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A Related work

The notions of Bayes-consistency (also known as consistency) and calibration have been well studied
not only with respect to the binary zero-one loss (Zhang, 2004a; Bartlett et al., 2006; Steinwart, 2007;
Mohri et al., 2018), but also with respect to the multi-class zero-one loss (Zhang, 2004b; Tewari and
Bartlett, 2007), the general multi-class losses (Ramaswamy and Agarwal, 2012; Narasimhan et al.,
2015; Ramaswamy and Agarwal, 2016), the multi-class SVMs (Chen and Sun, 2006; Chen and Xiang,
2006; Liu, 2007; Dogan et al., 2016; Wang and Scott, 2020), the multi-label losses (Gao and Zhou,
2011; Dembczynski et al., 2012; Zhang et al., 2020), the losses with a reject option (Ramaswamy
et al., 2015), the ranking losses (Ravikumar et al., 2011; Ramaswamy et al., 2013; Gao and Zhou,
2015; Uematsu and Lee, 2017), the cost sensitive losses (Pires et al., 2013; Pires and Szepesvári,
2016), the structured losses (Ciliberto et al., 2016; Osokin et al., 2017; Blondel, 2019), the polyhedral
losses (Frongillo and Waggoner, 2021; Finocchiaro et al., 2022), the Top-k classification losses
(Thilagar et al., 2022), the proper losses (Agarwal and Agarwal, 2015; Williamson et al., 2016) and
the losses of ordinal regression (Pedregosa et al., 2017).

Bayes-consistency only holds for the full family of measurable functions, which of course is distinct
from the more restricted hypothesis set used by a learning algorithm. Therefore, a hypothesis set-
dependent notion of H-consistency has been proposed by Long and Servedio (2013) in the realizable
setting, used by Zhang and Agarwal (2020) for linear models, and generalized by Kuznetsov et al.
(2014) to the structured prediction case. Long and Servedio (2013) showed that there exists a case
where a Bayes-consistent loss is not H-consistent while inconsistent losses can be H-consistent.
Zhang and Agarwal (2020) further investigated the phenomenon in (Long and Servedio, 2013) and
showed that the situation of losses that are not H-consistent with linear models can be remedied
by carefully choosing a larger piecewise linear hypothesis set. Kuznetsov et al. (2014) proved
positive results for the H-consistency of several multi-class ensemble algorithms, as an extension of
H-consistency results in (Long and Servedio, 2013).

Recently, the notions of H-calibration and H-consistency have been used by Bao et al. (2020);
Awasthi et al. (2021a) in the study of adversarial binary classification losses, as defined in (Goodfellow
et al., 2014; Madry et al., 2017; Tsipras et al., 2018; Carlini and Wagner, 2017; Awasthi et al., 2023).
The calibration and consistency of adversarial losses present new challenges and require more careful
analysis. The work of Bao et al. (2020) showed that for the linear hypothesis set, convex margin
based losses are not calibrated with respect to the adversarial 0/1 loss. Instead, they proposed a class
of non-convex losses that could be calibrated under some necessary and sufficient conditions. The
work of Awasthi et al. (2021a) generalized the results in (Bao et al., 2020) to the nonlinear hypothesis
sets. They also pointed out that H-calibration and H-consistency are not equivalent in the adversarial
scenario by showing that no continuous surrogates can be H-consistent with linear models. They
further provided sufficient conditions guaranteeing H-consistency for H-calibrated surrogates.

Most recently, Awasthi et al. (2022a) presented a series of results providing H-consistency bounds
in binary classification, for both the adversarial and non-adversarial settings. These guarantees are
significantly stronger than the H-calibration or H-consistency properties studied by Awasthi et al.
(2021a,c). They are also more informative than similar excess error bounds derived in the literature,
which correspond to the special case where H is the family of all measurable functions (Zhang,
2004a; Bartlett et al., 2006; Mohri et al., 2018). Our work significantly generalizes the results in
(Awasthi et al., 2022b) to the multi-class setting, in both the adversarial and non-adversarial scenarios,
where the study of calibration and conditional risk is more complex, the form of the surrogate losses
is more diverse, and in general the analysis is more involved and entirely novel proof techniques
are required. As a by-product, our work contributes more significant results of consistency for the
insufficiently understood setting of adversarial robustness.
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B Discussion on multi-class 0/1 loss

