

=
300k4

α

σ√
δ

≤ u ·M∗,`r+1
− 0.0989

k4
αmax

`
‖M∗,`‖

+
300k4

α

σ√
δ

by (B.10). Thus by the Spectrally Bounded Perturbation assumption,

u ·M∗,a ≤ u ·M∗,`r+1
− 0.097

k4
αmax

`
‖M∗,`‖ (B.13)

Since P∗,Rr+1
is a convex combination of the columns of M, there exists a vector w such that

P∗,Rr+1
= Mw. Then by the same reasoning as B.9 and Lemma B.9,

u · Rr+1 ≤ u ·A∗,Rr+1
+

3σ√
δ
≤ u ·P∗,Rr+1

+
3σ√
δ

+
4σ√
δ

≤ w`r+1
(u ·M∗,`r+1

)+∑
a6=`r+1

wa

(
(u ·M∗,`r+1 −

0.097

k4
αmax

`
‖M∗,`‖2

)
+

4σ√
δ
,
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where the last line follows from decomposing M and applying (B.12) and (B.13) to M∗,a for
a 6= `r+1. Hence,

u · Rr+1 ≤ u ·M∗,`r+1
−

0.097αmax` ‖M∗,`‖2(1− w`r+1
)

k4

+
4σ√
δ
.

Combining with (B.11), we have

(1− w`r+1
) max

`
‖M∗,`‖2 ≤

12σ√
δ

k4

0.097α
≤ 124k4

α

σ√
δ
.

Thus,

‖P∗,Rr+1 −M∗,`r+1‖2 = ‖(w`r+1 − 1)M∗,`r+1

+
∑

a 6=`r+1

waM∗,a‖

≤
∑

a 6=`r+1

wa‖M∗,`r+1
−M∗,a‖2

≤ 2(1− w`r+1
) max

`
‖M∗,`‖2

≤ 248k4

α

σ√
δ
.

Finally from the triangle inequality and Lemma B.9, we have

‖Rr+1 −M∗,`r+1
‖2 ≤ ‖Rr+1 −P∗,Rr+1

‖2
+ ‖P∗,Rr+1

−M∗,`r+1
‖2

≤ 3σ√
δ

+
248k4

α

σ√
δ

≤ 300k4

α

σ√
δ
.

C CONNECTION TO SPECTRAL LOW-RANK APPROXIMATION

In this section, we show that learning a latent simplex is closely related to computing a spectral low-
rank approximation. Spectral low-rank approximation is a fundamental primitive for algorithm design
and numerical linear algebra and the best known algorithm for computing a (1 + ε)-approximation
is O(nnz(A) · k) (Musco & Musco, 2015). A major open question in randomized linear algebra is
to determine whether the dependence on k in the running time is necessary for spectral low-rank
approximation.

We show that for a candidate hard distribution over the input, determined by a Stochastic Block Model
(with appropriate parameters) satisfying Well-Separateness1, Proximate Latent Points2 and Spectrally
Bounded Perturbations3, an algorithm for learning a latent simplex requiring o(nnz(A) · k) time
also recovers a spectral low-rank approximation for the input. One way to interpret this statement
is that improving the running time for learning a latent simplex under the same assumptions as
(Bhattacharyya & Kannan, 2020) would likely lead to a major algorithmic breakthrough for spectral
low-rank approximation.
Theorem C.1 (Spectral LRA to Latent Simplex). Given k ∈ [n], let S1,S2 . . . ,Sk be a partition
of [n] such that for all ` ∈ [k], |S`| = n/k. Consider a stochastic block model with k communities,
S1, . . . ,Sk such that for all i ∈ S` and j ∈ S`′ , the probability of an edge (i, j) is p = poly(k)/n1/8

when ` = `′ and q = p/10 otherwise. Let A be a matrix drawn from the aforementioned model such
that Ai,j = 1 if there exists an edge between (i, j) and 0 otherwise. Then any algorithm that learns
the simplex also recovers a rank k matrix B such that ‖A−B‖22 ≤ ‖A−Ak‖22 + 1

n1/3 ‖A−Ak‖2F .
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Proof. Let PB be the projection matrix onto the column span of the output matrix B. We show that
A−PB is a good mixed spectral-Frobenius low-rank approximation to A.

‖A−PBA‖2 ≤ ‖A−P + P‖2‖I−PB‖2
≤ ‖A−P‖2‖I−PB‖2 + P‖2‖I−PB‖2
≤ ‖A−P‖2 + ‖P‖2‖I−PB‖2.

From the definition of σ, we have ‖A − P‖2 ≤ σ
√
n. For the specific stochastic block model,

we have σ ≤
√
p(1− p), e.g., see (Awasthi, 2017). Moreover, the algorithm of (Bhattacharyya &

Kannan, 2020) guarantees specifically in their Theorem 7.2 that ‖I−PB‖2 ≤ C1k
4.5d1/8

n1/4 for some
constant C1 > 0. Since ‖P‖F ≥ ‖P‖2 and ‖P‖2F ≤ C2p

2nd for some constant C2 > 0 with high
probability, then we have

‖A−PBA‖2 ≤
√
p(1− p)n+

C1k
4.5d1/8

√
C2p2nd

n1/4

≤ √pn+ C1pk
4.5d5/8

√
C2n

1/4.

On the other hand, we have ‖A−Ak‖2F ≥ ‖A‖2F − k‖A‖22. As before, we have ‖P‖2 ≤ p
√
C2nd,

so that
‖A‖2 ≤ ‖P‖2 + ‖A−P‖2 ≤ p

√
C2nd+

√
p(1− p)n.

Moreover, we have ‖A‖F ≥ C3

√
qnd for some constant C3 > 0 with high probability. Hence for

q > C4p
2 with a sufficiently high constant C4, we have

‖A−Ak‖2F ≥ C5qnd,

for some C5 > 0. Let p = O(q) and d = n1/C for some constant C ≥ 3 so that k4.5d5/8 = o(n1/4).
Since ‖A−PBA‖22 ≤ C6pn for some constant C6, then

‖A−PBA‖22 ≤ C6pn ≤
C5

n1/C
qnd = O

(
1

n1/C

)
‖A−Ak‖2F

≤ ‖A−Ak‖22 +O

(
1

n1/C

)
‖A−Ak‖2F .

Taking C = 3 gives the desired claim.
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