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A Related work

The notions of Bayes-consistency (also known as consistency) and calibration have been well studied
not only with respect to the binary zero-one loss (Zhang, 2004a; Bartlett et al., 2006; Steinwart, 2007;
Mohri et al., 2018), but also with respect to the multi-class zero-one loss (Zhang, 2004b; Tewari and
Bartlett, 2007), the general multi-class losses (Ramaswamy and Agarwal, 2012; Narasimhan et al.,
2015; Ramaswamy and Agarwal, 2016), the multi-class SVMs (Chen and Sun, 2006; Chen and Xiang,
2006; Liu, 2007; Dogan et al., 2016; Wang and Scott, 2020), the multi-label losses (Gao and Zhou,
2011; Dembczynski et al., 2012; Zhang et al., 2020), the losses with a reject option (Ramaswamy
et al., 2015), the ranking losses (Ravikumar et al., 2011; Ramaswamy et al., 2013; Gao and Zhou,
2015; Uematsu and Lee, 2017), the cost sensitive losses (Pires et al., 2013; Pires and Szepesvari,
2016), the structured losses (Ciliberto et al., 2016; Osokin et al., 2017; Blondel, 2019), the polyhedral
losses (Frongillo and Waggoner, 2021; Finocchiaro et al., 2022), the Top-k classification losses
(Thilagar et al., 2022), the proper losses (Agarwal and Agarwal, 2015; Williamson et al., 2016) and
the losses of ordinal regression (Pedregosa et al., 2017).

Bayes-consistency only holds for the full family of measurable functions, which of course is distinct
from the more restricted hypothesis set used by a learning algorithm. Therefore, a hypothesis set-
dependent notion of J{-consistency has been proposed by Long and Servedio (2013) in the realizable
setting, used by Zhang and Agarwal (2020) for linear models, and generalized by Kuznetsov et al.
(2014) to the structured prediction case. Long and Servedio (2013) showed that there exists a case
where a Bayes-consistent loss is not J{-consistent while inconsistent losses can be J{-consistent.
Zhang and Agarwal (2020) further investigated the phenomenon in (Long and Servedio, 2013) and
showed that the situation of losses that are not J{-consistent with linear models can be remedied
by carefully choosing a larger piecewise linear hypothesis set. Kuznetsov et al. (2014) proved
positive results for the J(-consistency of several multi-class ensemble algorithms, as an extension of
H-consistency results in (Long and Servedio, 2013).

Recently, the notions of H-calibration and J{-consistency have been used by Bao et al. (2020);
Awasthi et al. (2021a) in the study of adversarial binary classification losses, as defined in (Goodfellow
et al., 2014; Madry et al., 2017; Tsipras et al., 2018; Carlini and Wagner, 2017; Awasthi et al., 2023).
The calibration and consistency of adversarial losses present new challenges and require more careful
analysis. The work of Bao et al. (2020) showed that for the linear hypothesis set, convex margin
based losses are not calibrated with respect to the adversarial 0/1 loss. Instead, they proposed a class
of non-convex losses that could be calibrated under some necessary and sufficient conditions. The
work of Awasthi et al. (2021a) generalized the results in (Bao et al., 2020) to the nonlinear hypothesis
sets. They also pointed out that H{-calibration and H-consistency are not equivalent in the adversarial
scenario by showing that no continuous surrogates can be J{-consistent with linear models. They
further provided sufficient conditions guaranteeing JH-consistency for JH-calibrated surrogates.

Most recently, Awasthi et al. (2022a) presented a series of results providing J-consistency bounds
in binary classification, for both the adversarial and non-adversarial settings. These guarantees are
significantly stronger than the H-calibration or H-consistency properties studied by Awasthi et al.
(2021a,c). They are also more informative than similar excess error bounds derived in the literature,
which correspond to the special case where J is the family of all measurable functions (Zhang,
2004a; Bartlett et al., 2006; Mohri et al., 2018). Our work significantly generalizes the results in
(Awasthi et al., 2022b) to the multi-class setting, in both the adversarial and non-adversarial scenarios,
where the study of calibration and conditional risk is more complex, the form of the surrogate losses
is more diverse, and in general the analysis is more involved and entirely novel proof techniques
are required. As a by-product, our work contributes more significant results of consistency for the
insufficiently understood setting of adversarial robustness.
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B Discussion on multi-class 0/1 loss

The multi-class 0/1 loss can be defined in multiple ways, e.g. 1,, (. ,)<0- 11, (z,5)<0 and Lp(z)4y
where h(z) = argmax, .y h(z,y) with an arbitrary but fixed deterministic strategy used for breaking
ties. The counterparts of these three formulas in binary classification are 1,4(2)<0, Lyn(z)<0 and
Lsgn(h(z))zy Where sgn(0) is defined as +1 or —1. To be consistent with the literature on Bayes-
consistency (Bartlett et al., 2006; Tewari and Bartlett, 2007), in this paper we adopt the last formula
Lh(2)+y of multi-class 0/1 loss. Moreover, to be consistent with the binary case (Awasthi et al.,
2022a), we assume that in case of a tie, h(x) is defined as the label with the highest index under
the natural ordering of labels. This assumption corresponds to the binary case where we always
predict +1 in case of a tie, that is, the case where the binary 0/1 loss is defined by 14z (h(x))+y With
sgn(0) = +1, as in (Awasthi et al., 2022a). Nevertheless, other deterministic strategies would lead to
similar results.

C Discussion on finite sample bounds

Here, we discuss several ways to derive the finite sample bounds on the estimation error for the target
0/1 loss. One can directly derive estimation error bounds for the 0/1 loss, typically for Empirical
Risk Minimization (ERM), e.g. Ry,_, (RE™M) - Rp,_, ac with hg™M = argmin, 4 Rs(h) can be
upper-bounded using the standard generalization bounds, as shown in (Mohri et al., 2018). But, those
bounds would not say anything about the use of a surrogate loss.

An alternative is to use the excess error bound for the target 0/1 loss and split the excess error of the
surrogate loss into an estimation term and an approximation term, i.e. for some function f:R, - R,
the following inequality holds:

Reos (h) =Ry, gy < F(Ree () =R

Then, an estimation error bound for the surrogate loss can be used to upper bound Ry, (h) =R} 4,
as shown in (Bartlett et al., 2006). But, those bounds would not be an estimation error guarantee for
the target loss £p_1.

*

*
a0+ Ry a6 = R 9t)-

sur

Finally, using the J(-consistency bound proposed by Awasthi et al. (2022a), that is, for some non-
decreasing function f:R, - R,,

Reos (h) =Ry, g0 < F(Rewwr (h) =R, 50)

we can directly derive the estimation error bound for the target 0/1 loss by upper bounding R, (h) -
Ry....5¢ with the estimation error bound for the surrogate loss. In conclusion, the J{-consistency
bound is a useful tool to derive non-trivial finite sample bounds on the estimation error for the target
0/1 loss.

D Future work

While we presented a comprehensive study of JH{-consistency bounds for surrogate losses in multi-
class classification, which could help compare different surrogate losses for the same setting and
the same hypothesis set, the optimization property of a surrogate loss function combined with the
hypothesis set also plays an important role. Nevertheless, we believe our results in the paper can help
guide the design of multi-class classification algorithms for both the adversarial and non-adversarial
settings.
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E General J{-consistency bounds

Theorem 1 (Distribution-dependent W-bound). Assume that there exists a convex function
U:R, — R with ¥(0) > 0 and € > 0 such that the following holds for all h € H, = € X and
D e P: U([ACy, 5¢(h,x)],) < ACq, 5¢(h,x). Then, for any hypothesis h € H and any distribution
De?,

(R, (h) = R7, g0+ Mey5¢) < Ry () = Ri, g0 + My, 5+ max{¥(0), ¥(e)}.

Proof. For any h € H and D € P, since W(Aeg%}c(h,x)nA%M(h?x)x) < ACy, 5c(h,x),YVr e X,
we can write

\I/(ng2 (h) - REQ,% + M[275}()

= U(Ex[Cr,(h,2) - €}, 5(2)])
= U(Ex[ACy, 5c(h,z)])

<Ex[P(ACy, 5c(h,z))] (Jensen’s ineq.)

=Ex[U(ACy, 5 (h, z)Lac,, s (hx)se + ACr ac(h, x)]lAe[,z,H(h,z)sE)]

<Ex[U(ACs 5¢(h, 2)ae,, o (hayse) + P (ACL s (h 2)Lae,, 4 (hay<e) ] (¥(0) 20)

<Ex[ACy, gc(h,z)] + tes[%z] U(t) (assumption)

=Ry, (h) - TRZI,% + My, 9¢ + max{¥(0), T(e)}, (convexity of ¥)
which proves the theorem. O

Theorem 2 (Distribution-dependent I'-bound). Assume that there exists a concave function
I"R; — R and ¢ > 0 such that the following holds for all h € H, © € X and D € P:
[ACy, 3¢ (h,x)], <T'(ACy, 3¢(h,x)). Then, for any hypothesis h € 3 and any distribution D € P,

fR@z(h) - 93?2,}( < F(Rgl (h) - CRZ,}C + M@hj{) - Mg%:}( + €.