The multi-class 0/1 loss can be defined in multiple ways, e.g. 1ρh(x,y)≤0, 1ρh(x,y)<0 and 1h(x)≠y

where h(x) = argmaxy∈Y h(x, y) with an arbitrary but fixed deterministic strategy used for breaking
ties. The counterparts of these three formulas in binary classification are 1yh(x)≤0, 1yh(x)<0 and
1sgn(h(x))≠y where sgn(0) is defined as +1 or −1. To be consistent with the literature on Bayes-
consistency (Bartlett et al., 2006; Tewari and Bartlett, 2007), in this paper we adopt the last formula
1h(x)≠y of multi-class 0/1 loss. Moreover, to be consistent with the binary case (Awasthi et al.,
2022a), we assume that in case of a tie, h(x) is defined as the label with the highest index under
the natural ordering of labels. This assumption corresponds to the binary case where we always
predict +1 in case of a tie, that is, the case where the binary 0/1 loss is defined by 1sgn(h(x))≠y with
sgn(0) = +1, as in (Awasthi et al., 2022a). Nevertheless, other deterministic strategies would lead to
similar results.

C Discussion on finite sample bounds

Here, we discuss several ways to derive the finite sample bounds on the estimation error for the target
0/1 loss. One can directly derive estimation error bounds for the 0/1 loss, typically for Empirical
Risk Minimization (ERM), e.g. R`0−1

(hERM
S ) − R∗

`0−1,H
with hERM

S = argminh∈H R̂S(h) can be
upper-bounded using the standard generalization bounds, as shown in (Mohri et al., 2018). But, those
bounds would not say anything about the use of a surrogate loss.

An alternative is to use the excess error bound for the target 0/1 loss and split the excess error of the
surrogate loss into an estimation term and an approximation term, i.e. for some function f ∶R+ → R+,
the following inequality holds:

R`0−1(h) −R∗
`0−1,Hall

≤ f(R`sur(h) −R∗
`sur,H +R∗

`sur,H −R∗
`sur,Hall

).

Then, an estimation error bound for the surrogate loss can be used to upper bound R`sur(h)−R∗
`sur,H

,
as shown in (Bartlett et al., 2006). But, those bounds would not be an estimation error guarantee for
the target loss `0−1.

Finally, using the H-consistency bound proposed by Awasthi et al. (2022a), that is, for some non-
decreasing function f ∶R+ → R+,

R`0−1(h) −R∗
`0−1,H ≤ f(R`sur(h) −R∗

`sur,H
),

we can directly derive the estimation error bound for the target 0/1 loss by upper bounding R`sur(h)−
R∗
`sur,H

with the estimation error bound for the surrogate loss. In conclusion, the H-consistency
bound is a useful tool to derive non-trivial finite sample bounds on the estimation error for the target
0/1 loss.

D Future work

While we presented a comprehensive study of H-consistency bounds for surrogate losses in multi-
class classification, which could help compare different surrogate losses for the same setting and
the same hypothesis set, the optimization property of a surrogate loss function combined with the
hypothesis set also plays an important role. Nevertheless, we believe our results in the paper can help
guide the design of multi-class classification algorithms for both the adversarial and non-adversarial
settings.
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E General H-consistency bounds

Theorem 1 (Distribution-dependent Ψ-bound). Assume that there exists a convex function
Ψ∶R+ → R with Ψ(0) ≥ 0 and ε ≥ 0 such that the following holds for all h ∈ H, x ∈ X and
D ∈ P: Ψ([∆C`2,H(h,x)]ε) ≤ ∆C`1,H(h,x). Then, for any hypothesis h ∈H and any distribution
D ∈ P,

Ψ(R`2(h) −R∗
`2,H +M`2,H) ≤ R`1(h) −R∗

`1,H +M`1,H +max{Ψ(0),Ψ(ε)}.

Proof. For any h ∈ H and D ∈ P, since Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)>ε) ≤ ∆C`1,H(h,x),∀x ∈ X,
we can write

Ψ(R`2(h) −R∗
`2,H +M`2,H)

= Ψ(EX[C`2(h,x) − C∗`2,H(x)])
= Ψ(EX[∆C`2,H(h,x)])
≤ EX[Ψ(∆C`2,H(h,x))] (Jensen’s ineq.)
= EX[Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)>ε +∆C`2,H(h,x)1∆C`2,H(h,x)≤ε)]
≤ EX[Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)>ε) +Ψ(∆C`2,H(h,x)1∆C`2,H(h,x)≤ε)] (Ψ(0) ≥ 0)
≤ EX[∆C`1,H(h,x)] + sup

t∈[0,ε]

Ψ(t) (assumption)

= R`1(h) −R∗
`1,H +M`1,H +max{Ψ(0),Ψ(ε)}, (convexity of Ψ)

which proves the theorem.

