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ABSTRACT

As the performance of artificial intelligence systems has dramatically increased,
so too has the environmental impact of creating these systems. While many model
developers release estimates of the power consumption and carbon emissions from
the final training runs for their latest models, there is comparatively little trans-
parency into the impact of model development, hardware manufacturing, and total
water usage throughout. In this work, we estimate the real-world environmental
impact of developing a series of language models, ranging from 20 million to 13
billion active parameters, trained on up to 5.6 trillion tokens each. When account-
ing for hardware manufacturing, model development, and our final training runs,
we find that our series of models released 493 metric tons of carbon emissions,
equivalent to powering about 98 homes in the United States for one year, and
consumed 2.769 million liters of water, equivalent to about 24.5 years of water
usage by a person in the United States, even though our data center is extremely
water-efficient. We measure and report the environmental impact of our model
development; to the best of our knowledge we are the first to do so for LLMs, and
we find that model development, the impact of which is generally not disclosed
by most model developers, amounted to ∼50% of that of training. By looking at
detailed time series data for power consumption, we also find that power usage
throughout training is not consistent, fluctuating between ∼15% and ∼85% of
our hardware’s maximum power draw, with negative implications for grid-scale
planning as demand continues to grow. We close with a discussion on the con-
tinued difficulty of estimating the environmental impact of AI systems, and key
takeaways for model developers and the public at large.

1 INTRODUCTION

In recent years, the field of artificial intelligence has progressed at an unprecedented pace, driven
in large part by the development and deployment of large language and multimodal models. How-
ever, the development of these models comes with significant environmental costs (Schwartz et al.,
2020; Strubell et al., 2020; Wu et al., 2022). Training these models requires massive computational
resources, which, in turn, require large amounts of energy. Powering training both emits carbon
(by burning fossil fuels) and consumes water (by evaporating or polluting it in power plants, data
centers, and hardware manufacturing processes; Li et al. (2023)). There is a growing demand for
energy to power AI workloads, with projections estimating that datacenters may consume upwards
of 11.7% of the total US energy demand by 2030 (Shehabi et al., 2024; Green et al., 2024). These
energy needs are substantial such that they affect the decisions of both machine learning developers
and energy providers – for instance, Microsoft recently signed a deal to purchase the next 20 years
of energy generated by reopening a nuclear power plant,1 and meanwhile energy providers are ex-
tending the life of aging fossil fuel energy plants to keep up with demand.2 As such, especially as

1
https://www.technologyreview.com/2024/09/26/1104516/three-mile-island-microsoft/

2
https://www.wsj.com/business/energy-oil/electricity-demand-coal-gas-retirement-charts-dd07029a
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increasing numbers of stakeholders become involved in the development and use of AI systems, it is
imperative to carefully characterize the true cost of building and deploying state-of-the-art models,
to inform effective strategies for mitigating potential harms and planning for future demand.
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Figure 1: Environmental impact for a selection of the
final training runs described in Section 4.1, where we
rank each model by both its total water consumption
and its CO2 emissions. Our small models (<1B param-
eters) were trained on 1.7 trillion tokens, OLMo 1B was
trained on 3 trillion, OLMo 2 7B was trained on 4 tril-
lion, OLMoE was trained on 5 trillion, and OLMo 2
13B was trained on 5.6 trillion. We see that the total
environmental impact for larger training runs is quite
high, and increases quickly with model and dataset size.

In this paper, we estimate the energy use and
environmental impacts caused by training the
OLMo series of transformer language models
(Groeneveld et al., 2024; OLMo et al., 2025),
ranging in size from 20 million to 13 billion
active parameters, trained on 1.7 to 5.6 trillion
tokens. To do this, we calculate Scope 2 CO2
emissions in accordance with the Greenhouse
Gas Protocol’s definitions,3 and Scope 1 and 2
water consumption following Li et al. (2023);
in addition, we calculate “upstream” embod-
ied carbon and water consumption, and provide
“downstream” estimates from use of our mod-
els (which are part, but not all, of Scope 3).

Importantly, we calculate (i) electricity con-
sumption, (ii) carbon emissions, and (iii) wa-
ter consumption at three points in the machine
learning pipeline: early model development
(e.g., hyperparameter tuning and experiments
before the final training run), training of the
main model, and inference. To the best of our
knowledge, we are the first to report this in-
formation for model development of large lan-
guage models, and we find the environmental
impact of developing even our relatively small
models (only up to 13B parameters) is equivalent to burning 2.1 gasoline tanker trucks of fuel, or
the amount of water consumed by one average person in the United States in about 7.5 years. We
encourage the reader to consider larger models released by other organizations to have equivalently
larger environmental impacts.

Our methodology draws upon best practices from recent publications, aiming to provide the most
thorough reporting yet of the environmental impact of LLMs. For example, unlike previous works
that assume GPUs operate at 100% of their theoretical maximum power draw (Dubey et al., 2024)
and report only the cost to train a small set of released models, we measure power consumption
at sub-second intervals throughout training. We focus our efforts on a wide range of model sizes,
optimized for widespread deployment (Dubey et al., 2024; Mehta et al., 2024; Gemma Team et al.,
2024), and estimate what the environmental impact would be if our models were deployed in a va-
riety of different scenarios. We find that in some scenarios, our models would need to run inference
on a few billion instances to match the electricity consumed, carbon emitted, and water consumed
of the entire training process, a figure that can be reached by production systems in weeks to months
based on current usage trends.4

We conclude that more transparency is needed across the industry in reporting the environmental
impact of AI systems. Systems orders of magnitude larger than those in this paper are being built,
and deployed at a global scale, leading to emissions 10s or 100s of times larger than what we
report. This work is a step in the right direction, but responsibility of reporting and reducing the
environmental impact must fall on those training the largest models, as they have the largest impact.