Proof. For any h € H and D € P, since ACy, 5¢(h,x)Lae,, o (hz)>e < T(AC 5c(h,2)), Vo € X,
we can write

Re, (h) = Ry, 9¢ + Mo, ¢

=Ex[Cr,(h,z) - CF, 5¢(2)]
= Ex[AC, 5c(h, z)]

= Ex[ACs, 5¢(h, )L ae,, b (ha)>e + AC, 5c(h2)Lac,, 4 (h)<e]

<Ex[T(ACy, gc(h,x))] +€ (assumption)
<T(Ex[ACy, sc(h,x)]) +€ (concavity of T')
=T(Re, (h) = R, g0+ Mgy 5¢) + €,

which proves the theorem. O

F Non-adversarial and adversarial conditional regrets

Lemma 3. For any x € X, the minimal conditional {y_1-risk and the conditional e-regret for {y_q
can be expressed as follows:

6507173{(37) =1- max p(z,y)
yeH(z)

[ACy_, 3c(h, )], = yrelﬁa(f)p(x,y)—p(%h(w)) :

€
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Proof. By the definition, the conditional ¢y_;-risk can be expressed as follows:
64071(}%1‘) = Zp(x7y)]lh(:c)¢y = l—p(x,h(:c)). (23)
yey

Since {h(x) : h € 3} = H(«), the minimal conditional £,_;-risk can be expressed as follows:
e =1-
Zo,l,}f(x) yrerll-la(‘};) p(xv y)a

which proves the first part of the lemma. By the definition,

Aefo—l,f}f(hax) = Gfofl(hw’E) - ezg,lﬂ-f(x) = yrerll-l%f)p(x7y) —p((E, h(il?))

This leads to

(881 o)), = | s o) - (o h(0))|.

€

O

Lemma 11. For any x € X, the minimal conditional {.,-risk and the conditional e-regret for L., can
be expressed as follows:

Gy =1- T (2
L,,J-C(x) gﬁ?é)p(%y) Ho (z)+0

maXyeH., (= p(xay) _p(m7h(x))]lheﬂ-f,Y T lfg{ (.’E) * 0
[Aeéw’g{(h’x)]e - {([) e ( )]6 othej’wise.

Proof. By the definition, the conditional £, -risk can be expressed as follows:
1-p(z,h(z)) heH, (z)
e h = ]]_ ’ = ’ Y
ln,( ,IE) Z p(x,y) sup pn(z’,y)<0 {1 otherwise.

ey a|a-a'] <y

(24)

When H, (z) = &, (24) implies that Cl 3 (z) = 1. When H, (z) # &, H,(z) is also non-empty. By
(24), y € Y, (z) if and only if there exists i € H, such that C,_(h,z) = 1 - p(x,y). Therefore, the
minimal conditional ¢, -risk can be expressed as follows:

C; =1- 1
¢,,50() yg}j\é)p(w,y) 3, ()20
which proves the first part of lemma. When 3(,(z) = @, €, (h,z) = 1, which implies that
ACy 5¢(h,x) = 0. When H,(x) # @, H,(x) is also non-empty, for h € H, (x), ACy a¢(h,x) =
1 -p(x,h(x)) - (1 —maxyeHv(I)p(:c,y)) = maXyey_ () P(7,y) — p(z,h(x)); for h ¢ I, (x),
ACy gc(h,x) =1~ (1 —maXyey_ (¢) P(T, y)) = MaXyeH_ () P(,y). Therefore,

Aegwj—c(h,l’) _ {glaXyEHﬂ,(z) p(zay) —p(I, h(x))]lheﬂ-ﬂy(x) f}{,y(l‘) *+ 9

otherwise.
This leads to
Ae h . — [maxyéHv(z)p(xay) p(.’L’, € _Y(:E) € 0%
[ et 71)]6 {0 otherwise.

G Proof of negative results and J{-consistency bounds for max losses ¢™max

Theorem 6 (Negative results for convex ®). Assume that ¢ > 2. Suppose that ® is convex and
non-increasing, and H satisfies there exist x € X and h € H such that |H(z)| > 2 and h(z,y) are
equal for all y €Y. If for a non-decreasing function f:R, — R, the following H-consistency bound
holds for any hypothesis h € H and any distribution D:

Reor (h) = Rj, 3¢ < F(Ramax (h) = Rpma 3¢ (6)
then, f is lower bounded by %
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Proof. Consider the distribution that supports on a singleton domain {z} with z satisfying that
[H(z)| > 2. Take y; € H(«) such that y; # ¢ and yo € Y such that y, + y1, y2 #+ ¢. We define p(x) as
p(x,y1) =p(x,y2) = % and p(x,y) = 0 for other y € Y. Let hg € H such that ho(x,1) = ho(z,2) =
... =hg(z,c). By Lemma 3 and the fact that 3; € H(x), the minimal conditional £y_;-risk is

1

Reor,5¢ = Chpy ac(z) = 1= yrgi%ic)p(w,y) =1-p(@m) =5

For h = hg, we have

:Rfo-l(ho) = G50-1(h07‘r) = Zp(‘rvy)]lho(w#y =1 —p(x, ho(ﬂ:)) =1 —p(SE,C) =1
y<d

For the max loss, the conditional ®™#*-risk can be expressed as follows:

Copmax(h,z) = Zép(xvy)i(ph(fv,y)) = %‘P(ph(fc,yl)) + %‘P(ph(fmyz))-

If @ is convex and non-increasing, we obtain for any h € J(,
1 1
Repmax (h) = Comax (h, ) = §<I>(ph(x,y1)) + §<I>(ph(x,y2))
1 1
Z¢(§Ph($,y1)+§f)h($7y2)) (@ is convex)

1
=05 (M) + b, 1) - maxh(a,y) - maxh(a.y))
2 YY1 Y#Y2
> ®(0), (® is non-increasing)
where both equality can be achieved by hg. Therefore,
R ¢ = Cipmos ¢(2) = R (o) = B(0).

If (6) holds for some non-decreasing function f, then, we obtain for any h € H,
1
Réoq (h) - 5 < f(:R@"““‘(h) - (I)(O))

Let h = hg, then f(0) > 1/2. Since f is non-decreasing, for any ¢ > 0, f(¢) > 1/2. O

Theorem 7 (H-consistency bound of ©'*). Suppose that }{ is symmetric. Then, for any hypothesis
h € H and any distribution D,

qu)rpnax (h) - Rx /n)nax’}( + Mq;.:;;ax79{

min{l, infex suphe;g pn(z,h(z)) }

RZO—I (h) - RZH,}C < - Mzoflﬂ'f' (7

Proof. By the definition, the conditional ®**-risk can be expressed as follows:

e@‘pna" (hax) = Z p(xvy)(bp(ph(xvy))

yey

=1-p(z,h(z))+ max{O, 1- ph(x’l:(x))}p(x, h(z)) (25)

-1 —min{L’W}p(fc,h(@)

Since I is symmetric, for any x € X and y € Y,

sup  pp(z,h(2)) = sup pp (2, h(z))
he{heF(:h(z)=y} heXH

Therefore, the minimal conditional q);“ax-risk can be expressed as follows:

x,h
Chrmax gc(x) =1- min{l, SUPpesc P (2, h(2)) } max p(z,y).
e P yey
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By the definition and using the fact that H(x) =Y when J is symmetric, we obtain
Aeqygla)cﬂ{(h, I) = G@glax (h, fE) - G:\Dg“‘x,g‘f(l’)

:min{l’suphe}(ph(‘m?h(x)) p(x,h(m))

{ pn(, h(x))}
p p

} maxp(x y) — min
yeY

nq 1, SUPpec ph(l‘ h(z)) }(maxp(xay) - p(z, h(x)))

)

2m {1’ SUPhegc ph(x h(z)) }A@ Lo-1, ac(h, x)
- n{l suphe}cph(l’ h(x))}[AGg (b, @)]
"

inf e supy,. z,h(x
1 X Pp ﬂf')fph( ( ))}[Ae%l’j{(hwf)]

for any € > 0. Therefore, taking P be the set of all distributions, J{ be the symmetric hypothesis set,

€ =0and

\I/(t) _ min{l, Infyex SUPperc ph(l', h(.]?)) } ¢
P
in Theorem 4, or, equivalently, I'(¢) = U~ (¢) in Theorem 5, we obtain for any hypothesis h € H and
any distribution,
:Rq)gmx (h) —R* max 3¢ + M@gaxﬂ{

RZO—I (h) - fR;o,l,}c < } - Mfofl,g'f'

min{l, infgex suphe;( pn(z,h(x))

O

Theorem 9 (Realizable J{-consistency bound of ®™%*). Suppose that H is symmetric and complete,

and ® is non-increasing and satisfies that lim;_, o, ®(t) = 0. Then, for any hypothesis h € H and
any H-realizable distribution D, we have

:R[O—l (h) - Rzo—l,ﬂ'f < :R.q;.max(h) - :R:%max,ﬂ'(f + M(I)max’f}-c. (8)

Proof. Under the H-realizability assumption of distribution, for any = € X, there exists y € Y such
that p(z,y) = 1. Then, the conditional ®™*-risk can be expressed as follows:

e<I>"‘ax (ha QE) = Z p(x, y)q)(ph(xa y))
yey (26)

= @(pn (T, Ymax))-
Since H is symmetric and complete, there exists i € H such that h(x) = ymax and we have
sup pn(@,h(z)) = sup pp(z, h(x))
he{heIF:h(z)=Ymax } heJH

= sup(maxh(x y) — max h(z, y))
hed(\ V€Y y#h(z)

= +00.

