822

823
824
825

826

827
828
829
830
831
832

833
834
835

836

838
839
840

841
842
843

A Further analysis of Fedivertex

This appendix presents several additional plots complementary to the figures presented in the main
text. In particular, we propose to further analyze the degree distribution of our graphs, and the
language distribution within different Fediverse social media.

Degree distribution Fig. [5|and[6]details the degree distribution for each Fediverse software.

For federation graphs, we identify two distinct patterns. First, in BookWyrm, Lemmy, and Friendica,
the degree distribution exhibits a peak at high degrees, and the proportion of nodes decreases with the
degree. This behavior is particularly pronounced in Lemmy. In contrast, Mastodon, Misskey, and
Pleroma exhibit a peak at low degrees (close to 0), followed by a relatively flat region for intermediate
degrees, and a sharp drop for high degrees. This similarity can be attributed to the fact that these
platforms are all centered on the same activity: micro-blogging.

In the active user graphs, the degree distribution consistently follows a power-law-like pattern, with
the number of nodes decreasing as the degree increases. The intra-instance graph of Lemmy exhibits
a similar trend, though the pattern is less pronounced.

Bookwyrm " federation” graph (Date: 10/02) Friendica " federation” graph (Date: 10/02) Lemmy "federation with blocks” graph (Date: 10/02) Lemmy "federation” graph (Date: 10/02)

Number of Nodes

Number of Nodes
Number of Nodes
Number of Nodes

100

0 10 20 30 40 0 6 70 50 100 150 200 230 0 200 100 600 800 0 100 200 300

Degree Degree Degree Degree

(a) BookWyrm (b) Friendica (c) Lemmy (with blocks) (d) Lemmy

Mastodon " federation” graph (Date: 11/02) Misskey "federation” graph (Date: 10/02) Pleroma "federation" graph (Date: 10/02) Peertube "follow’ graph (Date: 10/02)

10°

Number of Nodes

Number of Nodes
Number of Nodes

9
3
<
o
=
-
5
g
2
E
S
=

10

Degree Degree Degree

o I000 200 300 4000 5000 6000 7000
Degree

(e) Mastodon (f) Misskey (g) Pleroma (h) PeerTube

Figure 5: Degree-histogram distributions for federation graphs. Version with and without block for
Lemmy, and Follow graph for Peertube

Mastodon “active user” graph (Date: 11/02) Misskey "active user” graph (Date: 10/02) Pleroma "active user” graph (Date: 10/02) Lemmy "cross instance’ graph (Date: 10/02) Lemmy intra instance” graph (Date: 10/02)

w

Number of Nodes

Zw
£
2

Number of Nodes

Degree Degree

Degree. ! " Degree
(a) Mastodon (b) Misskey (c) Pleroma (d) Lemmy (e) Lemmy
(active users) (active users) (active users) (cross-instance) (intra-instance)

Figure 6: Degree-histogram distributions for the three active-user graphs and Lemmy’s cross- vs.
intra-instance graphs.

Fig. [7]reproduces fig. 2| from the main text, but with a normalized degree: the degree is divided by the
number of nodes. This normalization incorporates graph density: the closer a curve is to the top-right
corner, the denser the graph. From fig. [7] Fedivertex graphs appear denser than the SNAP social
graphs. While the two groups overlap in fig. 2} they are more distinctly separated in the normalized
plot. This further illustrates major differences between Fedivertex and widely-used datasets.

