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1 ADDITIONAL EXPERIMENTS
1.1 Registration Accuracy
The key module of DeepPointMap2 is its odometry model i.e., DPM
Encoder and DPMDecoder. To directly investigate the performance
of these two learning-based modules, additional experiments are
conducted. We evaluate the point cloud registration of our methods
on the KITTI Odometry benchmark and the KITTI-360 benchmark.
We randomly sample approx. 8000 and 19000 frame-pairs within the
distance of 20m from KITTI Odometry benchmark and KITTI-360
datasets, respectively.
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Figure 1: Registration Accuracy and Success Rate. Each dot
represents a sampled pair, and the color indicates the regis-
tration error (green is better). The success rate (%) maintains
above 97% even at the ground-truth distances of up to 20m
or rotation of 180◦.

Fig. 1 shows the registration translation (left) and rotation (right)
accuracy w.r.t.distance and rotation between frame-pair on both
evaluation datasets. For both figures, the x-axis represents the
ground-truth distance, the y-axis represents the ground-truth rota-
tion difference between frames, and each point indicates a sampled
pair. The metrics, i.e., Translation Error (in m) and Rotation error
(in ◦), are color-coded (green is better). Adopting the Registration
Recall metric from Qin et al. [4], we define a success criterion as a
Translation Error within 2m and a Rotation Error within 5◦. Failed
samples are marked in red. Despite performance decline with in-
creased distance or rotation, our method achieves high success rates
within 20m.

For better visualization, we also calculate the average success-
rate under each bin, as indicated beside both axes (blue lines). We
can observe that the success rate stays almost 100% for the distance
from 0m to 20m. When the initial distance increased, the success
rate slightly decreased as the overlap between the point cloud pairs
became smaller, but still remained above 97%.

It is easy to notice that the scatters are not distributed uniformly
and most of the samples are likely to be placed at rotation differ-
ence of 0◦, 90◦ and 180◦. This is due to the fact that straights (0◦),

turns (90◦) and turnbacks (180◦) are very common in the roadway
environment. Of these scenarios, the turns scenario had the lowest
success rate, which could be due to two reasons (1) at the intersec-
tion, the geometric information of the road in all four directions is
relatively similar, resulting in the model incorrectly recognize the
point cloud with a 90-degree deviation, (2) at the intersection, the
front camera results in the non-overlapping of the frontal image
information captured by the vehicle, which makes the model rely
on the geometric information only for the registration, and (3) the
overlap-rate of the point cloud at the intersection is limited. Mean-
while, as the ground-truth distance rises, the overlap between the
two frames gradually decreases, making it difficult for the model to
be accurately aligned based on a small amount of overlap.

1.2 Loop Detection Accuracy
To ensure global consistency in map reconstruction, loop detection
is essential. This experiment evaluates the loop detection capabili-
ties of our proposed model.
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Figure 2: Loop Detection Accuracy. ROC curve (left) and
Precision-Recall curve (right).

Similar to the experiment above, we evaluate the loop detec-
tion performance on both the KITTI Odometry benchmark and the
KITTI-360 benchmark. We randomly sample approx. 8000+19000
frame-pairs, half of them are with a distance less than 20m while
others are greater than 20m. The Precision-Recall (left) and ROC
(right) curves in Figure Fig. 2 demonstrate our method’s effective-
ness, achieving an AUC score of 0.993.

1.3 Reference Point Number vs. Performance
Weextend our analysis to examine the performance ofDeepPointMap2
across varying numbers of reference-points, building on the supe-
riority of the Farthest-Point Sampling (FPS) strategy established in
Sec. 5.4 in the manuscript. This experiment focuses on the runtime
consumption in relation to the reference-point numbers.

As detailed in Tab. 1, the runtime remains consistent for a low
count of reference-points (<256). However, with an increase in
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Table 1: Run-time Performance vs. Reference-Point Number.

#Points Speed GPU RAM

128 0.1564 s 1.1504GiB 4.5964GiB
256 0.1569 s 1.1590GiB 4.6892GiB
512 0.1559 s 1.5011GiB 4.9930GiB
1024 0.1627 s 2.6852GiB 4.6790GiB
2048 0.1850 s 6.6047GiB 4.7693GiB
4096 0.3257 s 11.4332GiB 4.8450GiB
8192 - >24GiB -

reference-points, the DPMDecoder’s cross-attentionmodule, which
introduces a quadratic space complexity of O(𝑛2), leads to a sub-
stantial rise in GPU memory usage. At 8192 reference-points, the
model’s requirements exceed the available GPUmemory on a single
NVIDIA RTX 3090.