Thus, using the fact that lim;_, o, ®(¢) = 0, the minimal conditional ®™**-risk can be expressed as
follows:

Cgmax g¢(¢) = Inf Comax (h, )
= inf ®(pp(z, h(2)))

= <I>(sup pn(z,h(z)) ) (P is non-increasing)
heJ

=0 (limt—>+oo (I)(t) = O)
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By the definition and using the fact that H(x) =Y when J is symmetric, we obtain
Aeqﬁnax7%(h, .’b) = eq>xnax (h7 .7)) - e;max’g{(l')
= ®(pn (2, Ymax))

>®(0)1,, . +h(a) (® is non-increasing)
> maxp(x,y) - p(z; h(x))

= ACy,_,.5¢(h,x) (by Lemma 3 and H(x) = Y)
> [AC, 3¢(h, )], ([t]. <)

for any € > 0. Note that My,_, 3¢ = 0 under the realizability assumption. Therefore, taking P be the
set of H-realizable distributions, H be the symmetric and complete hypothesis set, € = 0 and W (¢) = ¢
in Theorem 4, or, equivalently, I'(¢) = ¢ in Theorem 5, we obtain for any hypothesis h € H and any
H-realizable distribution,

:R’ZO—I (h) - R20717}C S R(I)max (h) - gz:;)max’g.c + Mq;.max,f}c

H Proof of 3.y, J(;;,, Hnn-consistency bounds for max p-margin loss CIDglaX

Corollary 18 (J{,-consistency bound of ©'“*). For any hypothesis h € Han and any distribution,

:Rgo—l (h) - Rzo—h}(all < :R(I)zndx (h) - R(}?ax7g{a“ . (27)

Proof. For 3 = Hay, we have for all z € X, supjeqc,, pn(x, h(x)) > p. Furthermore, as shown by
Steinwart (2007, Theorem 3.2), the minimizability gaps My,_, ¢, = Mamax 3¢, = 0. Therefore, by
Theorem 7, the J{,j;-consistency bound of @g‘ax can be expressed as follows:

Regy () =Ry, 56,0 S Ramax (h) = Rgmax g¢,.,-

O

Corollary 19 (3(;;,-consistency bound of ®7'**). For any hypothesis h € 3y, and any distribution,

R@E‘“X (h’) - :R':;Lnaxag{lin + Mq;r;lax,j-(“n

RZO—l (h) - :Réo_l,f}(“n < min{]_, E} - MZo—l,iHlma (28)
P
where My, , 50, = R g0 — Ex[1 - maxyey p(z,y)] and Mamax 3¢, = ‘(RE’,Ta"ﬂnn -
2(Wz|| +B
EX[I - min{L (IPW} maxyey p(x, y)]
Proof. For H = Hy;y,, we have for all z € X,
sup pp(z,h(z)) = sup (max h(x,y) — max h(z, y))
heHiin heHyn \ ¥€Y y#h(z)
= max (w-z+b)- min (w-z+Db) (29)
Jewll, W, bl<B ol <WiJbl<B
=2(W|z|, + B)

Thus, infyex supyeqq, pr(2, h(x)) = infiex 2(WHpr + B) = 2B. Since H = Hy;, is symmetric,
by lemma 3, we have

Moy s 50 = Ry sr, — ]Ex[l - max (s, y)]. (30)
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By the definition, the conditional ®**-risk can be expressed as follows:

Copmax (h, ) = Zép(:c,y)@p(ph(w,y))

=1-p(z,h(z))+ max{O, 1-

_1- min{l, W}p(% h(z))

Since Hy;, is symmetric, for any x € X and y € Y,

LD (o)
p

sup pr(z,h(z)) = sup pp(z,h(z)).
he{heHin:h(z)=y} heFHyin

Thus, using (29), the minimal conditional ®***-risk can be expressed as follows:

SUPped(y;, Ph (z,h(x))

Chmax g0, () =1~ min{l, }maxp(ac,y)
X Hiip s

p
' 2(WH:UHP+B)
=1-mind 1, —————= tmaxp(z,y) (by (29))
P yeY
Therefore, the (q);)na", ﬂflin)-minimizability gap is
. : (W=, + B)
Mamax 30, = Rpmax g¢,, — Ex[1-min{ 1, —————= rmaxp(z,y) |- (3D
P P yeyY

By Theorem 7, the Hj;,-consistency bound of cIJE‘aX can be expressed as follows:
R(Dgxax (h) - R‘%,Ta’ﬂg{lin + Mq;.g;ax’g{“n
min{ 1,28 }

P

where My,_, 3¢, and Mgmex 5, are given by (30) and (31) respectively. O

Rf071 (h) - fRZHJ{un <

- Mfoq«,}fun'

Corollary 20 (J{nxn-consistency bound of ®**). For any hypothesis h € Hnn and any distribu-
tion,

*
:R,q;./r;lax(h) - :}2 pmax’}(NN + M@glaxy:}cNN

min{l, QATB}

:Rfo—1 (h) - :R;o,l,ﬂ{NN < - Mfo—uﬂ‘fNN’ (32)

— * — *
where Mg, | 3cyn = :RZO—L}CNN - Ex[1-maxyey p(z,y)] and M@gm,:}cNN = R@rpnax,ycNN -

i 2A(W]a|,+B)
Ex|1-min{l, ———— maxyey p(z,y) |-

Proof. For H = Hyn, we have for all z € X,

sup pp(z,h(z))= sup (maxh(m y) - max h(z, y))
heHnn heHnn \ Y€Y

> uj(w; -z +b; )+)

RN

Hu|\1</\ HwJ \|q<W|b |<B( lufli<A, HwJ Hq<W\b <B(

San(W e, + B)

Thus, infpex SUPpegeyy 21 (2, h(2)) = infex 2A(W ], + B) = 2AB. Since H = Hy is symmet-
ric, by lemma 3, we have

Mfo-l,-'}fNN = RZg_l,ﬂ-CNN - EX[l - Iggdxp(xa y)] (34)
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By the definition, the conditional ®**-risk can be expressed as follows:

eé;}‘a" (h? {L') = Zép(xv y)q)p(ph(x7 y))

=1-p(z,h(z)) + max{O, 1- p}l(x’ph(m»}p(x, h(z))
- min{l, ph(m’:(x))}p(x, h(z))

Since Hyy is symmetric, for any x € X and y € Y,

sup pr(z,h(z)) = sup pn(z,h(z)).
he{heHnn:h(z)=y} heHnN

Thus, using (33), the minimal conditional @glax-risk can be expressed as follows:

SUDpe x,h(z
e(*bmax FHn (q;) =1-= min{L Phedtan Ph( ( ))
P p

2A B
zl—min{l,(vwx“)+ )
p

P
yey

}maxp(a:,y) (by (33))
yeY

Therefore, the (@;nax, IHNN)-minimizability gap is

. _ 2A(W\|x\|p + B)
Mapmax 36y = Ripmax ge ~ Ex|1-ming 1, ———F—=

max p(, y)]~ (35)
P Y

ye
By Theorem 7, the Hnn-consistency bound of ®** can be expressed as follows:

Rq)max (h) - ijmax i + M(I)max7:}-f
fR@O_l (h,) _ :Rz.o_h%NN S P P s UNN P NN

— W1, HNn
i 2AB ’
mln{l, » }

where My, , g¢y and M@r’gnax’j{NN are given by (34) and (35) respectively. O
I Auxiliary Lemma for sum losses
Lemma 21. Fix a vector 7 = (71,...,7.) in the probability simplex of R and any real values
ay < ag < -+ < a, in increasing order. Then, for any permutation o of the set {1,...,c},

a To(1) a 1]

2] 7o) | | 92|, 2]

: O I N

Gc To(c) Gc Tle]
where we define T[13,T[2], - . ., T[¢] by sorting the probabilities {1, :y € {1,...,c}} in increasing
order.
Proof. For any permutation o of the set {1,...,c}, we prove by induction. At the first step, if

o(c) = [c], then let o1 = 0. Otherwise, denote k; € {1,...,c— 1} such that o(k1) = [¢] and choose
01 to be the permutation that differs from o only by permuting ¢ and k;. Thus,

ay To(1) aj To1(1)
CUE AL | = o + acoqo) — (ar o) + aeTa)
Qe To(c) Qe To1(c)

= (ak] - ac)(T[c] - TG’(C)) <0.
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At the second step, if o1 (c—1) = [¢ - 1], then let o5 = o1. Otherwise, denote ko € {1,...,c—2} such
that o (k2) = [¢— 1] and choose o5 to be the permutation that differs from oy only by permuting
c—1 and k. Thus,

al 7_0'1(1) al To'z(l)
a:2 . ’7'01:(2) _ a:2 . 7'02:(2) - (akg _ ac—l)(T[c—l] _ le(c_l)) <0.
Gel L7061 (c) Gc Toa(c)

And so on, at the nth step, if 6,,-1(c—=n + 1) = [c—n + 1], then let o, = 0,,_;. Otherwise, denote
kne€{1,...,c—n} suchthat o,,_1(k,) = [c — n+ 1] and choose o, to be the permutation that differs
from o,,_1 only by permuting ¢ — n + 1 and k,,. We have

ay Ton-1(1) ax Ton(1)
A2 | Ton-1(2) | < | 92|, Ton(2)

Gc Ton-1(c) Qc Ton(c)

Finally, after ¢ steps, we will obtain o, which satisfies o.(y) = [y] forany y € {1, ..., c}. Therefore,
we obtain

aj To(1) ay || Toy(1) al || 7o, (1) ay 1]
@l ATe@ | [T @D [ < <227 @ | <. <|92]. |72
Qe To(c) Qe LTo(c) Ac LT, (c) Q¢ Tle]

which proves the lemma. O

J Proof of negative and J{-consistency bounds for sum losses v

By the definition, the conditional ®3"™-risk can be expressed as follows:

Copeum (h, ) = D" p(a,y) D ®(h(z,y) - h(z,y"))

yey y'#y

= p(z,y) 3 ®(h(z,y) - h(z,y")) - ©(0)

yey y'ed

(36)

Theorem 10 (Negative results for hinge loss). Assume that ¢ > 2. Suppose that H is symmetric and
complete. If for a non-decreasing function f:R, — R, the following H-consistency bound holds for
any hypothesis h € H and any distribution D:

:R’Zo—l(h) - REOAJ‘C < f(:Rq;'ﬁum (h) - Rgi.?:;;e’j{)’ (10)

hinge

then, f is lower bounded by %.