Language distribution Fig. [§|presents histograms of the language distribution in Lemmy, Peertube,
Mastodon, and Misskey. This figure shows diverse language distributions among Fediverse social
media. First, Mastodon and Lemmy have a large majority of English-speaking instances. Second,

21

844
845
846
847

849
850
851

852

853
854

10° 4

10—14
. 1072
o
O === Peertube follow \\\ Y
) 10-3 4 === Lemmy cross-instance LA N &
= Bookwyrm federation sy . |\‘
= Misskey active users \) 1 1
\
1044 == Fa(l:ebook Ego -~ \ 1 1
= = Twitter Ego 1 d]
== = GitHub \ |\'
B = = Wikipedia Vote \
10704 ; . ; 1 ,I 1)
10°° 1074 1073 1072 1071 10°

Normalized degree

Figure 7: Complementary Cumulative Distribution Function (CCDF) of the degree for several
Fedivertex graphs and other widely-used graphs [34] based on social networks after normalization by
the total number of nodes

Peertube is dominated by European languages. We observe more diversity than in Mastodon because
French and German have a number of nodes similar to English. Third, Misskey shows a unique
language distribution within the Fediverse as the Asian languages (especially Japanese) are the
most spoken languages. This phenomenon is explained by the fact that Misskey (contrary to other
Fediverse software) has been developed by a Japanese developer.

Crawl date: 05/05/2025 Crawl date: 05/05/2025

%]
g 0
c 102 g
©
- ©
ol k]
£ £
-
o bS]
i 10t C
o Q
Q
£ £
= =
=2
S & & & & £ & NS N N e <
S < & @\\ & N ee’ 3 & Nd & Ny L& @ & §° <&
& & g X <« RO € & & S OL & & & K
s ¢ & T & & F g & <
Languages Languages
(a) Lemmy (b) Peertube
Crawl date: 06/05/2025 Crawl date: 07/05/2025
n (%)
i} [}
o v
c c
© 103 IS}
S10]
[u)
c £
5 s
i 107 o
o Qo
[£
=1 3
=2 10! =4
QS o el 2 N
\{1 Q' < Q/ﬁ {\\% _?:’ z’o
&© (9260 & \'o&c & &
Languages Languages
(c) Mastodon (d) Misskey

Figure 8: Histograms of the language distribution among four different Fediverse software, logarith-
mic scale

For a thorough exploratory data analysis we refer to our 5 Kaggle notebooks that cover these
aspects, but also other dimensions such as weight or user distribution:
https://www.kaggle.com/datasets/marcdamie/fediverse-graph-dataset/codel

B Python API examples

Our Python package Fedivertex produces a straightforward interface to interact with our dataset.
This package seamlessly downloads and extracts graphs from our CSV files using the NetworkX

22

https://www.kaggle.com/datasets/marcdamie/fediverse-graph-dataset/code

855
856

857
858
859
860

862
863
864
865

866
867
868
869

871

872
873
874
875
876

from fedivertex import GraphLoader

loader = GraphLoader ()
G = loader.get_graph(software = "misskey", graph_type = "active_user")

nb_nodes = G.number_of_nodes()
nb_edges = G.number_of_edges()
degree = G.degree()

Listing 3: Code example to extract statistics about a Fedivertex graph

from fedivertex import GraphLoader
loader = GraphLoader ()

Eztract the latest graph
G_latest = loader.get_graph(software = "misskey", graph_type = "active_user")

Extract the i-th graph in the dataset (sorted chronologically)
i
Gi

loader.get_graph(software = "misskey", graph_type = "active_user", index=i)

Eztract the graph of a specific data
G_2403 = loader.get_graph(software = "misskey", graph_type = "active_user", date='"20250324")

Listing 4: Code example of the graph selection in Fedivertex

format, a popular Python package to manipulate graphs. This appendix demonstrates several simple
operations that can be performed using our package.

The installation is straightforward as our package is available on the Python Package Index (PyPI):
pip3 install fedivertex. The dataset is downloaded automatically the first time a graph
is loaded. The dataset is stored in cache thanks to the CroissantML package in the folder
.cache/croissant.