2 MODEL DETAILS
2.1 DPM Encoder
DPM Encoder consists of three main parts: (1) LiDAR backbone,
(2) Image backbone and (3) Visual-Point Fusion Module.
LiDAR Backbone.We utilize a modified PointNeXt [3] network
as the LiDAR backbone. The model detailed structure is shown in
Tab. 2.

Table 2: LiDAR Backbone Configuration.

Stage #Point Query Radius Channel

MLP 16k - - 16

SA 16k ball r=0.02 32
r=0.04 32

SA 4096 ball r=0.04 64
r=0.08 64

SA 1024 ball r=0.08 128
r=0.16 (×4) 128

SA 256 ball r=0.16 256
r=0.32 256

SA 64 ball r=0.16 512
r=0.32 512

FP 16 knn k=3 256
FP 64 knn k=3 128
FP 256 knn k=3 128

Before feeding into the point cloud backbone, we apply the pre-
processing include: (1) Voxel Downsample: reducing the original
scan using a grid size of 0.3m, (2) Padding/Randomly Sampling:
limiting (or padding) the point cloud size to 16,384, (3) Distance Clip:
removing points beyond 60m or closer than 1m, (4) Normalization:
scaling all point coordinates by a factor of 60m to a range of 0 to
1.0.

Image Backbone. As for the image backbone, we directly use
ConvNeXt [2] with the ‘tiny’ configuration, pre-trained on IMA-
GENET1K. An FPN [1] is subsequently applied to aggregate multi-
scale image feature tokens.

Before feeding into the image backbone, we apply the pre-processing
as follows:(1) Color Normalization: normalizing the image with
mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225),
(2) Resize: resizing the input image to the required size (224×768
for KITTI and KITTI-360, 384×512 for KITTI-Carla).
Visual-Point Fusion Module. We introduce a novel Visual-Point
Fusion Module designed to integrate multi-scale feature tokens. As
depicted in Fig. 3, the module employs a Multi-Modal Transformer
(MMT) block for each scale to synthesize the tokens from different
modalities. Each MMT block is composed of a Self Attention mod-
ule, a Biased Attention module, and a Feed-Forward Network (FFN).
The Ref-Points R, serving as Querys, are initially processed by the
Self Attention module to refine their features. Subsequently, the
Query, Key, and Value are directed into the Biased Attention mod-
ule, where multi-modal tokens (Key and Value) are exchanged and
consolidated with the Ref-Points (Query). The resultant aggregated
features are then further enhanced by the FFN, which is essentially
an MLP with residual connections.

2.2 DPM Decoder
Following DeepPointMap [6], the DPMDecoder contains four parts:
(a) Descriptor-wise Transformer, (b) Similarity Head, (c) Offset Head
and (d) Overlap Head, as demostrate in Fig. 4.
Descriptor-wise Transformer. The network architecture is de-
tailed in Fig. 4 (a). Adopting the approach from Yew and Lee [5],
we implement three symmetric Transformer Decoder Layers to
facilitate information exchange between descriptors R𝑡1 and R𝑡2 .
Each layer sequentially integrates self-attention, cross-attention,
and an FFN.We apply sinusoidal positional encoding to all attention
modules.
Similarity Head. The similarity head aims to find the correlation
between two descriptors. As shown in Fig. 4 (b), after an MLP,
the correspondence matrix 𝑆 is calculated (denoted as ⊙) using
pair-wise cosine similarity by:

𝑆𝑖 𝑗 = MLP
(
𝑟 feat𝑖

)
⊙ MLP

(
𝑟 feat𝑗

)
, 𝑟𝑖 ∈ R𝑡1 , 𝑟 𝑗 ∈ R𝑡2 (1)

After that, the correspondence 𝜎 is subsequently selected based on
matrix 𝑆 .
Offset Head. As discussed in the sec. 3.3 in the manuscript, even
if the correspondence 𝜎 is perfect, the sparsity of descriptors may
still lead to inaccuracy registration. To tackle this problem, the
offset head (Fig. 4 (c)) is introduced to predict the offset 𝛿𝑖 𝑗 between
descriptor pairs such that:

𝑅1
(
𝑟
xyz
𝑖

+ 𝛿𝑖 𝑗
)
+ 𝑡1 = 𝑅2

(
𝑟
xyz
𝑗

)
+ 𝑡2 , (𝑟𝑖 , 𝑟 𝑗 ) ∈ 𝜎 (2)

Here, 𝑅1, 𝑡1 and 𝑅2, 𝑡2 represent the ground truth poses of frames 𝑡1
and 𝑡2, respectively. To achieve this, the offset first concatenates the
feature of the descriptor pair, and then utilizes an MLP to predict
such offset by:

𝛿𝑖 𝑗 = MLP
(
𝑟 feat𝑖 |𝑟xyz

𝑗

)
, (𝑟𝑖 , 𝑟 𝑗 ) ∈ 𝜎 (3)
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Figure 3: The Details of Visual-Point Fusion Module.