Proof. Consider the distribution that supports on a singleton domain {x}. We define p(z) as
p(z,1) = 1 —€ p(z,2) = %, p(z,3) = % + ¢ and p(zx,y) = 0 for other y € Y, where 0 < € < %.
Note p(z,1) > p(z,2) > p(x,3) > p(x,y) =0, y ¢ {1,2,3}. Let hy € H such that ho(z,1) =1,
ho(x,2) = 1, ho(x,3) = 0 and ho(z,y) = —1 for other y € Y. By the completeness of H, the
hypothesis h is in H . By Lemma 3 and the fact that H(x) = Y when X is symmetric, the minimal
conditional ¢_1-risk is

* * 1
Rigr00=Chpygc(@) =1~ I;lgéxp(x, y)=1-p(x,1)=7+e
For h = hg, we have

2

:Rfo—l(ho) = efo—l(h()?x) = Zp(xvy)]lho(i?)iy =1 —p(I,ho(I)) =1 —p(l‘,2) = 3

yeyY
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For the sum hinge loss, by (36), the conditional ®7/\ -risk can be expressed as follows:

Corum (h,x) =Y p(z,y) > max{0,1+h(z,y") - h(z,y)}

hinge
yed y'#y

= Y pla,y) Y max{0,1+h(z,y") - h(z,y)}

ye{1,2,3} y'+y

> Z p(z,y) Z max{0, 1+ h(z,y") - h(z,y)}

ye{1,2,3} y'#y,y'€{1,2,3}

= (% - e)[maX{O, 1+h(z,2) - h(x,1)} + max{0,1 + h(x,3) — h(z,1)}]
. é[maX{O, 1+ h(,1) - h(x,2)} + max{0, 1+ h(z,3) - h(z,2)}]

+ (é + e)[max{O, 1+ h(z,1) - h(z,3)} + max{0,1 + h(z,2) - h(z,3)}]

=g(h).
Note (t’(pi?:;e(ho,x) =3e+ % Since % —€> % > é + ¢, by Lemma 21, we have
inf g(h) = inf h).
]'glﬁg( ) heﬂ—(:h(m,l)lzrflb(w,Q)Zh(:c,S) g( )

When h(xz,1) > h(z,2) > h(x,3), g(h) can be written as

g(h) =

—
l\')\»—l

) max{0,1+ h(x,2) - h(z,1)} + max{0,1+ h(z,3) - h(z,1)}]

—_

5[(1 +h(z,1) = h(z,2)) + max{0,1 + h(z,3) - h(z,2)}]

,_\
cn\»—*

) (1+h(w,1) - h(z,3)) + (1+ h(z,2) - h(z,3))]

If h(x,1) — h(z,2) > 1, define the hypothesis h € H by

(J? 1) h(m,l)—g(m,Q)fl lfy -1

?

h(x){

h(z,y) otherwise.

By the completeness of I and some computation, the new hypothesis h is in H and satisfies that
g(h) < g(h). Similarly, if h(z,2) — h(x,3) > 1, define the hypothesis h € I by

h(z,2) - w, ify=2
h(x,y) otherwise.

e - |
By the completeness of I and some computation, the new hypothesis h is in K and satisfies that
g(h) < g(h). Therefore,
inf g(h) = inf g(h) = inf g(h)

heXH heH:h(z,1)>h(x,2)>h(z,3) heH:h(z,1)2h(x,2)2h(x,3), h(z,1)-h(z,2)<1, h(z2)-h(z,3)<1

When h(x,1) > h(x,2) > h(z,3), h(x,1) — h(x,2) < 1 and h(zz) - h(x,3) < 1, g(h) can be
written as

g(h) = (7 - 6)[(1 + h(2,2) — h(z,1)) + max{0,1 + h(z,3) - h(z, 1)}]
+ 5[(1 +h(z,1) = h(z,2)) + (1 +h(z,3) - h(z,2))]
N (é . e)[(l (@, 1) = h(2,3)) + (1+ h(z,2) - h(z,3))]
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If h(x,1) — h(x,3) > 1, define the hypothesis h € 3 by

h(x,1) - MEDR@H ey, oy
h(x,y) otherwise.

(a,y) - {

By the completeness of H{ and some computation using the fact that 0 < € < %, the new hypothesis /.
is in J{ and satisfies that g(h) < g(h). Therefore,

inf g(h) = g(h)

inf
heX:h(xz,1)2h(x,2)>h(x,3), h(x,l)—h(l:BQ)Sl, h(z2)-h(z,3)<1, h(z,1)-h(z,3)<1

1
_ inf (36—7)(h(x,1)—h(9c,3))+2
heX:h(x,1)2h(x,2)2h(x,3), h(z,1)~h(x,2)<1, h(z2)-h(x,3)<1, h(z,1)-h(z,3)<1 2

=3e+ 3
2
Thus, we obtain for any h € I,
3
Ragum (h) = Copum (h,x) 2 g(h) 2 3e+ 3" Copum (ho, )
Therefore,

* * 3
R(I)sum H = G‘I,il}m ’g_f(x) = R@Sum (ho) =3e+ 5

hinge’ inge hinge

If (10) holds for some non-decreasing function f, then, we obtain for any h € K,

1
Rzml (h) - 5 —€< f(R@;'IJ:;;e (h) - :qu.sum (ho))

hinge
Let h = hg, then f(0) > 1/6—e¢. Since f is non-decreasing, forany ¢t > 0and 0 < € < £, f(t) > 1/6—e.
Let € — 0, we obtain that f is lower bounded by % O

Theorem 22 (J{-consistency bound of ®3 ™. ). Suppose that H is symmetric and complete.

Then, for any hypothesis h € H and any distribution,

1
Reg 1 (h) = Rj, 5 < (Ragum (B) = R gc+ Mam - 50)” =My 3. (37)

sq-hinge sq-hinge’ sq-hinge’

Proof. For the sum squared hinge loss ®3™;, .., by (36), the conditional P ™ ; . -risk can be
expressed as follows:
Comum,pe (B )
2
= > p(z,y) Y max{0,1+h(z,y") - h(z,y)}
yey y'+y
2 2
= p(Z, Ymax) Z max{0,1+h(z,y") - h(z,y)} + Z p(z,y) Z max{0, 1+ h(z,y’) - h(z,y)}
Y #Ymax Y#FYmax y'+y
2
= p($7ymax) Z max{(), 1+ h(:z:,y') - h(x7ymax)} + Z p(x,y) max{(), 1+ h(:E, ymax) - h(xvy)}Q
Y #Ymax Y#FYmax
2
+ > ply) Y, max{0,1+h(z,y") - h(z,y)}
Y#FYmax y,¢{ymax:y}

For any h € 7, define the hypothesis hy € H by

— h(z, if ¥ # Ymax
i) = {0 U

for any \ € R. By the completeness of 3(, the new hypothesis h, is in 3. Therefore, the minimal
conditional @37, -risk satisfies that for any A € R, Choum  4¢(x) < Cpsum  (hy,z). Let

sq-hinge Sqohinge’ sq-hinge
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h € H be a hypothesis such that h(z) # ymax. By the definition and using the fact that H(z) = Y
when H is symmetric, we obtain

ACyeum  e(h ) = Comm  (hy2) - Chum  50(2)

sq-hinge’ sq-hinge sq-hinge’
Z e‘bs“m (h,l’) — eésum (hA’:L')
sg—hinge sg—hinge

> (@, Ymax ) max{0, 1 + h(z, h(z)) = b(2, Ymax) }> + p(x, h(z)) max{0,1 + A(z, Ymax ) — h(z, h(z))}’
~4p(2, Ymax)P(2, h(2))
p(xvymax +p(:l:, h(x))

(taking supremum with respect to \)

4p(@, Ymax)p(z, h(2))
P2, Ymax + p(x, h(z))
— (p(l.vymax) _p(xa h(‘r)))Q

p(xaymax +p($, h(l‘))

2 p(zaymax) +p(I7 h(I)) - (h(SC, h(:L')) - h(xvymax) 20)

2
> (maxp(z.) - p(e.h(2)) (0% D ) + (2, h(2)) < 1
= (Aegoflygc(h,av))2 (by Lemma 3 and H(z) = Y)
> ([ACq,_, 3c(h,2)],)’ ({1, <)

for any € > 0. Therefore, taking P be the set of all distributions, J be the symmetric and complete
hypothesis set, € = 0 and ¥(¢) = t? in Theorem 4, or, equivalently, I'(t) = \/Z in Theorem 5, we
obtain for any hypothesis & € 3 and any distribution,

1
Reyy (h) =R}y 50 < (Rosum (B) = R g¢+ Masam - 9¢)" = My, oc.

q-hinge sq-hinge’ sq-hinge’

O

sum

Theorem 23 (H-consistency bound of ®:11"). Suppose that H is symmetric and complete. Then,
for any hypothesis h € H and any distribution,