2 RELATED WORK

While most publicly available models do not report any climate impact, including CO2 emissions,
water usage, or embodied carbon, a few reports recently have included some estimates. For example,

3
https://ghgprotocol.org/sites/default/files/standards/ghg-protocol-revised.pdf

4
https://www.cnbc.com/2025/02/20/openai-tops-400-million-users-despite-deepseeks-emergence.

html
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Luccioni et al. (2023) reported estimates for emissions from the manufacturing process (embodied
emissions), from electricity consumption during training, and from electricity consumption of the
cluster while it was idle (see their Table 2). Dodge et al. (2022) measured electricity consump-
tion and carbon emissions for training language models and computer vision models with granular
timesteps with region-specific carbon intensity, but did not measure development costs, water con-
sumption, or inference. Similarly, developers of the Llama models (Touvron et al., 2023a;b; Dubey
et al., 2024) reported electricity consumption and carbon emissions estimates of training their final
models; they did not estimate development cost or water consumption, and their approach to carbon
intensity varied.5 Gemma developers (Gemma Team et al., 2024) only report a single number: the
total emissions from pretraining their models, not broken down by model or by different stages of
training, or by electricity consumption and carbon intensity. The OLMo report (Groeneveld et al.,
2024) documents electricity consumption per model, and uses region-specific carbon intensity to
estimate emissions for two regions, but does not estimate other environmental impacts. The OLMo
2 report (OLMo et al., 2025) again documents electricity consumption per model and uses region-
and datacenter-specific intensity factors to estimate emissions and also water consumption, but does
not measure development costs or potential inference costs. Energy use and environmental impacts
are not typically documented for proprietary models.

Comparably little transparency has been provided on the water consumption of AI systems. Li et al.
(2023) estimate the water consumption of some closed models like GPT-3, but these estimates are
based on speculation about location of training, energy consumption, etc., as there is very little
public information about GPT-3’s training. Similarly, there are few estimates of embodied carbon
for AI systems, as the manufacturing process is notoriously opaque. In addition, almost all reporting
of environmental impact is based on training of the final model that is released. Instead of only
focusing on training, Luccioni et al. (2024) estimate the impact of inference of deployed AI systems.
To the best of our knowledge our work provides the first public estimates of environmental impact
of development of an LLM, i.e. hyperparameter tuning and ablations before the main training run.

3 METHODOLOGY

Our goal in this work is to characterize the holistic environmental impacts of large language models
in as much detail as possible, enabling assessment of key challenges and future directions towards
reducing those impacts. Typically, studies documenting language model training and development
methodology will address this concern by reporting the cost to train the final, deployed model mea-
sured in GPU hours, kWh energy, and/or CO2 emissions. However, this calculation provides an
incomplete characterization of the factors leading to environmental degradation due to LLMs that
under-estimates impacts and provides insufficient information to inform strategies for developing
and deploying LLMs in a more environmentally conscious way.

Following the more comprehensive analysis provided for the BLOOM model (Luccioni et al., 2023),
we expand our measurement to include both operational GHG emissions arising from the energy
required for the development, training, and inference phases of the ML model lifecycle, as well as
embodied emissions attributed to manufacturing of the hardware supporting those operations. We
also go beyond previous work to report non-GHG externalities such as water use, and finer-grained
data such as variance in energy use throughout training. We describe our methodology for measuring
and estimating these impacts in more detail below.

3.1 OPERATIONAL IMPACTS

Operational environmental impacts of LLMs are those that arise directly from the development
and use of models, and include the GHG emissions arising from energy sources used to power
model training and deployment, including servers and data center cooling. We base our analysis of
operational emissions around the following equation introduced by Schwartz et al. (2020) to describe
the amount of computation required to produce a machine learning artifact, such as an LLM:

Cost(R) ∝ E ·D ·H (1)
5Llama 1 did not use the data center location’s carbon intensity, instead using US national average carbon

intensity; Llama 2 did not specify the carbon intensity; Llama 3 used a region-specific carbon intensity. All 3
assumed 100% GPU power draw throughout training.
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where the cost of a scientific result R (e.g. a claim that a particular training setup reaches X accuracy
on benchmark Y ) is proportional to the product of the cost of processing a single example E, the
size of the training dataset D, and the number of hyperparameter experiments H. In previous work,
E · D, the cost of training on the training dataset, is what is most commonly reported, and H, the
total number of experiments, is most often excluded.

In our analysis, we calculate the total power consumption during model training, development, and
inference, and use this to estimate the total carbon emissions and water consumption during each
stage. We follow previous work (Luccioni et al., 2023; Dubey et al., 2024; Gemma Team et al.,
2024) to calculate CO2 emissions (CO2e) from power consumption:

CO2e = P · PUE · CI (2)

where the total carbon emissions is equal to the power usage P, multiplied by the power usage
effectiveness (PUE)6 of the data center, multiplied by the carbon intensity CI of the local power
grid. We run all experiments in our two GPU clusters, Jupiter and Augusta, which are located in
Texas and Iowa, respectively (see OLMo et al. (2025) for more information). Our 13B model was
trained on Augusta, and all other experiments analyzed in this paper were trained on Jupiter.

