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APPENDIX

A PROOF OF THEOREM 1

Theorem 1 (Generalization Error Bound). Let exT
k be a masked instance of xT

k on an unseen

domain T . Given an instance embedding zT
k satisfies the composition of domain-specific zT-sh

k and

domain-sharing zT-sp

k , where f̂(xT
k ) = ĉ(zT

k ) be the predicted outcomes. The generalization error

GE = EX [ kf(xT
k ), f̂(exT

k )k2 ] of DISPEL framework can be bounded as:

GE  EX [kc(zT-sh

k )� ĉ(ezT-sh

k )k2] +EX [kc(zT-sp

k )� ĉ(ezT-sp

k )k2] (5)

where ezT

k = zT
k � mT

k is composed of remained domain-specific embedding ezT-sp

k and preserved

domain-sharing embedding ezT-sh

k .

Proof. In order to estimate the generalization error of DISPEL on unseen domain T , we calculate
the expected values of distance between f(xT

k ) and f̂(exT
k ). Without loss of generality, we consider

`2 norm to evaluate the distance. Hence, the estimated generalization error of T can be elaborated
as:

GE = ET [ kf(xT
k )� f̂(exT

k )k2 ]

=

Z

X
kf(xT

k )� f̂(exT
k )k2P (T ) dT (6)

where P (T ) denotes probability density function of T . As a lower generalized error GE repre-
sents better generalization capability, we can observe from Eq. 6 that the closer kf(xT

k )� f̂(exT
k )k2

approaches zero, the better generalization capability is obtained.

In this manner, we now discuss the upper bound of kf(xT
k )� f̂(exT

k )k2. This also ensure the upper
bound of GE. Following the properties that each instance’s embedding zT

k can be composed of
domain-specific zT-sh

k and domain-sharing zT-sp
k , we consider upper bound as follows,

kf(xT
k )� f̂(exT

k )k2
= kc(zT

k )� f̂(ezT
k )k2

= kc(zT-sh
k + zT-sp

k )� ĉ(ezT-sh
k + ezT-sp

k

�
k2 (7)

Since c(·) is the linear predictor, we can now recast the Eq. 7 in the following,

kf(xT
k )� f̂(exT

k )k2
= kc(zT-sh

k + zT-sp
k )� ĉ(ezT-sh

k + ezT-sp
k

�
k2

= kc(zT-sh
k ) + c(zT-sp

k )� ĉ(ezT-sh
k )� ĉ(ezT-sp

k )k2
 kc(zT-sh

k )� ĉ(ezT-sh
k )k2 + kc(zT-sp

k )� ĉ(ezT-sp
k )k2 (8)

Following the conclusion of Eq. 6 and Eq. 8, we have the upper bound of GE as follows:

GE = ET [ kf(xT
k )� f̂(exT

k )k2 ]

=

Z

X
kf(xT

k )� f̂(exT
k )k2P (T ) dT


Z

X

h
kc(zT-sh

k )� ĉ(ezT-sh
k )k2 + kc(zT-sp

k )� ĉ(ezT-sp
k )k2

i
P (T )dT

=

Z

X
kc(zT-sh

k )� ĉ(ezT-sh
k )k2 P (T ) dT +

Z

X
kc(zT-sp

k )� ĉ(ezT-sp
k )k2 P (T ) dT

= EX [kc(zT-sh
k )� ĉ(ezT-sh

k )k2] +EX [kc(zT-sp
k )� ĉ(ezT-sp

k )k2]
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B RELATED WORKS

There are two primary branches of research in the field of domain generalization: data manipulation
and representation learning.

Data Manipulation. The data manipulation branch aims to reduce overfitting by increasing the
diversity and quantity of available training data. This is typically achieved through the use of data
augmentation methods or generative models (Tobin et al., 2017; Peng et al., 2018; Tremblay et al.,
2018; Volpi et al., 2018; Zhang et al., 2017; Xu et al., 2020; Yan et al., 2020; Wang et al., 2020; Yu
et al., 2023).