Theorem 2 (Distribution-dependent Γ-bound). Assume that there exists a concave function
Γ∶R+ → R and ε ≥ 0 such that the following holds for all h ∈ H, x ∈ X and D ∈ P:
[∆C`2,H(h,x)]ε ≤ Γ(∆C`1,H(h,x)). Then, for any hypothesis h ∈H and any distribution D ∈ P,

R`2(h) −R∗
`2,H ≤ Γ(R`1(h) −R∗

`1,H +M`1,H) −M`2,H + ε.

Proof. For any h ∈ H and D ∈ P, since ∆C`2,H(h,x)1∆C`2,H(h,x)>ε ≤ Γ(∆C`1,H(h,x)),∀x ∈ X,
we can write

R`2(h) −R∗
`2,H +M`2,H

= EX[C`2(h,x) − C∗`2,H(x)]
= EX[∆C`2,H(h,x)]
= EX[∆C`2,H(h,x)1∆C`2,H(h,x)>ε +∆C`2,H(h,x)1∆C`2,H(h,x)≤ε]
≤ EX[Γ(∆C`1,H(h,x))] + ε (assumption)
≤ Γ(EX[∆C`1,H(h,x)]) + ε (concavity of Γ)
= Γ(R`1(h) −R∗

`1,H +M`1,H) + ε,

which proves the theorem.

F Non-adversarial and adversarial conditional regrets

Lemma 3. For any x ∈ X, the minimal conditional `0−1-risk and the conditional ε-regret for `0−1

can be expressed as follows:

C∗`0−1,H(x) = 1 − max
y∈H(x)

p(x, y)

[∆C`0−1,H(h,x)]ε = [ max
y∈H(x)

p(x, y) − p(x,h(x))]
ε

.
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Proof. By the definition, the conditional `0−1-risk can be expressed as follows:

C`0−1(h,x) = ∑
y∈Y

p(x, y)1h(x)≠y = 1 − p(x,h(x)). (23)

Since {h(x) ∶ h ∈H} = H(x), the minimal conditional `0−1-risk can be expressed as follows:

C∗`0−1,H(x) = 1 − max
y∈H(x)

p(x, y),

which proves the first part of the lemma. By the definition,

∆C`0−1,H(h,x) = C`0−1(h,x) − C∗`0−1,H(x) = max
y∈H(x)

p(x, y) − p(x,h(x)).

This leads to

[∆C`0−1,H(h,x)]ε = [ max
y∈H(x)

p(x, y) − p(x,h(x))]
ε

.

Lemma 11. For any x ∈ X, the minimal conditional `γ-risk and the conditional ε-regret for `γ can
be expressed as follows:

C∗`γ ,H(x) = 1 − max
y∈Hγ(x)

p(x, y)1Hγ(x)≠∅

[∆C`γ ,H(h,x)]
ε
= {[maxy∈Hγ(x) p(x, y) − p(x,h(x))1h∈Hγ(x)]ε if Hγ(x) ≠ ∅

0 otherwise.

Proof. By the definition, the conditional `γ-risk can be expressed as follows:

C`γ (h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

1ρh(x′,y)≤0 = {1 − p(x,h(x)) h ∈Hγ(x)
1 otherwise.

(24)

When Hγ(x) = ∅, (24) implies that C∗`γ ,H(x) = 1. When Hγ(x) ≠ ∅, Hγ(x) is also non-empty. By
(24), y ∈ Yγ(x) if and only if there exists h ∈Hγ such that C`γ (h,x) = 1 − p(x, y). Therefore, the
minimal conditional `γ-risk can be expressed as follows:

C∗`γ ,H(x) = 1 − max
y∈Hγ(x)

p(x, y)1Hγ(x)≠∅,

which proves the first part of lemma. When Hγ(x) = ∅, C`γ (h,x) ≡ 1, which implies that
∆C`γ ,H(h,x) ≡ 0. When Hγ(x) ≠ ∅, Hγ(x) is also non-empty, for h ∈ Hγ(x), ∆C`γ ,H(h,x) =
1 − p(x,h(x)) − (1 −maxy∈Hγ(x) p(x, y)) = maxy∈Hγ(x) p(x, y) − p(x,h(x)); for h ∉ Hγ(x),
∆C`γ ,H(h,x) = 1 − (1 −maxy∈Hγ(x) p(x, y)) = maxy∈Hγ(x) p(x, y). Therefore,

∆C`γ ,H(h,x) = {maxy∈Hγ(x) p(x, y) − p(x,h(x))1h∈Hγ(x) Hγ(x) ≠ ∅
0 otherwise.

