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Introduction & Motivation
• The Problem with Backpropagation: While effective, backpropagation

lacks biological plausibility due to its reliance on global error signals.
Predictive Coding (PC) offers an alternative by using local error
minimization.

• The Connectivity Gap: Standard PC implementations typically use fully
connected layers. This contrasts sharply with biological neural circuits,
which exhibit sparse, spatially organized "like-to-like" connectivity.

• The Hypothesis: Imposing spatial locality via Gaussian receptive fields
can bridge this gap, reducing computational complexity while
preserving—or even enhancing—the geometric structure of learned
representations.

Methodology: Radial Basis Predictive Coding

A. The RBF Constraint
For neurons on 2D grids, connectivity is defined by a Gaussian function 𝐺𝐺
based on the distance between coordinates 𝑖𝑖, 𝑗𝑗 and (𝑘𝑘,𝑚𝑚):

𝐺𝐺𝑘𝑘𝑘𝑘,𝑖𝑖𝑖𝑖 = 𝑒𝑒𝑒𝑒 𝑝𝑝 −
𝑘𝑘,𝑚𝑚 − 𝑖𝑖, 𝑗𝑗
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This creates a connectivity mask 𝑀𝑀 applied to the weights.

B. Modified Dynamics
Top-down prediction with error 𝜖𝜖𝑙𝑙 = 𝑣𝑣𝑙𝑙 − �𝑣𝑣𝑙𝑙 becomes:

�𝑣𝑣𝑙𝑙 = 𝑓𝑓 𝑊𝑊𝑙𝑙 ⊙𝑀𝑀𝑙𝑙 𝑣𝑣𝑙𝑙+1

Spatially constrained inference updates become:

𝑑𝑑𝑣𝑣𝑙𝑙+1

𝑑𝑑𝑑𝑑
∝ 𝜖𝜖𝑙𝑙+1 − 𝑊𝑊𝑙𝑙 ⊙𝑀𝑀𝑙𝑙 𝑇𝑇

𝜖𝜖𝑙𝑙

Complexity Reduction: Reduces complexity from 𝑂𝑂 𝑁𝑁𝑙𝑙+1 × 𝑁𝑁𝑙𝑙 to 𝑂𝑂(
)

𝑁𝑁𝑙𝑙+1 ×
𝑘𝑘 , where 𝑘𝑘 is the average connections per neuron.

C. Sparse Learning
To ensure true computational sparsity (not just weighted reduction), we
employ a binary threshold mask:
• Binary Mask (𝑆𝑆 ): Selects connections where the RBF value > 𝜏𝜏

(threshold).
• Effective Weights: During forward passes, weights are 𝑊𝑊𝑙𝑙 ⊙ 𝑆𝑆𝑙𝑙 ⊙𝑀𝑀𝑙𝑙.

Weight updates only occur on active connections.

Biological Inspiration
• Cortical Organization: Biological cortex relies on local lateral connections

to preserve the visuotopic ordering of the visual field.
• Efficiency: Structured sparsity in biological brains supports high-

throughput processing. Recent mapping (MICrONS) confirms that
connection strength drops with distance.

• Equivariance: Local connectivity naturally supports equivariant
representations (symmetry under translation and rotation), a fundamental
principle of vision.

Experimental Results: Classification
We compared RBF-PCN against Standard PCN and Backpropagation (BP)
on MNIST and CIFAR-10 using MLPs of varying depths (3–12 layers).

Key Finding: RBF-PCN matches standard PCN in shallow networks despite
sparse connectivity, but both PC variants struggle with depth.

Geometric Equivariance Analysis
We measured how well the models preserve input geometry (Translation

and Rotation) by comparing feature similarity: 𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓 𝑇𝑇 𝑥𝑥 ,𝑇𝑇 𝑓𝑓 𝑥𝑥 .

• Translation: Both PCN variants (Standard and RBF) maintained higher
cosine similarity under pixel shifts compared to Backpropagation.

• Rotation: RBF-PCN yielded the highest similarity on CIFAR-10,
suggesting that enforcing local spatial constraints helps the network learn
rotationally equivariant features better than dense connections.

• Conclusion: Predictive coding dynamics naturally favor geometric
preservation over standard BP.

(a) CIFAR-10 translation (b) CIFAR-10 rotation

(c) MNIST translation (d) MNIST rotation

Geometric Equivariance Analysis

• Denoising: Depth-3 RBF-PCN achieved a PSNR of 12.84 dB, comparable
to Standard PCN (13.39 dB), successfully filtering Gaussian noise.

• Texture Learning: On the DTD dataset, RBF-PCN achieved an MSE of
0.03 (identical to PCN), proving that local receptive fields are sufficient to
capture complex spatial patterns.

The model was tested on Image Denoising (MNIST) and Texture Synthesis
(DTD dataset) to verify representational capacity.

Discussion & Future Work

We introduce Gaussian receptive fields to restrict connectivity based on
spatial proximity.

RBF-PCN adds biological spatial constraints to predictive coding, matching
shallow-network performance while using far fewer active parameters. Its
local connectivity yields representations more robust to spatial changes than
standard deep models, but performance still degrades in very deep
networks, motivating work on better signal propagation (e.g., adaptive
receptive fields).
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