Listing 3] shows how to extract basic statistics from the latest Misskey active user graph. Our method
get_graph outputs a NetworkX object, so we can apply all functions and methods from NetworkX.
This example simply calls number_of_nodes, number_of _edges, and degree, but one can use
the entire NetworkX API. We refer to NetworkX documentation for further information about the
capabilities of their API: https://networkx.org/documentation/stable/index.html

In Fedivertex, a graph is defined using three elements: the software (e.g., Misskey), the graph type
(e.g., active user), and the date. For date selection, the package provides three different options,
illustrated in listing[4] First, if no date is provided to get_graph, the latest graph is automatically
selected. Second, if the user provides an (integer) index ¢, the i-th graph is selected. This index works
like a Python list index, so —1 is accepted and the indexing starts at 0. Third, the user can provide a
date in a string format YYYYMMDD (e.g., 20250324).

As our dataset contains a large range of possible software, graph types, and dates, we also
provide utility functions to simplify the interactions. Listing [5] presents these functions. First,
list_all_software lists all the available software. Second, 1ist_graph_types lists the avail-
able graph types for a given software. Third, 1ist_available_dates lists the available dates for a
given software and graph type.

from fedivertex import GraphLoader
loader = GraphLoader ()

print(loader.list_all_software())
[”boolcu/yrm”, "friendica"”, "lemmy", "mastodon"”, "misskey", "peertube”, ”pleroma”]

print (loader.list_graph_types("peertube"))
["follow"]

print(loader.list_available_dates("peertube", "follow"))
["20250203", "20250210", "20250217", "20250224", "20250303", "20250311", "20250317",
"20250324", "20250331", "20250407", "20250414", "20250421", "20250428", "20250505"]

Listing 5: Code example of the utility functions in Fedivertex

23

https://networkx.org/documentation/stable/index.html

877
878
879
880
881

882
883
884

885

886
887
888
889
890
891

As seen in listing [I] in main text, it is possible to use graph extraction with the option
“only_largest_component = True.” When set to true, the method only returns the largest compo-
nent of the graph. As many graph algorithms require connected graphs, this option eases benchmarks
of such algorithms. Additionally, listing 2] shows how to extract the language information to use it as
a ground-truth label (e.g., in community detection like in table)

For further advanced examples, we refer to our Kaggle notebooks that analyze the dataset using the
Python package:
https://www.kaggle.com/datasets/marcdamie/fediverse-graph-dataset/codel

C Experiments on defederation

Bookwyrm "federation” graph Friendica "federation” graph Lemmy "federation” graph Peertube "follow” graph
5 0
—_— Ve 1 A7 \V — i\
2) 2 N 2% _ 2
§‘ - V(UL Vi) ﬂgn, ‘:d i) u:d Ui Vi)
5 — A UL V) S g0 (V) 5 - U Vi)
g [3 5 3 i
g, VA 0 e z 2 A) 2 / /\\ (0 e
s P " EY N
g g g _ L - g 'V VAN
S, 56 e PELN B
o Py Py ~T TN o 10 ¥ <N
- -3 = ! o Y
g g 8 s g
21 2, 2 2
R EREIEEERERE PRI PRI PRI
@0 o ol 0T (T T @ 0 AT T ol o aT T T @ 0 AT T ol 0T qT T T @ AT T ol o qT T T
Mastodon "federation’” graph Misskey "federation” graph Pleroma " federation” graph
0
50
00
g 9 o
3 g g
2 2 £
5 S0 5
[g g
g 2 2
g & &
g S e
B0 2 2
e e e
© © ©
3 3 3
S 5 S0
= = =2
R R R
S e @V o e o A R R @ e AT T T o qT T T

Figure 9: Node deletion at different time horizons for federation graphs, and the follow graph (for
PeerTube).