This leads to

[∆C`γ ,H(h,x)]
ε
= {[maxy∈Hγ(x) p(x, y) − p(x,h(x))1h∈Hγ(x)]ε Hγ(x) ≠ ∅

0 otherwise.

G Proof of negative results and H-consistency bounds for max losses Φmax

Theorem 6 (Negative results for convex Φ). Assume that c > 2. Suppose that Φ is convex and
non-increasing, and H satisfies there exist x ∈ X and h ∈ H such that ∣H(x)∣ ≥ 2 and h(x, y) are
equal for all y ∈ Y. If for a non-decreasing function f ∶R+ → R+, the following H-consistency bound
holds for any hypothesis h ∈H and any distribution D:

R`0−1(h) −R∗
`0−1,H ≤ f(RΦmax(h) −R∗

Φmax,H), (6)

then, f is lower bounded by 1
2

.
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Proof. Consider the distribution that supports on a singleton domain {x} with x satisfying that
∣H(x)∣ ≥ 2. Take y1 ∈ H(x) such that y1 ≠ c and y2 ∈ Y such that y2 ≠ y1, y2 ≠ c. We define p(x) as
p(x, y1) = p(x, y2) = 1

2
and p(x, y) = 0 for other y ∈ Y. Let h0 ∈H such that h0(x,1) = h0(x,2) =

. . . = h0(x, c). By Lemma 3 and the fact that y1 ∈ H(x), the minimal conditional `0−1-risk is

R∗
`0−1,H = C∗`0−1,H(x) = 1 − max

y∈H(x)
p(x, y) = 1 − p(x, y1) =

1

2
.

For h = h0, we have

R`0−1(h0) = C`0−1(h0, x) = ∑
y∈Y

p(x, y)1h0(x)≠y = 1 − p(x,h0(x)) = 1 − p(x, c) = 1.

For the max loss, the conditional Φmax-risk can be expressed as follows:

CΦmax(h,x) = ∑
y∈Y

p(x, y)Φ(ρh(x, y)) =
1

2
Φ(ρh(x, y1)) +

1

2
Φ(ρh(x, y2)).

If Φ is convex and non-increasing, we obtain for any h ∈H,

RΦmax(h) = CΦmax(h,x) = 1

2
Φ(ρh(x, y1)) +

1

2
Φ(ρh(x, y2))

≥ Φ(1

2
ρh(x, y1) +

1

2
ρh(x, y2)) (Φ is convex)

= Φ(1

2
(h(x, y1) + h(x, y2) −max

y≠y1

h(x, y) −max
y≠y2

h(x, y)))

≥ Φ(0), (Φ is non-increasing)
where both equality can be achieved by h0. Therefore,

R∗
Φmax,H = C∗Φmax,H(x) = RΦmax(h0) = Φ(0).

If (6) holds for some non-decreasing function f , then, we obtain for any h ∈H,

R`0−1(h) −
1

2
≤ f(RΦmax(h) −Φ(0)).

Let h = h0, then f(0) ≥ 1/2. Since f is non-decreasing, for any t ≥ 0, f(t) ≥ 1/2.

Theorem 7 (H-consistency bound of Φmax
ρ ). Suppose that H is symmetric. Then, for any hypothesis

h ∈H and any distribution D,

R`0−1(h) −R∗
`0−1,H ≤

RΦmax
ρ

(h) −R∗
Φmax
ρ ,H +MΦmax

ρ ,H

min{1,
infx∈X suph∈H ρh(x,h(x))

ρ
}

−M`0−1,H. (7)

Proof. By the definition, the conditional Φmax
ρ -risk can be expressed as follows:

CΦmax
ρ

(h,x) = ∑
y∈Y

p(x, y)Φρ(ρh(x, y))

= 1 − p(x,h(x)) +max{0,1 − ρh(x,h(x))
ρ

}p(x,h(x))

= 1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x))

(25)

Since H is symmetric, for any x ∈ X and y ∈ Y,

sup
h∈{h∈H∶h(x)=y}

ρh(x,h(x)) = sup
h∈H

ρh(x,h(x))

Therefore, the minimal conditional Φmax
ρ -risk can be expressed as follows:

C∗Φmax
ρ ,H(x) = 1 −min{1,

suph∈H ρh(x,h(x))
ρ

}max
y∈Y

p(x, y).