Representation Learning. Representation learning is another branch of methods that focuses on
training an encoder that maps samples to a latent space where the embedding remains invariant to
various domains (Arjovsky et al., 2019; Sagawa et al., 2019; Huang et al., 2020; Li et al., 2018a;b;
Ganin et al., 2016; Cha et al., 2022). Alternative approaches for achieving invariant learning have
been proposed, including techniques such as correlation alignment (Sun & Saenko, 2016), class-
conditional adversarial learning (Li et al., 2018c), minimizing maximum mean discrepancy (Li et al.,
2018d), and mutual information regularization (Cha et al., 2022) that doesn’t require domain labels.

Ensemble Learning. There are some ensemble approaches for domain generalization, which train
multiple models and then combine the predictions of these models at validation time to obtain a
most generalization model. For instance, SWAD (Cha et al., 2021) aims to find a flatter minima and
suffers less from overfitting than vanilla SWA (Izmailov et al., 2018) by a dense and overfit-aware
stochastic weight sampling strategy; EoA (Arpit et al., 2022) finds that an ensemble of moving
average models outperforms a traditional ensemble of unaveraged models.

C DATASETS DETAILS

To compare the efficacy of our proposed framework with existing algorithms, we conduct our ex-
periments on 5 real-world benchmark datasets: PACS (Li et al., 2017), Office-Home (Venkateswara
et al., 2017), VLCS (Fang et al., 2013), Terra Incognita (Beery et al., 2018), and DomainNet (Peng
et al., 2019). Specifically, PACS includes four image styles (Photo, Art, Cartoon, and Sketch),
which are considered 4 different domains, and each domain has 7 classes of images (Dog, Elephant,
Giraffe, Horse, Person, Guitar, and House) for training and testing. It contains a total of 9, 991 in-
stances in 4 domains. Office-Home consists of 65 classes of images for training and testing. These
images belong to four image styles (Art, Clipart, Product, Real) being considered as 4 different
domains. It contains a total of 15, 588 instances in 4 domains. VLCS includes images collected
from 4 different datasets (Caltech101, LabelMe, SUN09, and VOC2007), which are considered 4
different domains, and each domain has 5 classes (Dog, Bird, Person, Car, and Chair) for training
and testing. It contains a total of 10, 729 instances in 4 domains. Terra Incognita consists of 10
classes of photographs of wild animals taken at 4 different locations (Location 100, Location 38,
Location 43, and Location 46), considered as 4 different domains. For our experiments, we use
the downloader of DomainBed (Gulrajani & Lopez-Paz, 2020) to download the same version Terra
Incognita dataset as theirs. It contains a total of 24, 788 instances in 4 domains. DomainNet includes
6 image styles (Clipart, Infograph, Painting, Quickdraw, Real, Sketch) considered as 6 different do-
mains. In each domain, there are 345 classes for training and testing. It contains a total of 586, 575
instances in 6 domains. DomainNet can be considered a larger-scale dataset with a more difficult
multi-classification task than the other 4 benchmarks.

D BASELINES AND IMPLEMENTATION DETAILS

Baselines. To fairly compare our proposed framework with existing algorithms, we follow the
settings of DomainBed (Gulrajani & Lopez-Paz, 2020) and DeepDG (Wang et al., 2022), using the
best result between DomainBed, DeepDG, and the original literature. The comparisons include 12
baseline algorithms: ERM (Vapnik, 1999), IRM (Arjovsky et al., 2019), DRO (Sagawa et al., 2019),
RSC (Huang et al., 2020), Mixup (Wang et al., 2020), MLDG (Li et al., 2018a), CORAL (Sun &
Saenko, 2016), MMD (Li et al., 2018b), DANN (Ganin et al., 2016), C-DANN (Li et al., 2018d),
DA-ERM (Dubey et al., 2021), and MIRO (Cha et al., 2022). Considering that domain labels can be
leveraged as additional information for learning representations mitigating domain-specific features
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Table 5: Hyper-parameters of DISPEL based on ERM.