Our data center providers informed us that Jupiter’s PUE is between 1.1 and 1.2 depending on
the current total utilization (we conservatively assume 1.2 for our calculations), and that Augusta’s
trailing twelve-month average was 1.12. Jupiter is powered by Austin Energy, which most recently
reported a carbon intensity of 0.332 kg CO2 per kWh.7 Augusta is located in Iowa, and the state of
Iowa has an average carbon intensity of 0.352 kg CO2 per kWh,8 which we use for our calculations.

We follow Li et al. (2023) to calculate water consumed onsite and through power generation:

Consumption = P · PUE · (WUEonsite +WUEoffsite) (3)

where WUEonsite is the water usage effectiveness of the data center, dictated by the cooling hardware
used, and WUEoffsite is the water usage effectiveness of the local power provider, dictated by the
precise mixture of sources of power generation, as thermo- and hydro-electric power plants lead to
evaporated water that is lost and will not re-enter circulation in the local environment.

As our data center uses an efficient closed-loop cooling system with no evaporative cooling, we
assume a WUEonsite of 0 liters per kWh. Following Reig et al. (2020), we assume a WUEoffsite of
1.29 L per kWh for our Jupiter cluster and 3.10 L per kWh for our Augusta cluster.

Both calculations rely on total power usage. To calculate power usage during development and
training, we analyze detailed time series data for a single node throughout each run, logging power
data at sub-second intervals, and extrapolate to the total number of nodes. As we only measure GPU
power consumption, our estimates should be viewed as a lower bound on the true amount of power
consumed during development and training.

3.2 EMBODIED IMPACTS

Embodied impacts are those arising from the production of physical elements required to support
LLM development and use, such as hardware manufacturing and data center construction. To cal-
culate embodied emissions, we follow Luccioni et al. (2023) by amortizing the carbon emissions
from manufacturing over the lifetime of the hardware to get an estimate of the per hour cost, and
multiplying by the number of GPU hours used throughout model development and training. We
extend this to include water consumption as well, by amortizing estimates of water consumption
during manufacturing over the lifetime of the hardware.

6
https://www.techtarget.com/searchdatacenter/definition/power-usage-effectiveness-PUE

7
austinenergy.com/-/media/project/websites/austinenergy/commercial/

carbonemissionscalculator.pdf
8
www.eia.gov/electricity/state/iowa
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3.3 MODELS, DATA, AND HARDWARE

Most of the models we evaluate are standard dense transformers, with an architecture similar to
Llama (Touvron et al., 2023a;b; Dubey et al., 2024), OLMo (Groeneveld et al., 2024), and other
recent popular models, ranging in size from 20 million to 13 billion active parameters. Each of the
sub-billion parameter models was trained on 1.7 trillion tokens, the 1 billion parameter model was
trained to 3 trillion tokens, the 7 billion parameter models were trained to 2, 3 and 4 trillion tokens,
and the 13 billion parameter model to 5.6 trillion tokens. We additionally evaluate a mixture-of-
experts (MoE) model with 1 billion active and 7 billion total parameters, trained to 5 trillion tokens.

Each model was trained on standard HGX servers with 8 NVIDIA H100 GPUs per server, with high
speed interconnect between each node, and between 2 and 128 nodes concurrently per training run.
All models except the 13B were trained in the same data center. See OLMo et al. (2025) for more
information on our technical infrastructure.

3.4 SIMULATING INFERENCE

Because we do not deploy our models, we do not collect or report data about real usage of our
models. We instead report estimated costs associated with deployment of a subset of our models,
along with comparison models, with varying inference configurations. In reality, causal language
models can have a variety of use cases and be deployed on a variety of hardware infrastructure. As
a representative deployment setting, we assume a setting in which users interact with the models
via chat; we collect measurements assuming models are served on a single H100 GPU via SGLang
(Zheng et al., 2024). All three inference configurations used can be mapped to a previously proposed
realistic online inference scenario (Reddi et al., 2020; Peng et al., 2023). Specifically, other than
the “batching” scenario where all requests are sent instantaneously, the requests follow a Poisson
distribution, albeit at different rates that influence different batch sizes. The requests themselves
come from the ShareGPT dataset,9 and each inference scenario involves the same sample of 2400
prompts (same random seed). Input and output lengths, therefore, are the same in theory for a given
model, but due to differences in tokenization and model context length, there are slight variations in
mean input/output lengths across models, 225-250 and 190-230 tokens respectively.

In our inference experiments, we measure cumulative energy consumption using CodeCarbon
(Courty et al., 2024) tracking, which was verified against the same time series monitoring used
throughout training. Notably, we measure total power and energy consumption associated with only
the relevant processes, excluding the overhead associated with, for example, holding the model in
memory or listening for requests.

We ran our inference simulations on our Jupiter cluster, used to train almost all of our models,
but we use only a single H100 GPU at a time. See Appendix A.1 for details about our inference
methodology and assumptions.

