
A Further analysis of Fedivertex822

This appendix presents several additional plots complementary to the figures presented in the main823

text. In particular, we propose to further analyze the degree distribution of our graphs, and the824

language distribution within different Fediverse social media.825

Degree distribution Fig. 5 and 6 details the degree distribution for each Fediverse software.826

For federation graphs, we identify two distinct patterns. First, in BookWyrm, Lemmy, and Friendica,827

the degree distribution exhibits a peak at high degrees, and the proportion of nodes decreases with the828

degree. This behavior is particularly pronounced in Lemmy. In contrast, Mastodon, Misskey, and829

Pleroma exhibit a peak at low degrees (close to 0), followed by a relatively flat region for intermediate830

degrees, and a sharp drop for high degrees. This similarity can be attributed to the fact that these831

platforms are all centered on the same activity: micro-blogging.832

In the active user graphs, the degree distribution consistently follows a power-law-like pattern, with833

the number of nodes decreasing as the degree increases. The intra-instance graph of Lemmy exhibits834

a similar trend, though the pattern is less pronounced.835

0 10 20 30 40 50 60 70

Degree

0

2

4

6

8

10

12

N
um

b
er

of
N

od
es

Bookwyrm ”federation” graph (Date: 10/02)

(a) BookWyrm

50 100 150 200 250

Degree

0

5

10

15

20

25

30

35

N
um

b
er

of
N

od
es

Friendica ”federation” graph (Date: 10/02)

(b) Friendica

0 200 400 600 800

Degree

0

10

20

30

40

50

N
um

b
er

of
N

od
es

Lemmy ”federation with blocks” graph (Date: 10/02)

(c) Lemmy (with blocks)

0 100 200 300 400

Degree

0

10

20

30

40

50

60

N
um

b
er

of
N

od
es

Lemmy ”federation” graph (Date: 10/02)

(d) Lemmy

0 1000 2000 3000 4000 5000 6000 7000

Degree

101

102

N
um

b
er

of
N

od
es

Mastodon ”federation” graph (Date: 11/02)

(e) Mastodon

0 200 400 600 800

Degree

100

101

102

N
um

b
er

of
N

od
es

Misskey ”federation” graph (Date: 10/02)

(f) Misskey

0 100 200 300 400 500 600 700

Degree

0

10

20

30

40

50

60

N
um

b
er

of
N

od
es

Pleroma ”federation” graph (Date: 10/02)

(g) Pleroma

0 100 200 300 400 500 600 700

Degree

100

101

102

N
um

b
er

of
N

od
es

Peertube ”follow” graph (Date: 10/02)

(h) PeerTube

Figure 5: Degree-histogram distributions for federation graphs. Version with and without block for
Lemmy, and Follow graph for Peertube

0 2000 4000 6000 8000

Degree

100

101

102

103

N
um

b
er

of
N

od
es

Mastodon ”active user” graph (Date: 11/02)

(a) Mastodon
(active users)

0 200 400 600 800 1000

Degree

100

101

102

N
um

b
er

of
N

od
es

Misskey ”active user” graph (Date: 10/02)

(b) Misskey
(active users)

0 20 40 60 80

Degree

100

101

102

N
um

b
er

of
N

od
es

Pleroma ”active user” graph (Date: 10/02)

(c) Pleroma
(active users)

0 50 100 150

Degree

100

101

102

N
um

b
er

of
N

od
es

Lemmy ”cross instance” graph (Date: 10/02)

(d) Lemmy
(cross-instance)

0 20 40 60 80 100 120

Degree

100

101

102

N
um

b
er

of
N

od
es

Lemmy ”intra instance” graph (Date: 10/02)

(e) Lemmy
(intra-instance)

Figure 6: Degree-histogram distributions for the three active-user graphs and Lemmy’s cross- vs.
intra-instance graphs.

Fig. 7 reproduces fig. 2 from the main text, but with a normalized degree: the degree is divided by the836

number of nodes. This normalization incorporates graph density: the closer a curve is to the top-right837

corner, the denser the graph. From fig. 7, Fedivertex graphs appear denser than the SNAP social838

graphs. While the two groups overlap in fig. 2, they are more distinctly separated in the normalized839

plot. This further illustrates major differences between Fedivertex and widely-used datasets.840

Language distribution Fig. 8 presents histograms of the language distribution in Lemmy, Peertube,841

Mastodon, and Misskey. This figure shows diverse language distributions among Fediverse social842

media. First, Mastodon and Lemmy have a large majority of English-speaking instances. Second,843

