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1. Dataset details
RealEstate10k. We download the videos from provided
links, resulting in above 65,000 videos, as well as the
provided camera pose trajectories. Using the provided
cameras, we run sparse point cloud reconstruction with
COLMAP [11]. We use the test split provided by MINE,
and following prior work we evaluate PSNR on novel frames
which are 5 and 10 frames ahead of the source frame. In
addition, we evaluate on a random frame sampled from an
interval of ±30 frames. We use the same frames as [8]
did for their evaluation. As a result, we evaluate on 3205
frames. We reproduced the results from [8] using their re-
leased checkpoint with the common protocol of cropping
5% of the image around the border, achieving scores similar
to those presented in the original paper. We confirmed with
authors of BTS [17] that this is the commonly used protocol.
We do our training and testing at 256× 384 resolution.

NYUv2. We form a benchmark that is similar in nature
to RealEstate10k in that it shows indoor scenes, but is vi-
sually radically different. We download 80 raw sequences
of NYUv2 [12] and run COLMAP [11] on them to recover
camera pose trajectories. On each video we sample 3 random
souce frames and use a random frame uniformly sampled
within ±30 frames from the source frame, mirroring the
protocol of RealEstate10k. We undistort images, and rescale
to 256× 384 resolution.

KITTI We evaluate on the Tulsiani test split [15] of the
KITTI [2] dataset. The cameras in the KITTI dataset are in
metric scale, our network works directly with the provided
cameras and scenes without additional preprocessing. For
evaluation, following prior work [8, 17] we crop the outer
5% of the images.

2. Baselines and competing methods
2.1. Depth unprojection

A crucial baseline in our experiments is measuring perfor-
mance of monocular depth prediction for monocular Novel

View Synthesis. In this baseline, we place isotropic 3D
Gaussians with fixed opacity without view-dependent ef-
fects (i.e. a point cloud with soft point boundaries) at the
depths predicted by the monocular depth predictor. We set
the Gaussian colours to be a scaled copy from the input view
so that cG = αcRGB and we initialise α = 1.0. We initialise
Gaussian opacity to be σ = sigmoid(σ0), with σ0 = 4.0,
i.e., almost opaque. We test two variants of setting the scale
of Gaussians: (1) one where Gaussians have a fixed scale
s = exp s0 with s0 = −4.5, and (2) one where the radius is
proportional to depth from camera, allowing the Gaussians to
fit inside the ray cast from the pixel: s = exp s0d/d0, where
d is metric depth output from UniDepth, d0 = 10.0 and
s0 = −4.5. Next, while we determined α = 1.0, s0 = −4.5
and σ0 = 4.0 to be reasonable initialisations, they might not
correspond to the highest quality of Novel View Synthesis.
Thus, we run gradient-based optimisation of the parameters
of this baseline, optimising α, s0, σ0 to minimise the photo-
metric loss in the source view and 3 novel views (identical
to our final model) on the training set. We train these models
for 5, 000 iterations and choose the one with the best perfor-
mance on validation split. Finally, we evaluate the model
with the best α, s0, σ0 on the test split and report the metrics.

2.2. Splatter Image

We implemented the Splatter Image baseline using the same
U-Net convolutional neural network with a ResNet-50 back-
bone as our own method for a fair comparison. We trained it
on two NVIDIA A6000 GPUs for a total of 350, 000 steps,
an order of magnitude more than our proposed Flash3D.
Training took 6GPU days, same as reported in [13].

2.3. MINE

MINE [8] only provided model weights but no inference and
evaluation code on RealEstate10K dataset, hence we re-run
the inference and evaluation for reproducibility. The results
match those reported in [8]. We use the N = 64 model
since that is the best one made available by the authors. For
evaluation on NYU we use the model trained on Re10k,
identically to our method.
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Figure 1. Analysis of Gaussian allocation. Gaussians from the first layer (red) are allocated in visible parts, from the second layer (green)
in occluded regions (top row, bottom right) and on windows (bottom left) and Gaussians from the padding region (blue) are revealed when
camera reveals regions that were not present in the frustrum of the input camera.

Table 1. Depth Unprojection Baseline. We fit hyperparameters of the depth unprojection model via gradient-based optimisation. We try
two variants: one with fixed-size Gaussians and one where the Gaussian scale is increased proportionally to depth. Top two rows are before
correcting depth-wise unprojection to be from pixel centers instead of pixel corners. All measured with croppint.

5 frames 10 frames random frame
Model Backbone PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Fixed size ConvNeXT-L 26.47 0.864 0.120 24.08 0.808 0.173 22.60 0.774 0.211
Fixed size ViT-L 26.62 0.867 0.120 24.25 0.814 0.172 22.78 0.781 0.209

Depth-dependent ConvNeXT-L 26.49 0.861 0.124 24.10 0.806 0.175 22.61 0.774 0.209
Depth-dependent ViT-L 26.65 0.864 0.123 24.29 0.812 0.173 22.80 0.781 0.207

2.4. Two-view methods

When comparing to two-view methods, we ought to choose
one of them as our source view. For any method, the most
indicative factor of performance on a target frame is the
baseline to the source frame. We run this comparison on
256× 256 without border-cropping for being comparable.

2.5. Probability distribution of Gaussian

An alternative approach to the multiple Gaussians is to pre-
dict depth probabilities as in pixelSplat [1]. However, with-
out the estimated depth from the pre-trained depth predictor,
the coverage speed is very slow, and the performance is
worse in our monocular setting. For a fair comparison, we
ablate only on other Gaussian layers, i.e. K > 1 of Gaus-
sians. The results are reported in Tab. 2. The continuous
depth offset outperforms the depth probabilities design in
pixelSplat.