4 RESULTS

4.1 BUILDING OUR MODELS

In this section we aim to report a full accounting of the environmental impact of training our series
of models, from hardware manufacturing, to development, and the final training runs. We follow the
methodology outlined in Section 3.1 and Section 3.2.

When calculating environmental impact, we use information from our data center providers and their
power providers to measure the efficiency of each cluster. For Jupiter, the cluster used to train all
models but the 13B, we assume a carbon intensity of 0.332 kg CO2 emitted per kWh, a power usage
effectiveness (PUE) of 1.2, and a total water usage effectiveness (WUE) of 1.29 liters per kWh. For
Augusta, the cluster used to train the 13B, we assume a carbon intensity of 0.351 kg CO2 emitted
per kWh, a PUE of 1.12, and a total WUE of 3.1 liters per kWh.

9
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/

ShareGPT_V3_unfiltered_cleaned_split.json,anon8231489123/ShareGPT_Vicuna_unfiltered

5
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Table 1: We developed our models in five groups, based on parameter count and architecture: less than 1
billion, 1 billion, 7 billion, and 13 billion parameters, and our mixture-of-experts model with 1 billion active
and 7 billion total parameters. We found that ∼70% of our developmental environmental impact came from
developing the 7B and 13B models, and the total impact was emissions equivalent to 2.1 tanker trucks’ worth
of gasoline, and equal to about 7 and a half years of water used by the average person in the United States.

GPU
Hours

Total
MWh # Runs

Carbon
Emissions
(tCO2eq)

Equivalent to...
(energy usage,
1 home, U.S.)

Water
Consumption

(kL)

Equivalent to...
(water usage,

1 person)

<1B 29k 19 20 6 1 yr, 4 mo 24 3 mo
7B 269k 196 375 65 13 yrs, 6 mo 252 2 yrs, 7 mo
13B 191k 116 156 46 9 yrs, 7 mo 402 3 yrs, 7 mo
MoE 27k 19 35 6 1 yr, 4 mo 24 3 mo

Total 680k 459 813 159 33 yrs, 1 mo 843 7 yrs, 5 mo

Hardware manufacturing NVIDIA does not release the embodied carbon emissions or water
consumption about the hardware it produces, so we assume the same embodied carbon emissions
as Luccioni et al. (2023), or 3700 kg of CO2eq per 8x server node, equal 463 kg per GPU. There
is little public information on how much water is required to produce a single GPU, though chip
manufacturing facilities require millions of liters per day.10 Some estimates11 place TSMC water
usage at 12.33 liters per square centimeter of hardware, which equals 100.4 liters per H100, which
we use for our analysis.

We additionally estimate the environmental impact from mining rare earth metals used during man-
ufacturing, assuming an H100 is 0.1% rare earth metal by mass. Mining 1 kg of rare earth materials
consumes about 11 kL of water and releases 65.4 kg CO2eq (Browning et al., 2016), and one 12-
inch silicon wafer weighs 125 grams12 and produces about 63 H100s.13 14 Together, these add an
additional 2.2 liters consumed and 0.013 kg CO2eq per GPU.

Internally, we assume a 4 year lifespan for our GPUs, which leads to an embodied emissions of
0.013 kg of CO2eq and 0.003 liters of water consumed per GPU hour when the estimated embodied
impacts is amortized over the assumed lifetime of the GPU. We used 1.65 million GPU hours in
total, leading to a total of 22 tCO2eq emitted and 4.8 kL of water consumed during manufacturing.

Development Before launching our final training runs for each model, we ran a series of controlled
experiments to stabilize and improve our training setup, to explore different parameter initializations
and mid-training recipes, and to determine our final hyperparameters and data mixtures through
scaling law experiments (Bhagia et al., 2024). We ran these in five distinct groups: small models
with less than 1 billion parameters, 1 billion parameter models, 7 billion parameter models, 13
billion parameter models, and our mixture-of-experts model. We report detailed development costs
for each group in Table 1.

Unsurprisingly, we find that the majority of development costs (∼70%) were incurred at the 7 and
13 billion parameter scale, due to both the relative size of the model and our own prioritization, and
we see this both in the total environmental impact and the number of individual runs per category.
Using our data center’s efficiency factors, we find that our development runs led to 159 tCO2eq
emitted and 843 kL of water consumed.

Final training runs Finally, we fully trained our series of models, ranging from 20 million to
13 billion active parameters, with detailed information provided in Table 2. As we saw during
development, the majority of the cost incurred came from training our 7B and 13B models, which
we trained to 2 to 5 trillion tokens. We also see that the 1B dense model required about as much
energy per trillion tokens as the MoE model with 1B active parameters, though the MoE model was
slightly less efficient, most likely due to the extra compute required for routing tokens. In summary,
we find that our training runs led to 312 tCO2eq emitted and 1,921 kL of water consumed.