PACS Office-Home VLCS TerraInc DomainNet

DNN Architecture: ResNet-18

Batch size 128 128 128 128 128
Learning rate 1⇥ 10�3 1⇥ 10�3 3⇥ 10�4 1⇥ 10�4 1⇥ 10�4

⌧ 0.1 0.1 0.1 0.1 0.1

DNN Architecture: ResNet-50

Batch size 64 64 64 64 64
Learning rate 5⇥ 10�5 1⇥ 10�3 1⇥ 10�3 2⇥ 10�4 1⇥ 10�4

⌧ 0.1 0.1 0.1 0.1 0.1

projected to embedding space, we categorize the 12 baseline algorithms into two groups: Group 1:
the algorithms requiring domain labels (Mixup, MLDG, CORAL, MMD, DANN, C-DANN, and
DA-ERM); and Group 2: the algorithms without requiring domain labels (ERM, IRM, DRO, RSC,
and MIRO).

Implementation. All the experimental results of the proposed DISPEL are implemented and per-
formed based on the codebase of DeepDG (Wang et al., 2022). Unlike DomainBed (Gulrajani &
Lopez-Paz, 2020), our implementation does not use any data augmentation during training. Re-
garding the setting of model selection, we use traditional training-domain validation set for our
implementation, which does not require utilizing domain labels to split the desired validation set.
For all the experimental results of DISPEL, we employ ERM algorithm to fine-tune the ResNet-18
and ResNet-50 as the fine-tuned model mentioned in Sec. 3.1. Concerning the use of the EMG,
we utilize ResNet50 as the base model for EMG since the 5 domain generalization benchmarks we
tested are image datasets.

DNN Architectures. The experimental results are all fine-tuned on the basis of ResNets. Since
larger ResNets are known to have better generalization ability, we mainly conduct experiments with
ResNet-50 models for all 5 benchmark datasets, and we also conduct the results of DISPEL based
on ResNet-18 as a reference shown in Tab. 7. For both the two base network architectures, we both
use the ResNet-18 and ResNet-50 pre-trained on ImageNet. As for the EMG component in DISPEL,
we employ a ResNet50 pre-trained on ImageNet as the base model.

Table 6: Hyper-parameters of DISPEL for boosting other algorithms, where the DNN architecture
is ResNet-50.

DRO CORAL DANN Mixup
Dataset: PACS

Batch size 64 64 64 64
Learning rate 1⇥ 10�3 1⇥ 10�3 5⇥ 10�3 5⇥ 10�4

⌧ 0.1 0.1 0.1 0.1
Dataset: Office-Home

Batch size 64 64 64 64
Learning rate 1⇥ 10�3 1⇥ 10�3 1⇥ 10�3 1⇥ 10�3

⌧ 0.1 0.1 0.1 0.1

D.1 HYPER-PARAMETERS OF DISPEL

In the proposed DISPEL framework, the hyper-parameters are composed of batch size, learning
rate, and ⌧ in Eq. 1, where ⌧ is the only hyper-parameter that is related to our algorithm. The
hyper-parameters of DISPEL for each benchmark dataset are shown in Tab. 5.

D.2 HYPER-PARAMETERS OF DISPEL FOR BOOSTING OTHER ALGORITHMS

As shown in Sec. 4.4, we leverage our DISPEL to further improve the prediction performance on
unseen test domain for four existing domain generalization algorithms on PACS and Office Home,
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Table 7: Each unseen test domain accuracy of DISPEL.