21

10 5 10 4 10 3 10 2 10 1 100

Normalized degree
10 5

10 4

10 3

10 2

10 1

100

CC
DF

Peertube follow
Lemmy cross-instance
Bookwyrm federation
Misskey active users
Facebook Ego
Twitter Ego
GitHub
Wikipedia Vote

Figure 7: Complementary Cumulative Distribution Function (CCDF) of the degree for several
Fedivertex graphs and other widely-used graphs [34] based on social networks after normalization by
the total number of nodes

Peertube is dominated by European languages. We observe more diversity than in Mastodon because844

French and German have a number of nodes similar to English. Third, Misskey shows a unique845

language distribution within the Fediverse as the Asian languages (especially Japanese) are the846

most spoken languages. This phenomenon is explained by the fact that Misskey (contrary to other847

Fediverse software) has been developed by a Japanese developer.848

En
glis

h

un
kn

ow
n

Germ
an

Ita
lian

Fre
nch

Por
tug

ue
se

Sw
ed

ish

Jap
an

ese

Norw
eg

ian
Othe

r

Languages

101

102

Nu
m

be
r o

f i
ns

ta
nc

es

Crawl date: 05/05/2025

(a) Lemmy

Unk
no

wn
Fre

nch
En

glis
h

Germ
an

Mult
i-

ling
ua

l
Ru

ssi
an

Ita
lian

Jap
an

ese Pol
ish

Othe
r

Languages

101

102

Nu
m

be
r o

f i
ns

ta
nc

es

Crawl date: 05/05/2025

(b) Peertube

En
glis

h

Germ
an

Fre
nch

Jap
an

ese

Sp
an

ish

Chin
ese

Ko
rea

n
Ita

lian Dutc
h

Othe
r

Languages

101

102

103

Nu
m

be
r o

f i
ns

ta
nc

es

Crawl date: 06/05/2025

(c) Mastodon

Jap
an

ese
En

glis
h

un
kn

ow
n

Ko
rea

n

Chin
ese

Norw
eg

ian

Est
on

ian
Fre

nch

Tag
alo

g
Othe

r

Languages

101

102

Nu
m

be
r o

f i
ns

ta
nc

es

Crawl date: 07/05/2025

(d) Misskey

Figure 8: Histograms of the language distribution among four different Fediverse software, logarith-
mic scale

For a thorough exploratory data analysis we refer to our 5 Kaggle notebooks that cover these849

aspects, but also other dimensions such as weight or user distribution:850

https://www.kaggle.com/datasets/marcdamie/fediverse-graph-dataset/code.851

B Python API examples852

Our Python package Fedivertex produces a straightforward interface to interact with our dataset.853

This package seamlessly downloads and extracts graphs from our CSV files using the NetworkX854

22

https://www.kaggle.com/datasets/marcdamie/fediverse-graph-dataset/code

from fedivertex import GraphLoader

loader = GraphLoader()
G = loader.get_graph(software = "misskey", graph_type = "active_user")

nb_nodes = G.number_of_nodes()
nb_edges = G.number_of_edges()
degree = G.degree()

Listing 3: Code example to extract statistics about a Fedivertex graph

from fedivertex import GraphLoader
loader = GraphLoader()

Extract the latest graph
G_latest = loader.get_graph(software = "misskey", graph_type = "active_user")

Extract the i-th graph in the dataset (sorted chronologically)
i = 3
G_i = loader.get_graph(software = "misskey", graph_type = "active_user", index=i)

Extract the graph of a specific data
G_2403 = loader.get_graph(software = "misskey", graph_type = "active_user", date="20250324")

Listing 4: Code example of the graph selection in Fedivertex

format, a popular Python package to manipulate graphs. This appendix demonstrates several simple855

operations that can be performed using our package.856

The installation is straightforward as our package is available on the Python Package Index (PyPI):857

pip3 install fedivertex. The dataset is downloaded automatically the first time a graph858

is loaded. The dataset is stored in cache thanks to the CroissantML package in the folder859

.cache/croissant.860

Listing 3 shows how to extract basic statistics from the latest Misskey active user graph. Our method861

get_graph outputs a NetworkX object, so we can apply all functions and methods from NetworkX.862

This example simply calls number_of_nodes, number_of_edges, and degree, but one can use863

the entire NetworkX API. We refer to NetworkX documentation for further information about the864

capabilities of their API: https://networkx.org/documentation/stable/index.html865

In Fedivertex, a graph is defined using three elements: the software (e.g., Misskey), the graph type866