10
https://www.azcentral.com/story/opinion/op-ed/joannaallhands/2024/06/12/

tsmc-arizona-water-use-recycling/74059522007/
11
https://www.semiconductor-digest.com/water-supply-challenges-for-the-semiconductor-industry/

12
https://web.archive.org/web/20131207002716/http://wafercare.com/Page.aspx?id=1012

13
https://anysilicon.com/die-per-wafer-formula-free-calculators/

14
https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
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Table 2: We list the estimated power usage, carbon emissions, and water consumption from training our
dense transformers, ranging from 20 million to 13 billion parameters, trained on 1.7 to 5.6 trillion tokens, and
a mixture-of-experts model with 1 billion active and 7 billion total parameters, trained to 5 trillion tokens. We
find that the environmental impact is quite high, even for our relatively small models. Training our series of
models emitted equivalent carbon to over 65 years of electricity use by the average household in the U.S., and
consumed equivalent water to the average person in the U.S. for about 17 years.
* One of the original OLMo 7B models was trained on LUMI, which runs entirely on hydroelectric power. See
Groeneveld et al. (2024) for more information.
† denotes unreleased models that were trained for various internal experiments.

Power
Usage
(MWh)

Carbon
Emissions
(tCO2eq)

Equiv. to...
(energy usage,
1 home, U.S.)

Water
Consumption

(kL)

Equiv. to...
(water usage,

1 person, U.S.)

Gemma 2B & 9B - 131 25 yrs, 11 mo - -
Llama 2 7B 81 31 6 yrs, 1 mo - -
Llama 2 13B 162 62 12 yrs, 2 mo - -
Llama 3.1 8B - 420 83 years - -
Llama 3.2 1B - 107 14 years - -

OLMo 20M† 0.8 0.3 3 weeks 1 3 days
OLMo 60M† 1.2 0.4 1 month 1.6 5 days
OLMo 150M† 2.4 1 2 mo, 1 wk 3.6 12 days
OLMo 300M† 5 2 5 months 5.9 19 days
OLMo 700M† 8 3 7 months 10 33 days
OLMo 7B† 67 22 4 yrs, 4 mo 87 9 months
OLMo 1B (3T) 30 10 2 years 39 4 months
OLMo 7B 149 0* - 0* -
OLMo 7B (Twin) 114 70 13 yrs, 10 mo 487 4 yrs, 4 mo
OLMo (04|07)24 7B 95 32 6 yrs, 4 mo 122 1 yr, 1 mo
OLMo 2 7B 157 52 10 yrs, 4 mo 202 1 yr, 9 mo
OLMo 2 13B 230 101 21 years 892 7 yrs, 10 mo
OLMoE 0924 54 18 3 yrs, 7 mo 70 7 months

Total (Ours) 913 312 65 years 1,921 17 yrs, 1 mo

Putting it in perspective In total, our series of models led to at least 493 tCO2eq emitted. Using
the U.S. Environmental Protection Agency’s Greenhouse Gas Equivalencies Calculator15, this is
equivalent to 6.5 tanker trucks’ worth of gasoline burned, emissions from the average yearly energy
use for 98.2 homes in the U.S., or the amount of carbon sequestered by 472 acres of U.S. forests in
one year. We additionally estimate we consumed at least 2,769 kL of water, which is equivalent to
about 24 and a half years of water consumption by the average person in the U.S.16

Other Costs In this work, we strive to provide a thorough accounting of the total cost of develop-
ing our models. However, there remain a number of sources of emissions and water consumption
that are difficult, if not impossible to comprehensively measure without access to proprietary in-
formation across a range of industries, such as transportation and end of life hardware disposal.
While the costs we report above represent a large portion of the total development process, more
transparency is needed to understand the full impact of model training.

4.2 SIMULATING DEPLOYMENT & INFERENCE

We report simulated inference costs; that is, we explore the question of what our models’ impact
might be if they were put into production. In contrast to §4.1, where we reported the actual im-
pact from our actions, this section reports partial estimates of Scope 3 carbon emissions and water
consumption: the impact from the downstream actions of others using our models. We include
comparisons with recent instruction-tuned models as well.

In Table 3, we display 1) power and energy costs, 2) carbon and water consumption, and 3) the
time to complete 100 requests. We additionally report “breakeven” points, that is the number of

15
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

16
https://www.epa.gov/watersense/statistics-and-facts
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https://www.epa.gov/watersense/statistics-and-facts
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Table 3: Measurements and estimates of resource costs from SGLang benchmarking on 2400 prompts from
ShareGPT at varying request rates. Since the models were served on machines from the same cluster that
our OLMo 2 models were trained on, we use the same WUE and PUE coefficients of 1.29 L / kWh and 1.2
respectively, and carbon intensity of 0.332 kg CO2e / kWh. Note the difference in units for energy consumption
and carbon emissions, namely MWh → kWh, tons → grams CO2eq, and kL → L. The measurements reported
in this table account for the GPU processes associated with active inference, but not CPU or RAM associated
with e.g. server overhead. Thus, these numbers can be considered as lower bounds on usage in similar settings.
Also of note is the relatively small variability in carbon emissions and water consumption across different model
sizes in cases where batches are not saturated, despite faster inference in smaller models when fully saturated;
greater peak efficiency does not guarantee efficient deployment if inference is not optimized. We do not report
”break-even” points for Qwen 2.5 because its training costs are not public.

Model
Request
freq.
(req / s)

GPU
Power
Usage
(kWh)

Carbon
Emissions
(g CO2eq)

Water
consump.

(L)

Seconds
per 100 req.

# Inf. for
CO2 equiv.
w/ training

Llama 3.2 1B ∞ 0.003 1.0 0.004 1.38 258 bil.
8 0.036 12.0 0.054 12.64 21.5 bil.
1 0.160 53.1 0.238 100.58 4.83 bil.