Dataset: PACS
Art Painting Cartoon Photo Sketch - -

DISPEL (ResNet-18) 83.6 ± 0.3 79.0 ± 0.2 97.0 ± 0.0 81.8 ± 0.0 - -
DISPEL (ResNet-50) 87.1 ± 0.1 82.5 ± 0.0 98.0 ± 0.1 85.2 ± 0.1 - -

Dataset: Office-Home
Art Clipart Product Real - -

DISPEL (ResNet-18) 61.4 ± 0.0 53.9 ± 0.2 76.0 ± 0.1 77.8 ± 0.0 - -
DISPEL (ResNet-50) 71.3 ± 0.5 59.4 ± 0.4 80.3 ± 0.3 82.1 ± 0.0 - -

Dataset: VLCS
Caltech101 LabelMe SUN09 VOC2007 - -

DISPEL (ResNet-18) 97.2 ± 0.0 62.6 ± 0.1 75.0 ± 0.1 76.9 ± 0.1 - -
DISPEL (ResNet-50) 98.3 ± 0.4 65.3 ± 0.1 77.2 ± 0.1 76.3 ± 0.1 - -

Dataset: Terra Incognita
Location 100 Location 38 Location 43 Location 46 - -

DISPEL (ResNet-18) 44.4 ± 0.4 49.6 ± 0.7 48.1 ± 0.2 37.3 ± 0.1 - -
DISPEL (ResNet-50) 54.7 ± 0.3 48.1 ± 0.0 56.3 ± 0.3 42.3 ± 0.2 - -

Dataset: DomainNet
Clipart Infograph Painting Quickdraw Real Sketch

DISPEL (ResNet-18) 44.6 ± 0.0 14.2 ± 0.0 39.7 ± 0.0 10.3 ± 0.0 45.6 ± 0.0 40.8 ± 0.0
DISPEL (ResNet-50) 63.4 ± 0.0 20.1 ± 0.1 48.2 ± 0.0 14.2 ± 0.0 63.4 ± 0.0 54.9 ± 0.0

Table 8: Each unseen test domain accuracy comparisons of Terra Incognita (ResNet50).

Location 100 Location 38 Location 43 Location 46
Group 1: algorithms requiring domain labels

Mixup (Wang et al., 2020) 60.6 ± 1.3 41.1 ± 1.8 58.5 ± 0.8 35.2 ± 1.1
MLDG (Li et al., 2018a) 48.5 ± 3.3 42.8 ± 0.4 56.8 ± 0.9 36.3 ± 0.5
CORAL (Sun & Saenko, 2016) 48.6 ± 0.9 42.2 ± 3.5 55.9 ± 0.6 38.7 ± 0.7
MMD (Li et al., 2018b) 52.2 ± 5.8 47.0 ± 0.6 57.8 ± 1.3 40.3 ± 0.5
DANN (Ganin et al., 2016) 49.0 ± 3.8 46.3 ± 1.7 57.6 ± 0.8 40.6 ± 1.7
C-DANN (Li et al., 2018d) 49.5 ± 3.8 44.8 ± 1.0 57.3 ± 1.1 38.8 ± 1.7

Group 2: algorithms without requiring domain labels
ERM (Vapnik, 1999) 50.8 ± 0.2 42.5 ± 0.2 57.9 ± 1.3 37.6 ± 1.3
IRM (Arjovsky et al., 2019) 44.2 ± 2.7 41.3 ± 0.6 54.3 ± 0.2 36.0 ± 1.7
DRO (Sagawa et al., 2019) 31.8 ± 0.3 43.7 ± 1.2 58.0 ± 0.7 36.6 ± 1.3
RSC (Huang et al., 2020) 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6
DISPEL 54.7 ± 0.3 48.1 ± 0.0 56.3 ± 0.3 42.3 ± 0.2

where all the DNN architectures are ResNet-50. The hyper-parameters of the DISPEL derivative
models for the two datasets are shown in Tab. 6.