(e.g., active user), and the date. For date selection, the package provides three different options,867

illustrated in listing 4. First, if no date is provided to get_graph, the latest graph is automatically868

selected. Second, if the user provides an (integer) index i, the i-th graph is selected. This index works869

like a Python list index, so −1 is accepted and the indexing starts at 0. Third, the user can provide a870

date in a string format YYYYMMDD (e.g., 20250324).871

As our dataset contains a large range of possible software, graph types, and dates, we also872

provide utility functions to simplify the interactions. Listing 5 presents these functions. First,873

list_all_software lists all the available software. Second, list_graph_types lists the avail-874

able graph types for a given software. Third, list_available_dates lists the available dates for a875

given software and graph type.876

from fedivertex import GraphLoader
loader = GraphLoader()

print(loader.list_all_software())
["bookwyrm", "friendica", "lemmy", "mastodon", "misskey", "peertube", "pleroma"]

print(loader.list_graph_types("peertube"))
["follow"]

print(loader.list_available_dates("peertube", "follow"))
["20250203", "20250210", "20250217", "20250224", "20250303", "20250311", "20250317",
"20250324", "20250331", "20250407", "20250414", "20250421", "20250428", "20250505"]

Listing 5: Code example of the utility functions in Fedivertex

23

https://networkx.org/documentation/stable/index.html

As seen in listing 1 in main text, it is possible to use graph extraction with the option877

“only_largest_component = True.” When set to true, the method only returns the largest compo-878

nent of the graph. As many graph algorithms require connected graphs, this option eases benchmarks879

of such algorithms. Additionally, listing 2 shows how to extract the language information to use it as880

a ground-truth label (e.g., in community detection like in table 4)881

For further advanced examples, we refer to our Kaggle notebooks that analyze the dataset using the882

Python package:883

https://www.kaggle.com/datasets/marcdamie/fediverse-graph-dataset/code.884

C Experiments on defederation885

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

1

2

3

4

5

N
od

e
di

sa
pp

er
an

ce

Bookwyrm ”federation” graph

Vt \ Vt+1

Vt \ (
⋃2
i=1 Vt+i)

Vt \ (
⋃4
i=1 Vt+i)

Vt \ (
⋃∞
i=1 Vt+i)

(a) BookWyrm

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

2

4

6

8

10

12

14

N
od

e
di

sa
pp

er
an

ce
Friendica ”federation” graph

Vt \ Vt+1

Vt \ (
⋃2
i=1 Vt+i)

Vt \ (
⋃4
i=1 Vt+i)

Vt \ (
⋃∞
i=1 Vt+i)

(b) Friendica

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

5

10

15

20

N
od

e
di

sa
pp

er
an

ce

Lemmy ”federation” graph

Vt \ Vt+1

Vt \ (
⋃2
i=1 Vt+i)

Vt \ (
⋃4
i=1 Vt+i)

Vt \ (
⋃∞
i=1 Vt+i)

(c) Lemmy

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

5

10

15

20

25

N
od

e
di

sa
pp

er
an

ce

Peertube ”follow” graph

Vt \ Vt+1

Vt \ (
⋃2
i=1 Vt+i)

Vt \ (
⋃4
i=1 Vt+i)

Vt \ (
⋃∞
i=1 Vt+i)

(d) PeerTube

05/02

11/02

18/02

25/02

04/03

13/03

18/03

25/03

01/04

08/04
0

100

200

300

400

N
od

e
di

sa
pp

er
an

ce

Mastodon ”federation” graph

Vt \ Vt+1

Vt \ (
⋃2
i=1 Vt+i)

Vt \ (
⋃4
i=1 Vt+i)

Vt \ (
⋃∞
i=1 Vt+i)

(e) Mastodon

03/02

10/02

17/02

24/02

03/03

12/03

17/03

24/03

31/03

07/04
0

20

40

60

80

N
od

e
di

sa
pp

er
an

ce

Misskey ”federation” graph

Vt \ Vt+1

Vt \ (
⋃2
i=1 Vt+i)

Vt \ (
⋃4
i=1 Vt+i)

Vt \ (
⋃∞
i=1 Vt+i)

(f) Misskey

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

10

20

30

40

N
od

e
di

sa
pp

er
an

ce

Pleroma ”federation” graph

Vt \ Vt+1

Vt \ (
⋃2
i=1 Vt+i)

Vt \ (
⋃4
i=1 Vt+i)

Vt \ (
⋃∞
i=1 Vt+i)

(g) Pleroma

Figure 9: Node deletion at different time horizons for federation graphs, and the follow graph (for
PeerTube).