2.6. Off-the-Shelf Depth Models

We also assess the effect of different monocular depth esti-
mation methods. We first evaluate the recent DepthAnthing
V2 [18, 19] model, which provides better details for depth
prediction. However, since their metric depth is either
trained only for indoor scenes (Hypersim) or outdoor scenes
(KITTI), we used the indoor checkpoints as the metric depth.

As shown in the Tab. 3, our framework also achieves com-
parable results using depths from DepthAnthing V2, without
adjusting any hyper-parameters. Secondly, we evaluated our
method using another recent Metric3D V2 monocular depth
estimation model [6]. Similarly, the results are comparable
to our main model reaffirming the choice of Unidepth [9] as
the backbone in our method.

3. Implementation details
3.1. Architecture

We base our convolutional network on a ResNet-50 [5] back-
bone and implement a U-Net [10] encoder-decoder as in [4].
Specifically, a single ResNet encoder is shared by a multi-
ple decoders, one for each layer of appearance parameters
as well as depth offset decoders, barring the offset decoder
for the first layer as we obtain depth values directly from a
pre-trained model.

3.2. Optimisation

We define the photometric loss following [3] as a weighted
sum of L1 and SSIM [16] terms:

L = ∥Ĵ − J∥+ α SSIM(Ĵ , J) (1)
Unlike previous works [8, 14], we do not use sparse depth

supervision.



Table 2. Ablation Study for Depth Decoder Architectures. Here, we ablate the probabilistic depth as in pixelSplat [1], but only for the
K > 1 of Gaussians. −K means K Gaussians per-pixel. Here, cross-domain (CD) denotes that the method was not trained on the dataset
being evaluated.

KITTI NYU
Method CD PSNR ↑ SSIM ↑ LPIPS ↓ CD PSNR ↑ SSIM ↑ LPIPS ↓

Flash3D (Discrete)-2 ✓ 21.35 0.805 0.153 ✓ 24.52 0.763 0.200
Flash3D (Discrete)-3 ✓ 21.50 0.814 0.136 ✓ 24.84 0.772 0.189

Flash3D (Ours)-2 ✓ 21.96 0.826 0.132 ✓ 25.09 0.775 0.182

Table 3. Ablations on different depth models. We fit hyperparameters of the depth unprojection model via gradient-based optimisation.
We try two variants: one with fixed-size Gaussians and one where the Gaussian scale is increased proportionally to depth. Top two rows are
before correcting depth-wise unprojection to be from pixel centers instead of pixel corners. All measured with croppint.

5 frames 10 frames random frame
Model PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Unidepth V1 28.46 0.899 0.100 25.94 0.857 0.133 24.93 0.833 0.160
DepthAnything V2 28.31 0.895 0.101 25.79 0.849 0.136 24.49 0.823 0.165
Metric3D V2 28.00 0.893 0.107 25.62 0.852 0.140 24.55 0.826 0.167

where J is a target image, Ĵ is a rendering, and α = 0.85.
We optimise the network with Adam [7] with batch size 16
and a learning rate of 0.0001 for a total of 40, 000 training
steps.

3.3. Scale alignment

Camera poses are typically estimated with COLMAP. These
camera poses are in an arbitrary scale in each scene. Follow-
ing prior work, we align the scale of the COLMAP cameras
to those estimated by our network using the scale factor com-
putation from [14]. However, if there are outliers in depth
estimation (both in our method and baselines), they will
impact the scale estimation. As a result, there might be mis-
match between the scene reconstruction scale and the scale
of camera poses from which novel views are rendered. In
consequence, the rendered novel views can be shifted com-
pared to ground truth, which does not significantly impact
LPIPS but it does affect PSNR. Thus, at test-time we run
scale alignment with RANSAC. We do the same for MINE
when evaluating it on the transfer dataset, NYU, since the
accuracy of its depth prediction deteriorates in this unseen
dataset. When estimating scale we thus use the RANSAC
scheme with sample size of 5, 1, 000 iterations and threshold
0.1.

4. Limitations

A primary limitation of the proposed approach is due to it
being a deterministic, regressive model. This incentivises
it to generate blurry renderings in presence of ambiguity,
such as when baselines are very large, in occluded regions
or when camera moves backward.

Another limitation is that not all occluded surfaces are
captured by the reconstructor: the reconstructed 3D models
still have some holes. While many of these regions are
filled in, some are missed, even when multiple Gaussians are
predicted.

Finally, failures in the pre-trained depth estimator are
likely to lead to failures in our scene reconstructions, espe-
cially if the estimated depth is over-estimated. This is due
to the non-negativity of our depth offsets, which therefore
cannot recover scene structure closer to the camera than the
surface estimated by the pre-trained depth estimator. This
makes the model dependent on the quality of a third-party
model within the domain of use at inference time.

5. Broader impacts

This work, on monocular scene reconstruction, has potential
positive and negative social impacts. On the positive side,
the approach significantly reduces the compute and time
resources needed to acquire 3D assets in-the-wild, opening
the door to consumer applications with positive impacts. For
example, the ability to quickly reconstruct one’s house to
facilitate its sale; the ability to digitally preserve artefacts
and sites of cultural heritage; and uses in safe autonomous
driving.

On the negative side, this technology has the potential to
be used for malicious purposes, such as illegal or unethical
tracking and surveillance, or be invasive of someone’s pri-
vacy, for example by reconstructing their body without their
consent. In addition, incorrect predictions may cause harm
if used in applications like autonomous driving and robotics,
where mis-estimated 3D structures could lead to crashes or



suboptimal performance.
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