1
:Réo—l (h) - Rzo—lyﬂ'f < \/é(jzézgpm (h) - R:I)E;;pr.)g{ + Mq;.i;gl’j—{) - M@g,l,ﬂ'ﬂ (38)

Proof. For the sum exponential loss g, by (36), the conditional @3 -risk can be expressed as
follows:

Cosum (h,x) = Y- p(2,y) Y exp(h(z,y") - h(z,y))

yey y'#y
= (%, Ymax) . exp(h(z,y") = h(z,ymax)) + Y. p(z,y) Y, exp(h(x,y") - h(z,y))
Y #FYmax Y#FYmax y'+y
= p(Z, Ymax) Z exp(h(x,y') ~ (2, Ymax)) + Z p(2,y) exp(h(Z, Ymax) — h(z,y))
Y #Ymax YFYmax
+ 3 plxy) Y exp(h(z,y) - h(x,y))
Y#FYmax y'¢{y1uaxxy}

For any h € J, define the hypothesis hy € I by

) bz, y) iy £ (s h(2))
ha(z,y) = log(exp[h(z, Ymax )] + A) if y = h(x)
log(exp[h(% h(l’))] - )‘) if Y = Ymax

for any \ € R. By the completeness of 3(, the new hypothesis h, is in 3. ‘Therefore, the minimal
conditional ®Zy-risk satisfies that for any A € R, Cuum 5¢(7) < Cozum (hy,z). Let h € H be a
exp ° ex

exp

hypothesis such that h(z) # ymax. By the definition and using the fact that H(z) = Y when ¥ is
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symmetric, we obtain
Aed’i‘;}“j,ﬂf(ha ) = C’@::}n;(h,x) - e;;;gﬁ,ﬂf(x)
> €q>§§gx (h, fL') - ecpz\;l(gl (E)\, QC)

(VoG vm) Vo (@(@) )

eh(z,h(z)) 4 eh(®;ymax)

>3 MY p(2, ymax )T EYm) 4 p(z h(z))e @)
y'eY
(taking supremum with respect to \)

> (VP& Ymax) = V(& h(x))) (h(x,h(2)) 2 h(2, ymax) and p(z, h(z)) < p(Z, Ymax))

( (%, Ymax) — p(x,h(x)) )2
V@, h(2)) +/P(@, Ymax)

%(maxp(x y) - p(x, h(x))) (0 < p(2, Ymax) + p(z,h(z)) <1
= §(Aee0_l,w(h, z))’ (by Lemma 3 and H(z) = Y)
2 %([Aefo—lﬁf(hax)]e)Q ([t]e <t)

for any € > 0. Therefore, taking P be the set of all distributions, J{ be the symmetric and complete

hypothesis set, ¢ = 0 and ¥ (¢) = % in Theorem 4, or, equivalently, I'(#) = \/2t in Theorem 5, we
obtain for any hypothesis i € J and any distribution,

Nl

:Rfo-l (h) - :R;o_l,ﬂ < \/i(Régg‘(g‘ (h) - R:i)g;:g',?( + be;;g‘,ﬂf) - Méo_l,}c

O

Theorem 24 (J{-consistency bound of 7). Suppose that H is symmetric and satisfies that for
any z € X, there exists a hypothesis h € H such that |h(x,i) — h(x,7)| > pforany i + j € Y. Then,
for any hypothesis h € H and any distribution,

92,[0_1 (h) - iRzO—lyj{ < Rq)i‘;um (h) - :R:;zum’j{ + M@zﬂmﬂ{ - M[O_hj—(. (39)

Proof. For any x € X, we define ppij(x),p[2)(x),...,pre(x) by sorting the probabilities
{p(z,y) 1y €Y} in increasing order. Slmllarly, for any x € X and h ¢ H, we define
h(z,{1},),h(x,{2},),...,h(z,{c},) by sorting the scores {h(x,y) :y € Y} in increasing order.
In particular, we have

h(z,{1},) =minh(z,y), h(z,{c},)= maxh(x,y), h(z,{i},) < h(x, {j}j), Vi <
yey yey

If there is a tie for the maximum, we pick the label with the highest index under the natural ordering
of labels, i.e. {c}, = h(z). By the definition, the conditional ®3"™-risk can be expressed as follows:

Copgum (h, ) = Zlép(fr,y) 2. 2p(hl@,y) = h(z,y")

[Z‘I)p(h(x {i},) = h(z,{j}.)) + Z @, (h(z,{i},) = h(z,{j}, ))]

J=1+1

N
)

i x)[Zl @, (h(x,{i},) - M=z, {j},)) +c- z] (®,(t) =1 for t < 0)

By the assumption, there exists a hypotheses h € JH such that |h(x,i) — h(x,j)| > p forany i # j € Y.
Since H is symmetric, we can always choose h* among these hypotheses such that A* and p(x)
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induce the same ordering of the labels, i.e. p(x, {k},) = ppr1(z) for any k € Y. Then, we have

iy (2) < Cagom (*,2)

Mn

p(z, {i}x)[lz_:1 @, (W (w, {i},) - h"(z,{j},)) + ¢~ Z]

<.
I
[

MO

p(z,{i},)(c—1i) (|h*(x,i) —h*(x,j)| > pforany i # jand ®,(t) =0, Yt > p)

i=1
= Z 7(x)(c—1) (h* and p(z) induce the same ordering of the labels)
=c-— Zip[i](a:) Ciapy(x) =1
i=1

By the definition and using the fact that H(x) =Y when H is symmetric, we obtain

Ae@?lmj—((h,x)
= Gq;.sum(h, fE) - e;sum g.c(x)

- ol ()| B 80 (1) = G10) e = (o= )
22 (z,{i}, )(c—z)—(c—Zzp (m)) (®,20)
- Yina (@) - Yine. (i) (Sl (i) = 1)

~.
I
Ju

c-1 P[c](zf)) c- } (p(l:‘{, {C}f}) )
c- Ple-11(x c- p(z,{c-1},
= rgeayxp(x,y) -p(x,h(z)) +|c - 2] p[c,%](x) -|e- 21| p(, {c.— 2}.)

—_

L L@ 1 L1 1L e 1)
(pre)(x) = maxyey p(x,y) and {c}, = h(z))
> ma%jxp(av7 y) —p(x, h(z)) (by Lemma 21)
ye
=ACy, ,.5c(h,x) (by Lemma 3)
2 [Aezo—l,f}{(hv x)]e ([t]e <t)

for any € > 0. Therefore, taking P be the set of all distributions, J be the symmetric hypothesis
set, € = 0 and ¥(¢) = ¢ in Theorem 12, or, equivalently, I'(¢) = ¢ in Theorem 5, we obtain for any
hypothesis h € I and any distribution,

Reg-y () =R, g < R (h) = R g + Mo 3¢ ~ My, 3¢

K Proof of H-consistency bounds for constrained losses ®cstnd

Recall that h(z) and ypax are defined by h(z) = argmax, .y h(z,y) and ymax = argmax, .y p(z, y).
If there is a tie, we pick the label with the highest index under the natural ordering of labels. The
main idea of the proofs in this section is to leverage the constraint condition of Lee et al. (2004) that

the scores sum to zero, and appropriately choose a hypothesis & that differs from h only for its scores
for h(z) and ymax. Then, we can upper bound the minimal conditional risk by the conditional risk of

h without requiring complicated computation of the minimal conditional risk. By the definition, the
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conditional ®°**"4_risk can be expressed as follows:

Caenna (hy2) = 3 p(w,y) Y O(=h(a,1))

yeY y'*y
= Z O(=h(z,y)) Z p(w,y') (40)
yeY y'#y
= > (1-p(z,9))2(-h(z,y))
yeY
Theorem 25 (J-consistency bound of @fﬁg‘gﬁ). Suppose that H is symmetric and complete. Then,

Sfor any hypothesis h € H and any distribution,
fRzo_l (h) - :Rzo-l,?f < R(bi:stnd(h) - :R:;cstnd I + Mq,csmd I~ M[o_lyj{. (41)

1inge hinge’ hinge’

Proof. For the constrained hinge loss @flsigg;, by (40), the conditional @ﬁsiffé‘el-risk can be expressed
as follows:

Copestna (b, ) = Y (1= p(z,y)) max{0,1 + h(z,y)}

hinge
yeY
= > (A-pley)max{0,1+h(z,y)}+ > (1-p(z,y))max{0,1+h(z,y)}
Y&{Ymax,h(z)} Y#H{ Ymax,h(z)}

Let h € 3 be a hypothesis such that h(z) # ymax. For any @ € X, if h(2,Ymax) < 1, define the
hypothesis h € H by

B h(z,y) if Y ¢ {Ymax, h(2)}
h(z,y) = { "(®,Ymax) ify=h(z)
h(xvh(x)) if ¥ = Ymax-
Otherwise, define the hypothesis h € H by
3 h(z,y) if Y ¢ {Ymax, h(2)}
h(z,y) =1-1 if y =h(z)
h(Z, Ymax) + h(xz,h(x)) +1  if ¥y = Ymax.
By the completeness of J{, the new hypothesis A is in 3 and satisfies that Xyey h(z,y) = 0. Since

Yyey h(x,y) = 0, there must be non-negative scores. By definition of h(z) as a maximizer, we must

thus have h(x,h(z)) > 0. Therefore, the minimal conditional @fjﬁfg‘g-risk satisfies:

G;cstnd }C(Qj) < Cpostna (E, x)

- {(1 _p(maymax))(l + h(l’, h(m))) + Zy;{{ymax,h(a:)}(l _p(xay))(l + h(xvy)) if h(mvymax) <-1
(1= (2, Ymax)) (A(2, Ymax) + A2, h(2)) +2) + Xpgtyo nay (1= p(z,9))(1+h(z,y)) otherwise.