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

100

200

300

400

E
dg

e
di

sa
pp

er
an

ce

Bookwyrm ”federation” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(a) BookWyrm

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

500

1000

1500

2000

2500

3000

3500

E
dg

e
di

sa
pp

er
an

ce

Friendica ”federation” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(b) Friendica

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

2000

4000

6000

8000

10000

12000

E
dg

e
di

sa
pp

er
an

ce

Lemmy ”federation” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(c) Lemmy

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

500

1000

1500

2000

2500

3000

E
dg

e
di

sa
pp

er
an

ce

Peertube ”follow” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(d) PeerTube

05/02

11/02

18/02

25/02

04/03

13/03

18/03

25/03

01/04

08/04
0.0

0.5

1.0

1.5

2.0

E
dg

e
di

sa
pp

er
an

ce

×106 Mastodon ”federation” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(e) Mastodon

03/02

10/02

17/02

24/02

03/03

12/03

17/03

24/03

31/03

07/04
0

10000

20000

30000

40000

E
dg

e
di

sa
pp

er
an

ce

Misskey ”federation” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(f) Misskey

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

2500

5000

7500

10000

12500

15000

17500

E
dg

e
di

sa
pp

er
an

ce

Pleroma ”federation” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(g) Pleroma

Figure 10: Edge deletion at different time horizons for federation graphs, and the follow graph (for
PeerTube).

In section 5.2, we focused on edge deletion prediction by using the same method than for edge886

prediction, with limited results. A natural question is thus: is the poor performance due to noise in the887

deletion process? To answer this question, we must assess whether edge deletion is a random process888

(e.g., caused by network instability) or whether it persists over time. In particular, fig. 4 does not889

exhibit clear trends and tends to suggest that deletions could be accidental. We test this hypothesis890

by comparing the edges and nodes deleted between two consecutive weeks (as reported in fig. 4) to891

24

https://www.kaggle.com/datasets/marcdamie/fediverse-graph-dataset/code

05/02

11/02

18/02

25/02

04/03

13/03

18/03

25/03

01/04

08/04
0

5000

10000

15000

20000

25000

E
dg

e
di

sa
pp

er
an

ce

Mastodon ”active user” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(a) Mastodon
(active users)

03/02

10/02

17/02

24/02

03/03

12/03

17/03

24/03

31/03

07/04
0

250

500

750

1000

1250

1500

1750

E
dg

e
di

sa
pp

er
an

ce

Misskey ”active user” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(b) Misskey
(active users)

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

20

40

60

80

100

E
dg

e
di

sa
pp

er
an

ce

Pleroma ”active user” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(c) Pleroma
(active users)

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

200

400

600

800

E
dg

e
di

sa
pp

er
an

ce

Lemmy ”cross instance” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(d) Lemmy
(cross-instance)

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04
0

50

100

150

200

E
dg

e
di

sa
pp

er
an

ce

Lemmy ”intra instance” graph

Et \ Et+1

Et \ (
⋃2
i=1Et+i)

Et \ (
⋃4
i=1Et+i)

Et \ (
⋃∞
i=1Et+i)

(e) Lemmy
(intra-instance)

Figure 11: Edge deletion at different time horizons for the three active-user graphs and Lemmy’s
cross- vs. intra-instance graphs.

Graph Betweenness Eigenvector centrality Pagerank Random

Misskey AU 6 16 16 7± 2.4
Misskey fed. 7 12 11 7± 2.3
Friendica fed. 11 13 13 7± 2.4
Pleroma fed 13 3 12 8± 2.5

Table 5: Comparison of Betweenness, eigenvector centrality and Pagerank scores on different graphs
by reporting the number of correct predictions in Top-50 scores (the higher the better)

those that remain deleted over longer time horizons: two weeks, four weeks, and until the end of the892

measurement period.893

We report the results for node deletion in fig. 9, and for edge deletion in fig. 10 and fig. 11, depending894

on the type of graph. The results show that most variations are permanent, at least within the time895

scale of our study, as soon as they persist beyond two weeks.896

The majority of deletions appear to be permanent, except in BookWyrm, which can be explained897

by the small size of the network, and in Mastodon, where node and edge deletion durations follow898

a continuum. The only other case showing a progressive increase in the proportion of affected899

edges with respect to duration is Lemmy cross- and intra-instance, which can be explained by the900

construction of these graphs: they depend on recent message exchanges between instances and may901

naturally include servers whose users interact only occasionally.902

In these cases, edge deletion does not appear to be an artifact of the crawling process, but rather903

reflects actual communication dynamics in the graph.904

We also present a baseline for node deletion. Similarly to the case of edges, we report the number of905

actual deletions among the top-50 nodes with the highest scores. We propose to predict deletion for906

nodes that are the least central in the graph, as this may indicate lower activity. Other metrics, and907

incorporating additional information about the nodes, could certainly improve these predictions. We908

report the results in table 5.909

D Additional remarks about the crawler910

We discuss in this section the robustness of the crawling, and legal procedure prior the crawler911

deployment. We refer to section 3.5 for the ethical concerns related to the crawling procedure.912