Qwen 2.5 7B ∞ 0.009 3.0 0.013 1.79 —
8 0.053 17.6 0.079 12.77 —
1 0.308 102.3 0.459 100.58 —

Llama 3.1 8B ∞ 0.011 3.7 0.016 2.13 276 bil.
8 0.051 16.9 0.076 12.79 59.5 bil.
1 0.333 110.6 0.496 100.64 9.12 bil.

Llama 2 13B ∞ 0.034 11.3 0.051 6.53 13.3 bil.
8 0.060 19.9 0.089 13.09 7.52 bil.
1 0.401 133.1 0.597 100.73 1.13 bil.

OLMo 1 1B (3T) ∞ 0.004 1.3 0.006 0.99 18.2 bil.
8 0.038 12.6 0.057 12.63 1.91 bil.
1 0.165 54.8 0.246 100.58 441 mil.

OLMo 2 7B ∞ 0.018 6.0 0.027 3.68 20.9 bil.
8 0.049 16.3 0.073 12.88 7.68 bil.
1 0.358 118.9 0.533 100.54 1.05 bil.

OLMo 2 13B ∞ 0.033 11.0 0.049 6.60 22.1 bil.
8 0.057 18.9 0.085 13.05 12.8 bil.
1 0.386 128.2 0.575 100.57 1.89 bil.

OLMoE 0924 ∞ 0.006 2.0 0.009 1.70 21.7 bil.
8 0.037 12.3 0.055 12.82 3.51 bil.
1 0.151 50.1 0.225 100.60 861 mil.

inferences in each scenario required for inference costs to be equal or greater to training costs. See
Table 4 in Appendix A.1 for additional results.

We find that for most models tested, the number of inferences required to outweigh training costs
is in the hundreds of millions to tens of billions, except for the most over-trained models. As many
of these models were created to be efficient in deployment-focused scenarios – such as on edge
devices, or in popular online products – it is important to consider inference costs in addition to
training costs. The largest model providers are producing up to hundreds of billions of tokens per
day,17 highlighting that deployed models can quickly reach this tipping point.

4.3 POWER FLUCTUATIONS DURING TRAINING

One problem caused by training AI models at large scales is that the power demand starts and stops
suddenly (Dubey et al., 2024), which power grids can struggle to handle. When demand sharply
rises, generation sources that can be quickly started and stopped – generally powered by fossil fuels,
such as coal and natural gas – must be brought online quickly, increasing the marginal carbon inten-
sity of the grid and potentially negatively impacting other consumers in cases where demand rises
more quickly than generation can handle. When demand sharply drops, excess power is discarded–
by grounding the power or venting steam–until generation sources can spin down. Power grids
can generally manage some large variations (for example, when communities experience a sudden

17
https://x.com/sama/status/1756089361609981993
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power outage), but as we add more variability to the system, it becomes more difficult to maintain
this delicate balance, and infrastructure is not set up to handle frequent, large fluctuations.

In Figure 2, we show a snapshot of our model’s GPU power consumption during pre-training. We
find that power consumption is not consistent – instead, power is consistent while the model is train-
ing, but drops quickly while saving checkpoints. Though our models are relatively small, and we
have since improved checkpointing performance, other model developers have experienced similar
issues caused by checkpointing and synchronization between nodes (Dubey et al., 2024).

5 DISCUSSION

5.1 MORE TRANSPARENCY IS (STILL) NEEDED

While many model developers–including some of the largest for-profit entities operating in this
space–make best efforts to report at least part of the cost of building their AI systems (Dubey et al.,
2024; Gemma Team et al., 2024), more transparency is still needed throughout the development
pipeline. The EU AI Act,18 and some proposed legislation, such as the Artificial Intelligence Envi-
ronmental Impacts Act19 in the United States, would start the process for defining voluntary environ-
mental impact reporting standards for model developers, but until such standards are widespread in
the community, improved transparency can only come through voluntary efforts by companies and
research organizations. Policy action is needed to ensure there is public visibility into environmental
impacts across the entire supply chain, from hardware manufacturing, data center construction, and
energy production, all the way through to model deployment and inference.

Embodied emissions are still an enigma Though a vital piece of all model development
pipelines, the environmental impact of manufacturing the GPUs used is essentially unknown. In
previous work, Wu et al. (2022) and Luccioni et al. (2023) highlighted the fact that researchers
focused on AI’s environmental impact are forced to use unreliable estimates of the cost of manufac-
turing state-of-the-art computational hardware, and the situation is no better now, nearly two years
later. Many companies that manufacture other pieces of data center hardware disclose estimates of
the lifetime environmental impact,20 and until GPU manufacturers release similar information–on a
voluntary or compulsory basis–this will not improve.

Development costs are substantial, and unreported As reported in Section 4.1, we present de-
tailed information on the cost of developing our training pipeline, in contrast with previous work.
We found that development costs–associated with failed runs, hyperparameter searches, testing ar-
chitecture changes, and more–are responsible for a substantial portion of the total environmental
impact of creating our systems, highlighting a need for more transparency from developers. This
is especially important in light of AutoML tools, where many models may be automatically trained
while searching for a solution, and scaling law experiments, where smaller models are trained to
predict the performance of larger models, and then discarded (Li et al., 2024; Bhagia et al., 2024).