By the definition and using the fact that H(x) =Y when H is symmetric, we obtain
Ae(bcstnd g_c(h/, SC) = eq)cstnd (h7 x) - e;?%tnd j{(x)
hinge’

hinge’ hinge

> eq)cstnd (h, Jj) - e(bcstnd (E, Jj)
hinge hinge

= (1 + h(l‘, h(x)))(p(x7ymax) —p(x, h((E)))

> maxp(z,y) - p(z, h(2)) (h(z,h(x)) 2 0)
=ACyy .5 (h,x) (by Lemma 3 and H(z) = Y)
2 [Aeeo—l,ﬂf(h’ z)]g ([t]e <t)

for any € > 0. Therefore, taking P be the set of all distributions, J be the symmetric and complete
hypothesis set, € = 0 and U(¢) = ¢ in Theorem 4, or, equivalently, I'(¢) = ¢ in Theorem 5, we obtain
for any hypothesis h € J{ and any distribution,

* *
ngo_l (h) - Réo—l,% < R@;?;rgz(h) - R@cstnd I + M(Dcstnd I~ Mfo—h}f'

hinge’ hinge?’
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Theorem 26 (H-consistency bound of @gzt_‘}ﬂnge). Suppose that H is symmetric and complete.

Then, for any hypothesis h € H and any distribution,

1
2
j{Z071 (h) - fRzoq,i}C < (Rq)cstnd (h) - R;cstnd JH + Mq)cstnd g{) - M@0717j—f. (42)

sq—hinge sq—hinge sq—hinge’

Proof. For the constrained squared hinge loss @gg&nh%nge, by (40), the conditional @gztfﬁnge-risk can
be expressed as follows:

Caesna  (hya) = Y- (1= p(z,y)) max{0,1+h(z,y)}’

sq—hin
Y€y
= Y (-ply)max{0,1+h(z,y)} + Y (1-p(a,y)) max{0,1+h(z,y)}
Y&{Ymax,h(z)} Y#{Ymax,h(x)}

Let h € 3 be a hypothesis such that h(2) # Ymax. For any z € X, if h(x, ymax) < —1, define the
hypothesis h € H by

_ h($,y) ify¢{ymaX7h(x)}
h((E,y) = h(xaymax) lfy:h(l')
h(zh(x)) iy = Ymax-
Otherwise, define the hypothesis h € 3 by

h(z,y) if y ¢ {Ymax, h(2)}

) = | 35 ) (2 1 ) + b () =1 iy = ()

—-p(z,h(x .
2_p($7y:ix)_;()z),h($)) (2 + h(x, Ymax) + h(z,h(x))) -1 if y = Ymax-

By the completeness of J{, the new hypothesis h is in J{ and satisfies that X yey h(z,y) = 0. Since
Y yey h(x,y) = 0, there must be non-negative scores. By definition of h(z) as a maximizer, we must

thus have h(z,h(x)) > 0. Therefore, the minimal conditional @gflt_rildin g0 Tisk satisfies:

;cstnd }C(m) < Cpestna (E, x)

sq—hinge’ sq-hinge
_ (1 _p(xvymax))(]. + h(x, h(x)))2 + ny{ylnaxvg(x)}(l —p(l’, y))(]. + h(l’, y)) if h(l’, ymax) < -1
- —P(Z,Ymax —p(z,h(z h(x,Ymax ) +h(z,h(x .
(ot JOpE RO B T e SIS 4 55 (e (L= P(2,9)) (L + b, y)) - otherwise,

By the definition and using the fact that H(x) = Y when J is symmetric, we obtain
Aeq>cstnd g_c(h,, CU) = eq)cstnd (h,, :C) - e;csmd L3 (x)

sq—hinge’ sq—hinge sq-hinge
> ecI)CSt_l’;]d, (h, l') - G@cst_rﬁ:} (E7 J:)
_ [+ (@, h(2)))* (P(2, Ymax) - P(x,h(2))) if h(2, Ymax) < -1
9(1 = p(z, Ymax), 1 = p(x,h(x)),1 + h(x, Ymax), 1 + R(z,h(z))) otherwise
2
> (14 b, h(2))) (maxp(a.y) -z, h(2))) (property of g and p(, Ymas) < 1)
ye
2
> (maxp(a.y) - pla,h(2))) (h(z,h(2)) > 0)
= (Aegu_hg{(h,l‘))Q (by Lemma 3 and H(z) = Y)
2
> ([ACe_, 3¢(h,2)],) ([t]. <t
for any € > 0, where g(z,y,a, 8) = w >B%(z-y)’when0 <o <y<l,z+y>1

and 1 < a < . Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, € = 0 and ¥(¢) = t? in Theorem 4, or, equivalently, I'(¢) = \/Z in Theorem 5, we
obtain for any hypothesis i € J{ and any distribution,

1

2
RZ071 (h) - Rzoq,i}f S (Rq);:stnd (h) - R;cstnd s + Mq)cstnd g{) - M@0717j{.

q-hinge sq—hinge’ sq-hinge’
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Theorem 27 (JH-consistency bound of @g;t;d). Suppose that H is symmetric and complete. Then,

for any hypothesis h € H and any distribution,

1

Reg, (h) = R}, 50 < V2 Raggpa (h) - Riyestna g + Maggipa s ) = Mgy 0 (43)

Proof. For the constrained exponential loss @g;tp“d, by (40), the conditional @gf‘fp“d—risk can be
expressed as follows:

Caggina(h, ) = 3 (1 -p(a,y)) exp(h(z,y))

yey

= Y (O-plzy))eph(z,y)+ Y exp(h(z,y))

Ye{Ymax,h(z)} Y#H{Ymax,h(z)}
Let i € H be a hypothesis such that h(z) # Ymax. For any z € X, define the hypothesis h,, € H by
h(z,y) if Y ¢ {Ymax, h(z)}

Elt(x7y): h(xyymax)"'/l lfy:h(l')
h(:c,h(x))—,u ify:ymax

for any 1 € R. By the completeness of JH, the new hypothesis Eu is in H and satisfies that
Yyey hu(x,y) = 0. Since ¥, oy h(,y) = 0, there must be non-negative scores. By definition of h(z)

as a maximizer, we must thus have h(z, h(«)) > 0. Therefore, the minimal conditional <I>g§'f;d—risk
satisfies that for any p € R,

e;gitpnd ,g.c(x) S eégitrzld (EM7 .'I;)

= (1= p(@, Ymax) )" PEDTH 4 (1= p(2,h(z)))e T vmedti S0 (1 - p(x,y)) exp(h(z,y)).
y#{ymamh(z)}

By the definition and using the fact that H(x) =Y when H is symmetric, we obtain
Ae‘l’;iﬁi‘dﬂf (h7 .’ﬂ) = Gég?pﬂd (h, 1’) - (‘ffpgig,d’% (x)
> e@gitpnd (h, Jf) - e(pgitbnd (EH’ 1’)

> (V1= plar (@)1 -\ J(1 = pla ) e ) |

(taking supremum with respect to (1)

> MO (T plah(@) -/~ P, )

(eM@h(@)) 5 eh(@ymax) and p(z, h(x)) < p(2, Ymax )
> (VI @0 (@) ~ V2 v))) (h(z.h(x)) 2 0)

_ ( P&, ) ~ plah() )
\/(1 —p(x, h(I))) + \/(1 —p(z,ymax))

2

1 2
2 §(maxp(x7y) —p(x, h(l‘))) 0< P(Cﬂ,ymax) +p($, h(l‘)) <1)
yey
= %(Aeeo,l,:}c(h, z))? (by Lemma 3 and H(z) = Y)
1
> S (A8, ac(h2)],)’ ([t <b)

for any € > 0. Therefore, taking P be the set of all distributions, H be the symmetric and complete

hypothesis set, € = 0 and () = % in Theorem 4, or, equivalently, I'(¢) = /2t in Theorem 5, we
obtain for any hypothesis i € JH and any distribution,

N

:Rgo_l (h) - :Rzo—hg’f < \/5(:R(I>Sitpnd (h) - R;gitpnd’g.c + M(I)Sitpnd)g-f) - M[O_hj{.
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Theorem 28 (J-consistency bound of @Cpsmd). Suppose that H is symmetric and satisfies that for

any x € X, there exists a hypothesis h € 3 such that h(x,y) < —p for any y # Ymax. Then, for any
hypothesis h € H and any distribution,

Reo, (R) - fRZH,:}c < Rq;.:;stnd (h) - ‘rRszft"d,i}C + Mq,gsmdﬂ.c - M,y 3¢ (44)

Proof. Since ¥,y h(x,y) = 0, by definition of h(x) as a maximizer, we must thus have h(x,h(x)) >

0. For the constrained p-margin loss @ZStnd, by (40), the conditional @;Stnd-risk can be expressed as
follows:

G<I>jft“d(h7$) > (1-p(z,y)) min{max{o, 1+ h(a;y)}’ 1}

yey

> A-pl@y)+ ¥ (1-p(x7y))max{o,1+h(“;y)}

yeY:h(z,y)=0 yeY:h(z,y)<0
>1-p(z,h(z))
>1 - maxp(z,y).
yey

By the assumption, the equality can be achieved by some A7, € 3 with the constraint 3, oy h(z,y) =0
such that 1y (x,y) < —p for any y # Ymax and 7y (2, Ymax) = = Lyray,... P5(2,y") 2 0. Therefore,
the minimal conditional @;Stnd-risk can be expressed as follows:

Chestna 5¢(z) = 1 —maxp(x,y).
L yeY

By the definition and using the fact that H(z) = Y when 3 is symmetric, we obtain

Aeégstndﬁf}{(h, :L') = eq)(/:)stnd (h, x) - G:I;.%stnd’j{(x)

-3 aepeas ¥ sea)medors DL (i)

yeY:h(z,y)=0 yeY:h(z,y)<0
> 1= p(ah(z)) - (1 - macp(a.y) )
yed
= rggszo(:v,y) - p(z,h(x))

=ACy .5 (h,x) (by Lemma 3 and H(x) = Y)

2 [ACq,, 5c(h,x)], ([tle <)
for any € > 0. Therefore, taking P be the set of all distributions, 3 be the symmetric hypothesis
set, € = 0 and ¥(¢) = ¢ in Theorem 4, or, equivalently, I'(¢) = ¢ in Theorem 5, we obtain for any
hypothesis h € H and any distribution,

* *
fwal (h) - Rég,l,}c < fR@Zsmd (h) — R@;Smd,f}C + M@meﬂf — Mfoq,ﬂ'f'

L Proof of negative results for adversarial robustness
Theorem 14 (Negative results for convex functions). Fix c = 2. Suppose that ® is convex and non-
increasing, and 3 contains 0 and satisfies the condition that there exists x € X such that H.(z) # @.

If for a non-decreasing function f:R, — R, the following H-consistency bound holds for any
hypothesis h € H and any distribution D:

Re, (h) =R 5c < F(Re(h) = Repe), (16)

then, f is lower bounded by %, for 7= 5“‘3", Hsum gp Hestnd,

34



Proof. Consider the distribution that supports on a singleton domain {z} with z satisfying that
H,(x) #+ @. When H,(x) # &, H,(x) is also non-empty. Take y; € I, (z) and let yo # y1. We

define p(x) as p(z,y1) = p(x,y2) = 3. Let hg = 0 € H. By Lemma 11 and the fact that () # @
and y; € H., (), the minimal conditional £.,-risk is

* * 1
Ri, 9= Cp gc(x) =1 —yérg?é)p(%y) =1-plwy1) = 5.

For h = hg, we have

:R&y(hO) = GZ,Y(hmx) = Z p(x,y) sup ]lp;L(x’,y)SO =1.

yeY afz-a'| <y

For the adversarial max loss with non-increasing ®, the conditional Pmax_risk can be expressed as
follows:

GimaX(th) = Zp(x,y) sup (I)(ph(xlvy))

ey e
= Zp(%y)@( inf ph(wﬂy))
bt aa-a'] <y

]- . 7 ! ]- . ! !
= <I>( inf  (h(z',y1) - h(z ,yg)))+¢( inf  (h(2',y2) - h(z ayl)))
2 \atfz—a'] < 2 \a"lz-2| <y

( inf
2 \a'fa-a’| <y

- deﬁw)—h@ﬂyﬂ))+;¢(— sup uwxcm>—hmﬁya>)

at|z—a’ <
If @ is convex and non-increasing, we obtain for any h € J,

Ramax (h) = G@max (h, ;E)

( inf
I. Py §
2 \a"fz-a'| <y

= (h(g;’7y1)_h(1;’,y2)))+;<b( sup (h(fl?l,yl)—h(l“”m)))

a|a-a'] <y

z@(l inf (h(:v’,yl)—h(w',yz))—% sup (h(x',y1)—h(w'7yz)))

2 I':HJ‘_CE’”,)S'Y x’:”m—a:’HpSV
(P is convex)

> ®(0), (® is non-increasing)
where the equality can be achieved by hg. Therefore,

:R'%max7g{ = e%max’g{(x) = R$max(h0) = Q(O)'

If (16) holds for some non-decreasing function f and (= Em“, then, we obtain for any h € 3,

Re, () = 5 < f (Rapu (1) - 2(0)).

Let h = hg, then £(0) > 1/2. Since f is non-decreasing, for any ¢ > 0, f(¢) > 1/2.

For the adversarial sum loss with non-increasing ®, the conditional $5™_risk can be expressed as
follows:

Cooum (hox) = > p(z,y)  sup Y. ®(h(z',y) - h(z',y))

yeyY oif|lz-a'|| <y y 2y

= ;(I)( I ll’lf“ (h(xlayl) - h(x,,yQ))) + ;(I)( inf (h(xlva) - h(xlvyl)))
x| x—x’ »<Y x’:

fla—a’|, <y

(h(‘r,ayl)_h(l‘,?yQ)))"';q)(_ sup (h(x,ayl)_h(xlayQ)))

@i||lz—a']| <y

== <I>( inf
2 \a'fa-a'| <y
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If ® is convex and non-increasing, we obtain for any h € J(,
R%sum (h) = e%sum (ha x)

5 L”;§|904fwﬁ—hwﬁwh)+;¢( sup Udﬁwﬂ—hwﬁmn)

a|a—a'] <y

m(l inf (&) - b)) - s (h(z',yn—h(x’,m)))

2 a'if|lz—a’| <y o'i|z—a’| <y
(P is convex)
> ®(0), (® is non-increasing)
where the equality can be achieved by hg. Therefore,
R 5 = Clioum 30(%) = Riguum () = (0).

If (16) holds for some non-decreasing function f and 7= $"™  then, we obtain for any h e I,

1
Re, (h) = 5 < f(Rgeum (1) = 2(0)).
Let h = hg, then f(0) > 1/2. Since f is non-decreasing, for any ¢ > 0, f(¢) > 1/2.

For the adversarial constrained loss with non-increasing ®, using the fact that A(z,y1) + h(z,y2) =0,
the conditional ®°**4-risk can be expressed as follows:
Cgeana () = Y p(z,y)  sup 37 @(-h(z',y))
yeY alf|lz—a’|, <y y'xy

:1®( inf (—h@ﬂyﬁ))+1¢( inf (—h@ﬁyﬂ))
2 \a'lz—a] <y 2 \etle-a’ll,<y

1 1
= <I>( inf h(x',yl)) +=®[-  sup Ah(z',y1)
2 z’:|z—a’|| <y 2

o'|le—z’|| <y
If @ is convex and non-increasing, we obtain for any & € I,
326cstnd (h) = e@csmd (h7 $)

1
( inf h(m',yl)) +=®|- sup A2 yp)
2 @' |z—a’|| <y 2

a|a-a'] <y

>

1
- in ha',y)-=  sup k(2 y1) (® is convex)
2 z"i|z—a’| <y 2 o a—a’|| <y

> ®(0), (® is non-increasing)
where the equality can be achieved by hg. Therefore,

:R%cst11(17j{ = e%catnd7j{(x) = fR%Cstnd(h()) = (I)(O)

If (16) holds for some non-decreasing function f and 7= 34 then, we obtain for any h € I,

1
Let h = hg, then f(0) > 1/2. Since f is non-decreasing, for any ¢ > 0, f(t) > 1/2.

M Proof of J{-consistency bounds for adversarial max losses Pmax

Theorem 15 (JH-consistency bound of 52“”‘). Suppose that H is symmetric. Then, for any hypoth-
esis h € H and any distribution D, we have
ZR@}M (h) - RX st M%glax,:}c

q)gnax)

Re, (h) =Ry 3¢ <

-Mg 5. (18)

Iy cfaex:0, (2)20) SUPhedCy () oo <y PR (270(2)) } v

p

min{l,
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Proof. By the definition, the conditional $glax-risk can be expressed as follows:

Camar(hox) = 2 p(z,y)  sup  @,(pa(a’,y))

yey a'if|lz—a’| <y
inf s sl < Pr (2’ h(2))
1—p(:r,h(x))+max{0,1— H H”_;ph }p(x,h(:c)) h e ¥, (x)
1 otherwise. (43)
inf 1y or| <y Pr(z',h(2))
- min{l, lo-efle }p(ac, h(z)) hed, ()

1 otherwise.

Since H is symmetric, for any x € X, either for any y € Y,

sup inf  pp(2’,h(z)) = sup inf ~ pp(2’,h(z))
he{heH, (z):h(z)=y} T lz—2l ,<v hed, (z) T lz—a']| <y
or H(x) = @. When H, (z) = @, (45) implies that C% (z) =1. When 3, (z) # @,

@zlax7f}.(:
: ’
Supheﬂt,(a:) lnfx’:l\zfa:’HpS"/ Ph (x ) h(l‘))

P

Comax 3(2) = 1= min{L }Igrllggxp(x, Y)-

Therefore, the minimal conditional Eglax-risk can be expressed as follows:
SUPKesc, (o) M orijo-ar) < PR (2 P(2))
p
When H, (2) = &, Cqumax (h,z) = 1, which implies that ACx.max 4c(h,z) = 0. When H,(z) # &,

using the fact that H, (z) =Y <= H,(x) # @ when K is symmetric,

G%g.ax,g.((x) =1 _min{la }Iggdxp(z7y)]lﬂw(w)¢®

Suphe‘}(fa, (z) infﬂc’:Hx—z’HpS'y ph(xlv h(ﬂj))

P

ACgumax g (h, ) = min{l, }m%xp(%y)
P ’ Ye

inf:r’:”z—:c’“ < ph(xlah(x))
1, 2 p(,h(2)) Lnesc, )

p

SUPpeg¢ (z) infz,:“m_f'\\pS'y ph(xl7 h(l‘))
L= (o) = o) oo )