Robustness Fig. 4c represents the variations of the number of nodes in different Fediverse software.913

For all these social networks, the variations looks erratic. Such patterns could raise concerns regarding914

the robustness of the crawling procedure. However, these erratic variations are a natural phenomenon915

of the Fediverse and are not an artifact created by the crawler.916

To put these variations into perspective, fig. 12 represents the overall evolution instead of the node917

variation between two snapshots. We observe that the number of nodes is relatively stable. The918

patterns from fig. 4c are barely distinguishable on fig. 12 because they concern a minority of nodes.919

Even though these patterns involve only a minority of nodes, they are worth examining. Most920

instances on the Fediverse are maintained by volunteers who cover the operational and maintenance921

costs themselves. Many are operated by a single individual who may lack the time, financial resources,922

25

03/02

10/02

17/02

24/02

03/03

11/03

17/03

24/03

31/03

07/04

14/04

21/04

28/04

05/05

102

103

V
t

Lemmy

Bookwyrm

Friendica

Misskey

Pleroma

Mastodon

Figure 12: Evolution of the number of nodes over time for the six software of Fedivertex

or motivation to ensure long-term stability. While the biggest instances benefit from a high stability923

due to their teams of experienced engineers, smaller nodes can quickly appear, disappear, and924

eventually reappear.925

A natural question that follows from this observation is whether our crawler adequately captures926

the dynamics of unstable instances. Our approach relies on a curated list maintained by Fediverse927

Observer, which continuously crawls the Fediverse to discover new instances and assess the availabil-928

ity of existing ones. Notably, instances that are temporarily unavailable remain listed, meaning our929

crawler does not ignore unstable nodes. Thanks to the frequent updates and broad coverage provided930

by Fediverse Observer, the resulting instance list is both extensive and up-to-date. We thus argue that931

our crawler offers a realistic and consistent view of the Fediverse.932

Our source code is publicly available: https://github.com/MarcT0K/Franck. The crawler933

implementation has remained consistent since the first crawl, with only minor changes introduced to934

improve logging completeness.935

Legal compliance Before crawler deployment, we have been involved in active discussions with936

the legal departments of our institutions to cover any potential legal issue. We worked in particular937

on the compliance with data privacy regulations, especially GDPR. As stressed in section 3.5, our938

graphs only contain aggregated information (i.e., server-level information), and we only query public939

APIs, and thus are less privacy sensitive than existing works (e.g., the Webis Mastodon corpus [55]940

that compiled 700 million Mastodon posts). The crawling logs are kept only for the time necessary to941

confirm the crawl success and deleted afterwards.942

Our work is among the first research projects on the Fediverse, and the guidelines for research in this943

field still need to be refined. Existing guidelines tend to focus on centralized mainstream social media,944

and are thus not well adapted to scenarios where instances are run by distinct legal entities, possibly945

subject to different regulations and norms. The discussions with the legal departments allowed946

us to clarify the legal requirements in this context. We shared our experience with the Network947

of Alternative Social Media Researchers, a transdisciplinary international collective of academics948

studying the cultures, technologies, and practices of non-corporate social media5, to help formalize a949

dedicated ethical framework for research on alternative social media.950

In addition to the discussions with the legal department, we have also coordinated our efforts with951

the IT department to avoid any disturbance caused by our crawler. Notably, our crawler is formally952

declared to the security operations center of our university, is assigned specific IP addresses, and is953

under the surveillance of the IT department. These measures are complementary to the preventive954

strategy of a slow crawl, aiming to minimize disturbances for the instances, as detailed in section 3.5.955

After four months of experiments, we have received no complaints, neither from our university nor956

from Fediverse instance administrators.957

5Testimony at https://www.socialmediaalternatives.org/2025/05/07/asm-research-ethics.
html

26

https://www.socialmediaalternatives.org/2025/05/07/asm-research-ethics.html
https://www.socialmediaalternatives.org/2025/05/07/asm-research-ethics.html
https://github.com/MarcT0K/Franck

	Further analysis of Fedivertex
	Python API examples
	Experiments on defederation
	Additional remarks about the crawler