Bookwyrm "federation” graph Friendica "federation”_graph Lemmy " federation” graph Peertube "follow" graph
5 3000
3500 BB
100 12000 ;
] 8 300 g == BAUL) g 2500
s S 2500 & 10000 (UL Be) 5
5 30 5 5 e B (US Bl 5 2000
a a o s : a
4 & 2000 g &
& s 3 < § 1500
3 3 3 | 3
2w 5 150 5 00 SRS e °
o o o T ST @ 1000
& 80 1000 & 1000 g %
= = = =
i i i [rige
500 2000 300
R RRER R R R
B R R ST AT T ol oA T s ST AT T o7 o7 Tl 5T g ST AT T ol ST T s
0 Mastodon " federation” graph Pleroma "federation”_graph
17500
20
— E\Eu
- p 0 15000
3 EAUL E) g 40000 Y
= . £ 1=
5 2\ 23 5 5 12500
3 e BN U B @ 0000 ¥ g
2 g% 210000
= 4 4
10 3 s
2 2, 8
5 5 20000 2 7500
o P o .
& & 8 5000
05 S 10000 &
i w a0
0.
IR PR IR SIR RCI S S o
O RPN

Figure 10: Edge deletion at different time horizons for federation graphs, and the follow graph (for
PeerTube).

In section [5.2] we focused on edge deletion prediction by using the same method than for edge
prediction, with limited results. A natural question is thus: is the poor performance due to noise in the
deletion process? To answer this question, we must assess whether edge deletion is a random process
(e.g., caused by network instability) or whether it persists over time. In particular, fig.] does not
exhibit clear trends and tends to suggest that deletions could be accidental. We test this hypothesis
by comparing the edges and nodes deleted between two consecutive weeks (as reported in fig. @) to

24

https://www.kaggle.com/datasets/marcdamie/fediverse-graph-dataset/code

892
893

894
895
896

897
898
899
900

902

903
904

905
906
907
908
909

910

911
912

913
914
915
916

917
918
919

920
921
922

Edge disapperance

(a) Mastodon (b) Misskey (c) Pleroma (d) Lemmy (e) Lemmy
(active users) (active users) (active users) (cross-instance) (intra-instance)

Figure 11: Edge deletion at different time horizons for the three active-user graphs and Lemmy’s
cross- vs. intra-instance graphs.

Graph Betweenness Eigenvector centrality Pagerank Random
Misskey AU 6 16 16 7T+24
Misskey fed. 7 12 11 7T£23
Friendica fed. 11 13 13 7T+24
Pleroma fed 13 3 12 8+2.5

Table 5: Comparison of Betweenness, eigenvector centrality and Pagerank scores on different graphs
by reporting the number of correct predictions in Top-50 scores (the higher the better)

those that remain deleted over longer time horizons: two weeks, four weeks, and until the end of the
measurement period.

We report the results for node deletion in fig.[9] and for edge deletion in fig.[I0]and fig.[T1] depending
on the type of graph. The results show that most variations are permanent, at least within the time
scale of our study, as soon as they persist beyond two weeks.

The majority of deletions appear to be permanent, except in BookWyrm, which can be explained
by the small size of the network, and in Mastodon, where node and edge deletion durations follow
a continuum. The only other case showing a progressive increase in the proportion of affected
edges with respect to duration is Lemmy cross- and intra-instance, which can be explained by the
construction of these graphs: they depend on recent message exchanges between instances and may
naturally include servers whose users interact only occasionally.

In these cases, edge deletion does not appear to be an artifact of the crawling process, but rather
reflects actual communication dynamics in the graph.

We also present a baseline for node deletion. Similarly to the case of edges, we report the number of
actual deletions among the top-50 nodes with the highest scores. We propose to predict deletion for
nodes that are the least central in the graph, as this may indicate lower activity. Other metrics, and
incorporating additional information about the nodes, could certainly improve these predictions. We
report the results in table 5}

D Additional remarks about the crawler

We discuss in this section the robustness of the crawling, and legal procedure prior the crawler
deployment. We refer to section [3.5]for the ethical concerns related to the crawling procedure.

Robustness Fig. fic|represents the variations of the number of nodes in different Fediverse software.
For all these social networks, the variations looks erratic. Such patterns could raise concerns regarding
the robustness of the crawling procedure. However, these erratic variations are a natural phenomenon
of the Fediverse and are not an artifact created by the crawler.