Water costs are real, and under-explored While under-explored in previous work, AI’s growing
water consumption is beginning to receive more and more attention21 (Li et al., 2023), though not
as much as it may deserve. As shown in Section 4.1, even training a series of comparatively small
models uses a large amount of water, the amount of which is also drastically impacted by both
the cooling systems used in data centers as well as the power generation methods used. Without
more transparency from developers on when, where, and how they are training their models, it will
continue to be difficult to quantify the scale of the issue, stymieing efforts to address it.

5.2 SMALL CHOICES DURING TRAINING CAN HAVE LARGE IMPACTS

While many issues relating to transparency require action from corporations and large research
groups, choices made during training have a large effect downstream.

18
https://artificialintelligenceact.eu/article/95/

19
https://www.markey.senate.gov/imo/media/doc/artificial_intelligence_environmental_impacts_

act_of_2024_-_020124pdf.pdf
20
https://www.hpe.com/psnow/doc/a50005151enw

21
https://www.washingtonpost.com/technology/2024/09/18/energy-ai-use-electricity-water-data-centers/
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Figure 2: Average GPU power for a single node for
the first 300 logging steps during OLMo 2 7B train-
ing. The first spike is the beginning of training, and
each drop happens when a model checkpoint is saved.
When actively training, the average GPU power is over
600W, over 85% of an H100’s maximum power draw
of 700W, and during checkpointing, power usage drops
to just over 100W, or about 15% maximum.

Smaller models are cheaper to train and use,
but at what cost? Until recently, to achieve
high model performance, a large model was
needed. Compute-optimal scaling laws for neu-
ral network training (Hoffmann et al., 2022;
Kaplan et al., 2020) imply that it is more ef-
ficient to put more data into a larger model,
because of diminishing returns from “over-
training” a small model. This meant that mod-
els were expensive to both train and deploy,
limiting how widespread they could become,
and how financially feasible they were to be
used in a variety of scenarios.

Recently, however, continuing to train models
on more and more tokens beyond the “compute-
optimal” limit22 has been extremely successful
in making “deployment-optimized” models that
can be substantially cheaper to perform infer-
ence with. This has led to an explosion in both
training cost for small models, and total infer-
ence compute cost, as API-based models be-
come cheaper to use2324 and small models are deployed on-device (Gunter et al., 2024; Abdin et al.,
2024). This may be an instance of Jevons’ Paradox (Jevons, 1865): when a resource’s efficiency in-
creases, overall consumption of that resource tends to increase, rather than decrease. In other words,
as the cost of training models decreases, the downstream impact may continue to grow.

This is especially clear in context of our results in Section 4.2, showing that though the raw num-
ber of inferences required to outweigh training is objectively quite large, smaller models are being
deployed in many new scenarios that will drastically increase their total usage. Many inference use
cases are also not able to be batched (e.g. generating text on a phone for immediate use), meaning
that deployers cannot schedule these requests to take advantage of cheaper or cleaner energy, and
must make use of immediately available power. Given that this trend will most likely only accelerate,
it is vital that we improve transparency into the total cost of deployment in all scenarios.

Power fluctuations reveal inefficiencies at best, challenges to power grid control at worst
While it is known that the dramatic spike in power consumption at the beginning of training and the
subsequent drop at the end are problematic for power grid operators at large scales, little has been
discussed publicly about how power consumption changes throughout training. We found that our
models, using an optimized code base and publicly available tooling, sees rapid power fluctuations
throughout training caused by the commonplace practice of frequently saving model checkpoints.
This means that without careful engineering, one training run can cause thousands of rapid power
fluctuations, which poses an immediate challenge for large-scale LLM training in data centers, which
typically source energy directly from power providers. Generated power needs to go somewhere,
and rapid, large drops in consumption during training breaks common assumptions about data center
supply and demand, leading to significant control challenges in power systems. While some frame-
works have begun to implement workarounds to manage this issue,25 more awareness is needed on
the part of researchers and engineers as training runs scale to tens of thousands of GPUs26 or more,
as even some of the largest model developers encounter difficulties from regularly shifting power
demand throughout training due to checkpointing, awaiting collective communications, and other
unforeseen and potentially catastrophic failures (Dubey et al., 2024). We emphasize that address-
ing this will require more comprehensive solutions such as parallelized checkpointing, improved
demand response in data centers running large AI workloads, and new, heterogeneous methods for
distributed training spanning software, hardware, and scheduling.

22e.g. scaling from 1 to 2 to 15T tokens for Llama 1, 2, and 3 (Touvron et al., 2023a;b; Dubey et al., 2024)
23
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/

24
https://developers.googleblog.com/en/gemini-15-flash-updates-google-ai-studio-gemini-api/

25E.g. the new PYTORCH NO POWERPLANT BLOWUP environment variable in PyTorch.
26
https://time.com/7021709/elon-musk-xai-grok-memphis/
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A APPENDIX

A.1 ADDITIONAL INFERENCE SIMULATION DETAILS

We benchmark models using the ShareGPT dataset, assuming an online inference chat setting. In
practice, with much longer inference examples, OLMo models may have an “unfair” advantage in
that they were generally trained with context lengths shorter than the other models we benchmark.
However, we do not believe that to be a significant factor in our results. In fact, we observe that
Llama 3.1 8B is actually measured to be faster and less energy intensive than OLMo 7b models,
likely due to the use of grouped-query attention (GQA; Ainslie et al. (2023)) in Llama 8b, vs not in
OLMo models.