}Aegm}((h, {,C)
P

SUPhesc, () I rijo-ar| <y Pr(2 P(2))

p

}[Aeg%g{(h, (ﬂ)]e

infa:s{a:EDC:i}Cﬂ,(z)ig} Supheﬂ-f,y(m) infw’:Ha:—w’Hps'y Ph (SC,, h(‘r))

1’ P }[Aeg%g{(h,l‘)]e

for any € > 0. Therefore, taking P be the set of all distributions, J{ be the symmetric hypothesis set,
e=0and

U(t) = min{l,

. { SUPhed(,, () inf:c’:Hac—x’HPS'y ph(x,7 h(.%‘))
=min{ 1,

infze{zex:f}{,y(r)#z} SUPhedc,, () infﬂ:’:\lx—z’HPS'y pr(2',h(z)) .
p

in Theorem 12, or, equivalently, I'(t) = ~!(¢) in Theorem 13, we obtain for any hypothesis h € H
and any distribution,

*
Rgmax (h) = R% e 50 + Mmax g¢
Mg ¢

inf:l;e{:l;exﬂ{,y(a;)tﬂ} SUPhed( ., (x) inf:z’:”:ufx’upg’y pr(z’;h(x)) } w

Re, (h) =Ry 5¢ <

min{l,
P
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N Proof of J{-consistency bounds for adversarial sum losses Psum

Theorem 16 (H-consistency bound of 5;““‘). Assume that H is symmetric and that for any
x € X, there exists a hypothesis h € H inducing the same ordering of the labels for any
z' e {z':|z -], < v} and such that infy:”w_z,”psﬁh(z’,i) —h(z',5)| =2 pforany i = j €Y.
Then, for any hypothesis h € H and any distribution D, the following inequality holds:

ng (h) fRz Q{<R¢Sum(h) RZ +M$§,um’%—Mg IC- (20)

Foum 3¢ v

Proof. For any x € X, we define ppij(x),p[2)(),...,pre(x) by sorting the probabilities

{p(z,y) :y €Y} in increasing order. Slmllarly, for any z € X and h € 3, we define
h(z,{1},),h(x,{2},), ..., h(z,{c},) by sorting the scores {h(x,y) :y € Y} in increasing order.
In particular, we have

M, {1},) =minh(z,y), bz, {c};) =maxh(z,y), h(z,{i},)< h(x, {j};), Vi<

If there is a tie for the maximum, we pick the label with the highest index under the natural ordering
of labels, i.e. {c}, = h(z). By the definition, the conditional ®7"™-risk can be expressed as follows:

Caoum (hox) = 2 p(zy)  sup 3 ®,(h(a’,y) - h(z',y))

yeY o' z—a’|| <y y'#y
=Y sup  p(x,y) Y P(h(z',y) - h(a',y))
yeY z':|z—a’| <y y'#Y

C

=2, sup  p(x{i}, )[Z<I> (h(a', {i}4) = h(a’, {3} o) + Z @ (h(2" {i},) - h(a, {J}x/))]

i=1a"lz-=’| <y J=i+l

C

=), sup p('r7{i}w')l:zl(bp(h(x,a{i}w')_h(xla{j}g;'))+c_i:|

i=1z"i|lz—a’|| <y
(46)
By the assumption, there exists a hypothesis i € H inducing the same ordering of the labels for any
a e {2tz - '], < ~} and such that inforeo) <ylh(2’,0) = h(a’,j)| > pforany i # j €Y, ie.
{k}, = {k}, forany k e Yand 2’ € {2 : |z - '], < ~}. Since H is symmetric, we can always
choose h* among these hypotheses such that h* and p(z) induce the same ordering of the labels, i.e.
p(x, {k},) = prry(x) for any k € Y. Then, by (46), we have

€ 5¢(2) < Cpun (1,2)
C

=2, sw  pa{i},) 2¢p(h*(w',{i}zf)—h*(w'7{j}mf))+c—i] (by (46))

i=1a’|z—a| <y

C

=, sup  p(a,{i},)(c—1)

i=1a"|z-a’| <y

(infxlzuz_xlupgﬁh*(x’,i) —h*(a',7)| > pforany i+ jand ®,(t) =0, Vt > p)

:ipw&n»@—n

(h* induces the same ordering of the labels for any 2’ € {2 : |z — 2 I, < h

o

= Z pri(w)(c—1) (h* and p(z) induce the same ordering of the labels)

ippiy () (X pray(e) = 1)

1

C

%
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By the assumption, H, (z) # @ and H. () = Y since J{ is symmetric. Thus, for any h € I,

Aegsmnﬂ{(h, .13)
= Cgns (1, 7) = C ()

:Zc: sup  p(x,{i}, )[Z‘Pp(h(l‘ {i},) - h(z' {5}, ))+c—2]—(c—22p[z‘](x))

i e-a] <y i

(®,(t)=1fort<0)

s p(h @) gt + 5. sup pla {1, ) (- ( S ) @, 20)

i=la'z—a'| <y 1

2 p(@,h(x))Lpgac, () + Zp(x {i},)(c-1i)- (c - Zzp (x)) (lower bound the supremum)

i=1 i=1
c=17 [ pra(x) c-1 p(z,{c},)
c=1| |pre-1y(x) c-1| |p(z,{c-1},)
= p(x,h(2)) Lngae, (o) +Iggdxp(x,y)—p(x,h(x))+ c—_2 | Ple-2) (33) - c—2 . p(a:,{c.—Q}I)
1 m@ | L] e
(p[c] (.23) maxye‘d p(l‘, y) and {C}x = h(x))
> p(z,h(2)) Lngac, (2) + r;lgszo(:v, y) - p(z,h(x)) (by Lemma 21)
= %@Xp(x’y) = p(x,h(2)) Lheac, (o)
= ACy gc(h,x) (by Lemma 11 and H, (z) = Y)
> [ACy, sc(h, )], ([tl. <t

for any € > 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis
set, ¢ = 0 and ¥(¢) = ¢ in Theorem 12, or, equivalently, I'(¢) = ¢ in Theorem 13, we obtain for any
hypothesis h € H and any distribution,

Re, (h) = Ri, 3¢ < Rgoum (h) = R

¥

Foum 5 M%;um’j-( - M@ H-

O Proof of J{-consistency bounds for adversarial constrained losses Pestnd

Theorem 17 (J-consistency bound of ?{3;3,5““1). Suppose that H is symmetric and satisfies that

for any x € X, there exists a hypothesis h € 3 with the constraint 3.,y h(x,y) = 0 such that

SUPy 1| g—ar| <y R(2', ) < —p for any y # Ymax. Then, for any hypothesis h € 3 and any distribution,
<

R( (h) Rz JH < R@med(h) :R + Mazst11d7% - MZ J- (22)

v

<I>cstn(l JH

Proof. Define Ymax bY Ymax = argmax,.y p(x,y). If there is a tie, we pick the label with the
highest index under the natural ordering of labels. Since ¥,y h(x,y) = 0, by definition of h(x) as a
maximizer, we must thus have h(x,h(x)) > 0. By the definition, the conditional Ezsmd-risk can be
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expressed as follows:

@@zsmd(h,x) =Y p(z,y) sup > @, (-h(2",y"))

yey x| z—a’|| <y y'+y
=>  sup  p(z,y) Y. u(-h(z',y))
yey ’:|z—a’| <y y'#y

= Z sup p(xay) Z (I)P(_h(xlay,)) + Z (pp(—h(x/7y,))

yeY z'if|lz—2’| <y y'#y:h(z’,y")>0 y'#y:h(z’,y")<0

> sup  p(z,y)
yzh(z’) #":[z—a’|| <y

Zl—mz%xp(x,y). (®,>0and ®,(t) =1fort<0)
ye

By the assumption, the equality can be achieved by some /7, € I with the constraint 3,y h(z,y) =0
such that SUD 1137 < hy (2 y) < —p for any y # ymax and A (7', Ymax) = = ey, R (2',Y)
for any 2’ € {x’ Ha -2, < ’y}. Therefore, the minimal conditional @ZS“‘d-risk can be expressed as
follows:

e%(p:stnd7g{(x) =1- r??gxp(x7y)

By the assumption, H, (z) # @ and H.,(x) =Y since I is symmetric. Thus, for any i € 3 with the
constraint that 3, .y h(x,y) = 0,

A(‘,’gzsmd’}((h,x) = 6525“"“ (h,x) - G%csmd&c(ﬂi)

=Y sup  p(z,y) ), D,(-h(z",y")) - (1—123?19(%1/))

yey =’z —a’| <y y'#Y

> > p(z,y) > ®,(-h(z,y")) - (1 - mayxp(x,y)) (lower bound the supremum)
yeYy y'EyY e

=2 (1=p(z,9)®,(-h(z,y)) - (1 — maxp(z, y)) (swap y and y")
yeY ¢

> (@) g, o+ 1 - Dl () - (1 - maxp(a. )

= rggdxz)(x, y) = p(z,h(2)) Lnesc, (2)

= ACy, 5¢(h,x) (by Lemma 11 and H, (z) = Y)
> [A€, gc(h,x)], ([tle<t)

for any € > 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis
set, ¢ = 0 and U(¢) = ¢ in Theorem 12, or, equivalently, I'(¢) = ¢ in Theorem 13, we obtain for any
hypothesis h € 3 and any distribution,

fRZ.Y (h) - :R-wa}{ < fR@;stnd (h) - R%;‘stnd7g{ + M@;stndﬂ{ - M&,,f}ﬂ
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