To put these variations into perspective, fig. [I2]represents the overall evolution instead of the node
variation between two snapshots. We observe that the number of nodes is relatively stable. The
patterns from fig. [c|are barely distinguishable on fig. [I2] because they concern a minority of nodes.

Even though these patterns involve only a minority of nodes, they are worth examining. Most
instances on the Fediverse are maintained by volunteers who cover the operational and maintenance
costs themselves. Many are operated by a single individual who may lack the time, financial resources,

25

923
924
925

926
927
928
929
930
931
932

933

935

936
937
938
939
940
941
942

943
944
945
946
947
948
949
950

951
952
953
954
955
956
957

R A

Vi

= Lemmy

Bookwyrm
=== Friendica = » == m———— e ¢ f—
==== Misskey

Pleroma

Mastodon

& &
NSNRN
PR

>
NN
@ P

§ & S
N P Q

5 P QD >
Q% \Q° Q7 Q7 Q" QO
A AR

Figure 12: Evolution of the number of nodes over time for the six software of Fedivertex

or motivation to ensure long-term stability. While the biggest instances benefit from a high stability
due to their teams of experienced engineers, smaller nodes can quickly appear, disappear, and
eventually reappear.

A natural question that follows from this observation is whether our crawler adequately captures
the dynamics of unstable instances. Our approach relies on a curated list maintained by Fediverse
Observer, which continuously crawls the Fediverse to discover new instances and assess the availabil-
ity of existing ones. Notably, instances that are temporarily unavailable remain listed, meaning our
crawler does not ignore unstable nodes. Thanks to the frequent updates and broad coverage provided
by Fediverse Observer, the resulting instance list is both extensive and up-to-date. We thus argue that
our crawler offers a realistic and consistent view of the Fediverse.

Our source code is publicly available: https://github.com/MarcTOK/Franck. The crawler
implementation has remained consistent since the first crawl, with only minor changes introduced to
improve logging completeness.

Legal compliance Before crawler deployment, we have been involved in active discussions with
the legal departments of our institutions to cover any potential legal issue. We worked in particular
on the compliance with data privacy regulations, especially GDPR. As stressed in section [3.3] our
graphs only contain aggregated information (i.e., server-level information), and we only query public
APIs, and thus are less privacy sensitive than existing works (e.g., the Webis Mastodon corpus [55]]
that compiled 700 million Mastodon posts). The crawling logs are kept only for the time necessary to
confirm the crawl success and deleted afterwards.

Our work is among the first research projects on the Fediverse, and the guidelines for research in this
field still need to be refined. Existing guidelines tend to focus on centralized mainstream social media,
and are thus not well adapted to scenarios where instances are run by distinct legal entities, possibly
subject to different regulations and norms. The discussions with the legal departments allowed
us to clarify the legal requirements in this context. We shared our experience with the Network
of Alternative Social Media Researchers, a transdisciplinary international collective of academics
studying the cultures, technologies, and practices of non-corporate social medieﬂ to help formalize a
dedicated ethical framework for research on alternative social media.

In addition to the discussions with the legal department, we have also coordinated our efforts with
the IT department to avoid any disturbance caused by our crawler. Notably, our crawler is formally
declared to the security operations center of our university, is assigned specific IP addresses, and is
under the surveillance of the IT department. These measures are complementary to the preventive
strategy of a slow crawl, aiming to minimize disturbances for the instances, as detailed in section [3.3]
After four months of experiments, we have received no complaints, neither from our university nor
from Fediverse instance administrators.

Testimony at https://www.socialmediaalternatives.org/2025/05/07/asm-research-ethics/
html

26

https://www.socialmediaalternatives.org/2025/05/07/asm-research-ethics.html
https://www.socialmediaalternatives.org/2025/05/07/asm-research-ethics.html
https://github.com/MarcT0K/Franck

	Further analysis of Fedivertex
	Python API examples
	Experiments on defederation
	Additional remarks about the crawler