We report additional inference simulation results on a larger set of models in Table 4,

A.2 LIMITATIONS

Our main limitations are discussed throughout the main body of this work – in particular, we make
various assumptions about embodied impacts due to lack of real data, and our inference and deploy-
ment numbers were benchmarked in a controlled, limited setting, as we do not in reality serve our
models in the same sense, and we do not have access to data about most other models’ real usage.

We present only a limited set of inference simulations following a number of simplistic assump-
tions. Specifically, we simulate only settings where a deployed model is ingesting input tokens and
generating output tokens following default parameters defined in SGLang (Zheng et al., 2024) – as
opposed to, for instance, evaluating only the likelihood of a given text. Additionally, we note that
practitioners frequently employ different inference-time optimizations such as quantization; perform
generation with different decoding algorithms; and/or deploy to and run inference on edge devices,
sometimes even without GPUs. We do not account for this variety of scenarios in our experiments.

We observe linear trends in training costs relative to parameter count across four orders of magnitude
and eight model sizes. However, we do not necessarily expect that this trend would hold tightly
in all training settings across all possible scales – for instance, decentralized training or training
across multiple datacenters might be expected to incur significantly greater communication overhead
throughout training. Though we have not trained these models ourselves, our hope is that our work
will encourage others working in a broad range of settings to provide their own holistic reports of
environmental resource consumption.
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Table 4: Full version of Table 3 in §4.2. Measurements and estimates of resource costs from SGLang
benchmarking on 2400 prompts from ShareGPT at varying request rates. The models were served
on machines from the same cluster that our models were trained on, so we use the same WUE and
PUE coefficients of 1.49 L / kWh and 1.2 respectively, and carbon intensity of 0.332 kg CO2e /
kWh. The measurements reported in this table account for the GPU processes associated with active
inference, but not CPU or RAM associated with e.g. server overhead. Thus, these numbers can be
considered as lower bounds on usage in similar settings. We do not report “break-even” points for
Qwen models since the training costs are not public.

Request
freq.
(req / s)

GPU
Power
Usage
(kWh)

Carbon
Emissions
(g CO2eq)

Water
consump.

(L)

Seconds
per 100 req.

# Inf. for
CO2 equiv.
w/ training

Llama 3.2 1B ∞ 0.003 1.0 0.004 1.38 258 bil.
8 0.036 12.0 0.054 12.64 21.5 bil.
1 0.16 53.1 0.238 100.58 4.83 bil.

Llama 2 7B ∞ 0.019 6.3 0.028 3.58 11.9 bil.
8 0.054 17.9 0.08 12.83 4.18 bil.
1 0.349 115.9 0.52 100.62 647 mil.

Llama 3 8B ∞ 0.01 3.3 0.015 1.93 282 bil.
8 0.052 17.3 0.077 12.78 54.2 bil.
1 0.337 111.9 0.502 100.63 8.37 bil.

Llama 3.1 8B ∞ 0.011 3.7 0.016 2.13 276 bil.
8 0.051 16.9 0.076 12.79 59.5 bil.
1 0.333 110.6 0.496 100.64 9.12 bil.

Llama 2 13B ∞ 0.034 11.3 0.051 6.53 13.3 bil.
8 0.06 19.9 0.089 13.09 7.52 bil.
1 0.401 133.1 0.597 100.73 1.13 bil.

Qwen 2.5 1.5B ∞ 0.003 1.0 0.004 0.86 –
8 0.033 11.0 0.049 12.65 –
1 0.163 54.1 0.243 100.57 –

Qwen 2.5 7B ∞ 0.009 3.0 0.013 1.79 –
8 0.053 17.6 0.079 12.77 –
1 0.308 102.3 0.459 100.58 –

Qwen 2.5 14B ∞ 0.018 6.0 0.027 3.45 –
8 0.058 19.3 0.086 13.02 –
1 0.387 128.5 0.577 100.64 –

Qwen 1.5 MoE ∞ 0.01 3.3 0.015 2.64 –
(2.7BA, 14BT) 8 0.043 14.3 0.064 13.11 –

1 0.165 54.8 0.246 100.68 –

OLMo 1 1B ∞ 0.004 1.3 0.006 0.99 18.2 bil.
8 0.038 12.6 0.057 12.63 1.91 bil.
1 0.165 54.8 0.246 100.58 441 mil.

OLMo 0724 7B ∞ 0.017 5.6 0.025 3.33 29.8 bil.
8 0.052 17.3 0.077 12.77 9.73 bil.
1 0.339 112.5 0.505 100.59 1.49 bil.

OLMo 2 7B ∞ 0.018 6.0 0.027 3.68 20.9 bil.
8 0.049 16.3 0.073 12.88 7.68 bil.
1 0.358 118.9 0.533 100.54 1.05 bil.

OLMo 2 13B ∞ 0.033 11.0 0.049 6.6 22.1 bil.
8 0.057 18.9 0.085 13.05 12.8 bil.
1 0.386 128.2 0.575 100.57 1.89 bil.

OLMoE 0924 ∞ 0.006 2.0 0.009 1.7 21.7 bil.
(1BA, 7BT) 8 0.037 12.3 0.055 12.82 3.51 bil.

1 0.151 50.1 0.225 100.6 861 mil.
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