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« The Problem with Backpropagation: While effective, backpropagation We compared RBF-PCN against Standard PCN and Backpropagation (BP)
lacks biological plausibility due to its reliance on global error signals. on MNIST and CIFAR-10 using MLPs of varying depths (3-12 layers).
Predictive Coding (PC) offers an alternative by using local error
minimization. Dataset  Method Depth 3 Depth 6 Depth 9 Depth 12

« The Connectivity Gap: Standard PC implementations typically use fully BP 0.98 + 0.0006  0.98 £ 0.0017 0.98 £ 0.0032 0.97 + 0.0049
connected layers. This contrasts sharply with biological neural circuits, MNIST EEII::'-P N 0699981 3'(?0(;]37 069987100'(?(%1?8 3'{‘31‘18'83% ggigggfg
which exhibit sparse, spatially organized "like-to-like" connectivity. op 0.55 £ 0.0064 0.55 - 0.0003 0.54 + 0.0037 0.53 + 0.0015

 The Hypothesis: Imposing spatial locality via Gaussian receptive fields CIFAR-10 PCN 0.55 + 0.0027  0.48 4+ 0.0048  0.42 + 0.0040  0.28 + 0.0065
. . . . . : _pC 5. 5( A( 15 28 ; 001
can bridge this gap, reducing computational complexity while RBF-PCN  0.53 £ 0.0056  0.46 + 0.0045  0.10 #+ 0.0028  0.10 £ 0.0013

preserving—or even enhancing—the geometric structure of learned
representations. Key Finding: RBF-PCN matches standard PCN in shallow networks despite

sparse connectivity, but both PC variants struggle with depth.

Biological Inspiration
« Cortical Organization: Biological cortex relies on local lateral connections GeOmetriC Equivariance AnaIySiS

to preserve the visuotopic ordering of the visual field.
« Efficiency: Structured sparsity in biological brains supports high-

We measured how well the models preserve input geometry (Translation

throughput processing. Recent mapping (MICrONS) confirms that and Rotation) by comparing feature similarity: sim (f(T(x)),T(f(x))).
ConneCtlon Strength drOpS Wlth dIStance Representation Similarity Under Translation Representation Similarity (f(Rx) vs R f(x))
- Equivariance: Local connectivity naturally supports equivariant B e o
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representations (symmetry under translation and rotation), a fundamental
principle of vision.

Methodology: Radial Basis Predictive Coding
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We introduce Gaussian receptive fields to restrict connectivity based on R U S B N e
spatial proximity. (a) CIFAR-10 translation (b) CIFAR-10 rotation
. i Representation Similarity Under Translation Representation Similarity (f(Rx) vs R f(x))
Architectural Comparison: Standard PCN vs. RBF-PCN
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Full Connectivity: Sparse, Local Connectivity: cosine similarity under pixel shifts compared to Backpropagation.
No spatial locality constraint. Enforced by RBF mask M & threshold S. « Rotation: RBF-PCN yielded the highest similarity on CIFAR-1 O,

suggesting that enforcing local spatial constraints helps the network learn
rotationally equivariant features better than dense connections.

« Conclusion: Predictive coding dynamics naturally favor geometric
preservation over standard BP.

A. The RBF Constraint
For neurons on 2D grids, connectivity is defined by a Gaussian function G
based on the distance between coordinates (i, j) and (k, m):

Y : : : :

G = exp(_ “("'m)z‘z("”” ) Geometric Equivariance Analysis
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The model was tested on Image Denoising (MNIST) and Texture Synthesis

Thi t tivit k M lied to th ights.
'S Lreates a connectivity mas APpIEC To the WEIgh'S (DTD dataset) to verify representational capacity.
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Top-down prediction with error ! = v! — v! becomes: . E . - . . i
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(c) RBF-PCN Rec ) RBF-PCN Reconstruction

Spatially constrained inference updates become:

» Denoising: Depth-3 RBF-PCN achieved a PSNR of 12.84 dB, comparable
l . " " "
i+l e (Wl 5 Ml)TEl to Standard P(?N (13.39 dB), successfully filtering Gaus§|an noise.
dt « Texture Learning: On the DTD dataset, RBF-PCN achieved an MSE of

0.03 (identical to PCN), proving that local receptive fields are sufficient to
Complexity Reduction: Reduces Complexity from O(Nl+1 X Nl) to O(Nl+1 X Capture Comp|ex Spatia| patterns_

k), where k is the average connections per neuron.

C. Sparse Learning Discussion & Future Work

To ensure true computational sparsity (not just weighted reduction), we

employ a binary threshold mask:

« Binary Mask (S): Selects connections where the RBF value >t
(threshold).

- Effective Weights: During forward passes, weights are (W! © S') © M%.
Weight updates only occur on active connections.

RBF-PCN adds biological spatial constraints to predictive coding, matching
shallow-network performance while using far fewer active parameters. Its
local connectivity yields representations more robust to spatial changes than
standard deep models, but performance still degrades in very deep
networks, motivating work on better signal propagation (e.g., adaptive
receptive fields).
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