The concatenation operator “|” is used to combine features.
Overlap Head. Finally, to achieve robust and fast loop detection,
the overlapping head (Fig. 4 (d)) firstly utilizes global average pool-
ing on the descriptors to get frame-wise descriptor R′

𝑡1
,R′

𝑡2
, and

then use an MLP with residual connect to predict the loop proba-
bility between these two frames by:

𝑝o = MLP
(
R′
𝑡1 |R

′
𝑡2

)
(4)

2.3 Mapping

Pose-Graph. Our reconstructed map is maintained using a pose-
graph structure, defined as𝐺 = ⟨𝑉 , 𝐸⟩, where𝑉 represents keyframes
and 𝐸 encodes the inter-frame positional relations. Each vertex
𝑣𝑖 ∈ 𝑉 contains a descriptor and its 6-DOF pose, while each edge
𝑒𝑖 𝑗 ∈ 𝐸 holds the relative transformation matrix and confidence
value.

Keyframe selection is based on frame-wise distance measure-
ments. For a new frame 𝑣𝑖 , the nearest keyframe 𝑣 𝑗 is retrieved,
and frame-to-frame odometry estimates the pose. If the distance
between 𝑣𝑖 and 𝑣 𝑗 surpasses a dynamic threshold, 𝑣𝑖 is assigned
as a keyframe. To refine the pose estimation, a frame-to-map reg-
istration is conducted, and the updated frame 𝑣𝑖 and edge 𝑒𝑖 𝑗 are
integrated into the pose-graph.

The loop detection, as a crucial task for map consistency, is
performed solely on keyframes. Upon inserting a new keyframe
𝑣𝑖 , the system identifies all candidate keyframes 𝑉candidate within a
distance threshold 𝜀l. The Overlap Head then predicts the pairwise
loop probability 𝑝ij among them. Exceeding a probability threshold
𝜀p triggers the insertion of edge 𝑣𝑖 𝑗 and initiates a map-to-map
registration for refined pose estimation. Subsequently, a global
optimization procedure is executed.
Global Optimization. Global optimization is conducted using the
standard PoseGraph Optimization with the Levenberg-Marquardt
algorithm from the Open3D library [7] following the confirmation
of loop detection.

2.4 Training
As described in Sec. 2.3, our method requires frame-to-frame, frame-
to-map, and map-to-map registration abilities. To achieve this, we
use the curriculum learning method to train our model. In Phase
One, the training procedure can be described as follows:

(1) Randomly generate a number 𝑆 ∈ [2, 𝐾];
(2) Select 𝑆 − 1 additional scans within 20𝑚 with respect to the

current training scan;
(3) Process these scans using DPM Encoder and obtain 𝑆 de-

scriptor clouds individually;
(4) These descriptor clouds are randomly divided into two groups

with sizes 𝑆1 and 𝑆−𝑆1, andmerge into 2map-level descriptor
clouds by concatenating the descriptor clouds;

(5) The 2 merged descriptor clouds are processed by DPM De-
coder;

(6) Apply Losses. Update weights.

We start with a smaller 𝐾 to learn scan-level odometer, and grad-
ually increase 𝐾 over epochs to learn map-level localization. By
employing this curriculum learning strategy, DeepPointMap2 learns
progressively and adapts to multi-scale registrations, leading to
improved performance and robustness in SLAM tasks.

In the second stage, the training procedure is described as fol-
lows:

(1) Randomly select a scan;
(2) Select another scan inside / outside the distance of 20m from

the first scan, with equal probability;
(3) Extract the corresponding descriptors using DPM Encoder;
(4) Predict the Overlap Probability of these two scans;
(5) Apply Losses. Update weights.

In both training phases, we apply the following data augmenta-
tions:

(1) (LiDAR) Random Drop: randomly discarding points with a
probability of 0 to 0.5.

(2) (LiDAR) RandomOcclusion: Randomly generate some virtual
boxes with random size and position. Each box introduces
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Figure 4: The Details of DPM Decoder.

an occlusion effect by removing all points that pass through
it.

(3) (LiDAR) Random Rotation and Translation: applying a ran-
dom transformation to the point cloud.

(4) (LiDAR) Random Jitter: introducing random noise to each
point’s coordinates.

(5) (Image) Random Flip, Color Jitter.
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