E EXPERIMENTAL RESULTS OF DISPEL

To closely investigate the fine-grained behavior of DISPEL in Sec. 4.3, we observe the prediction
accuracy in each unseen test domain of all five domain generalization benchmark datasets. In Tab. 7,
we show the experimental results of DISPEL on each unseen domain of five domain generalization
benchmark datasets based on the two DNN architectures, ResNet-18 and ResNet-50. Based on the
experimental results on each unseen domain, we conclude the Observation 2: DISPEL possesses

stable generalizing efficacy. The results show that DISPEL maintains its stable efficacy in improv-
ing generalization ability over more different data distributions in more diverse classes of data. And
these results reflect the purpose of the EMG module that considers each instance for fine-grained
domain-specific feature masking.
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F VISUALIZATION ANALYSIS VIA T-SNE

To illustrate how DISPEL improves generalization by blocking domain-specific features in the em-
bedding space, we use t-SNE in the unseen test domains of all five benchmark datasets by comparing
the embedding with and without DISPEL, as shown in Fig. 6 to Fig. 13. The key observation is that
DISPEL aims to make each class more concentrated and separate them better. Taking PACS as an
example, by drawing down more precise decision boundaries, the predictor can achieve better accu-
racy in the unseen Art Painting domain, in which DISPEL enhances the most accuracy among the 4
domains as shown in Tab. 2. Even in Cartoon domain where DISPEL only raises 0.7% accuracy, it
shows the same intention to concentrate the embedding distribution for each class in Fig. 6-(b) and
Fig. 7-(b). As for the unseen Photo domain, the base algorithm ERM has performed 96.7% accu-
racy, which means that Fig. 6-(c) reveals what a high-quality representation looks like. Compared
to Fig. 7-(c), DISPEL follows the initial distribution and ameliorates the embedding to compress the
distributions of each class.

Investigating the embedding of Terra Incognita, a more difficult multi-class classification task
dataset, we observe the coherent behavior of DISPEL to its manner in PACS. As shown in Fig. 12-
(a)(b)(d) and Fig. 13-(a)(b)(d), DISPEL has the same effect as on Cartoon and Sketch domain of
PACS, which is to reduce the length of decision boundaries between different classes by concen-
trating distribution of each class. In addition, as shown in Tab. 8, Location 43 is the only domain
in which DISPEL cannot improve its classification accuracy. However, the reason is that we can-
not achieve our reproduced ERM the same performance as provided in DomainBed (Gulrajani &
Lopez-Paz, 2020), and the accuracy of our reproduced ERM in the Location 43 domain is 55.1%.
Therefore, DISPEL actually improves the accuracy in this unseen test domain by 1.3%. As we can
see in Fig. 12-(c) and Fig. 13-(c), each class’s instance embedding is concentrated after employing
DISPEL as in other domains.

Based on the t-SNE visualization analysis, we conclude Observation 3: DISPEL concentrate

the distribution of each class embedding. The t-SNE analysis demonstrates the superiority of
DISPEL, which improves the domain generalization ability of the fine-tuned ERM by concentrating
the distribution of embeddings in the same class.

(a) Art Painting (b) Cartoon (c) Photo (d) Sketch
Figure 6: t-SNE visualization of ERM embedding in four unseen test domains of PACS.

(a) Art Painting (b) Cartoon (c) Photo (d) Sketch

Figure 7: t-SNE visualization of DISPEL embedding in four unseen test domains of PACS.
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(a) Art (b) Clipart (c) Product (d) Real
Figure 8: t-SNE visualization of ERM embedding in four unseen test domains of Office-Home.

(a) Art (b) Clipart (c) Product (d) Real

Figure 9: t-SNE visualization of DISPEL embedding in four unseen test domains of Office-Home.

(a) Caltech101 (b) LabelMe (c) SUN09 (d) VOC2007
Figure 10: t-SNE visualization of ERM embedding in four unseen test domains of VLCS.

(a) Caltech101 (b) LabelMe (c) SUN09 (d) VOC2007

Figure 11: t-SNE visualization of DISPEL embedding in four unseen test domains of VLCS.

(a) Location 100 (b) Location 38 (c) Location 43 (d) Location 46
Figure 12: t-SNE visualization of ERM embedding in four unseen test domains of Terra Incognita.

(a) Location 100 (b) Location 38 (c) Location 43 (d) Location 46

Figure 13: t-SNE visualization of DISPEL embedding in four unseen test domains of Terra Incog-
nita.
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