20



By the definition and using the fact that H(x) = Y when H is symmetric, we obtain

∆CΦmax
ρ ,H(h,x) = CΦmax

ρ
(h,x) − C∗Φmax

ρ ,H(x)

= min{1,
suph∈H ρh(x,h(x))

ρ
}max
y∈Y

p(x, y) −min{1,
ρh(x,h(x))

ρ
}p(x,h(x))

≥ min{1,
suph∈H ρh(x,h(x))

ρ
}(max

y∈Y
p(x, y) − p(x,h(x)))

≥ min{1,
suph∈H ρh(x,h(x))

ρ
}∆C`0−1,H(h,x) (H(x) = Y)

≥ min{1,
suph∈H ρh(x,h(x))

ρ
}[∆C`0−1,H(h,x)]ε ([x]ε ≤ x)

≥ min{1,
infx∈X suph∈H ρh(x,h(x))

ρ
}[∆C`0−1,H(h,x)]ε

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis set,
ε = 0 and

Ψ(t) = min{1,
infx∈X suph∈H ρh(x,h(x))

ρ
} t

in Theorem 4, or, equivalently, Γ(t) = Ψ−1(t) in Theorem 5, we obtain for any hypothesis h ∈H and
any distribution,

R`0−1(h) −R∗
`0−1,H ≤

RΦmax
ρ

(h) −R∗
Φmax
ρ ,H +MΦmax

ρ ,H

min{1,
infx∈X suph∈H ρh(x,h(x))

ρ
}

−M`0−1,H.

Theorem 9 (Realizable H-consistency bound of Φmax). Suppose that H is symmetric and complete,
and Φ is non-increasing and satisfies that limt→+∞ Φ(t) = 0. Then, for any hypothesis h ∈ H and
any H-realizable distribution D, we have

R`0−1(h) −R∗
`0−1,H ≤ RΦmax(h) −R∗

Φmax,H +MΦmax,H. (8)

Proof. Under the H-realizability assumption of distribution, for any x ∈ X, there exists y ∈ Y such
that p(x, y) = 1. Then, the conditional Φmax-risk can be expressed as follows:

CΦmax(h,x) = ∑
y∈Y

p(x, y)Φ(ρh(x, y))

= Φ(ρh(x, ymax)).
(26)

Since H is symmetric and complete, there exists h ∈H such that h(x) = ymax and we have

sup
h∈{h∈H∶h(x)=ymax}

ρh(x,h(x)) = sup
h∈H

ρh(x,h(x))

= sup
h∈H

(max
y∈Y

h(x, y) − max
y≠h(x)

h(x, y))

= +∞.
Thus, using the fact that limt→+∞ Φ(t) = 0, the minimal conditional Φmax-risk can be expressed as
follows:

C∗Φmax,H(x) = inf
h∈H

CΦmax(h,x)

= inf
h∈H

Φ(ρh(x,h(x)))

= Φ(sup
h∈H

ρh(x,h(x))) (Φ is non-increasing)

= 0 (limt→+∞ Φ(t) = 0)
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By the definition and using the fact that H(x) = Y when H is symmetric, we obtain

∆CΦmax,H(h,x) = CΦmax(h,x) − C∗Φmax,H(x)
= Φ(ρh(x, ymax))
≥ Φ(0)1ymax≠h(x) (Φ is non-increasing)

≥ max
y∈Y

p(x, y) − p(x,h(x))

= ∆C`0−1,H(h,x) (by Lemma 3 and H(x) = Y)
≥ [∆C`0−1,H(h,x)]ε ([t]ε ≤ t)

for any ε ≥ 0. Note that M`0−1,H = 0 under the realizability assumption. Therefore, taking P be the
set of H-realizable distributions, H be the symmetric and complete hypothesis set, ε = 0 and Ψ(t) = t
in Theorem 4, or, equivalently, Γ(t) = t in Theorem 5, we obtain for any hypothesis h ∈H and any
H-realizable distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦmax(h) −R∗

Φmax,H +MΦmax,H

H Proof of Hall,Hlin,HNN-consistency bounds for max ρ-margin loss Φmax
ρ

Corollary 18 (Hall-consistency bound of Φmax
ρ ). For any hypothesis h ∈Hall and any distribution,

R`0−1(h) −R∗
`0−1,Hall

≤ RΦmax
ρ

(h) −R∗
Φmax
ρ ,Hall

. (27)

Proof. For H = Hall, we have for all x ∈ X, suph∈Hall
ρh(x,h(x)) > ρ. Furthermore, as shown by

Steinwart (2007, Theorem 3.2), the minimizability gaps M`0−1,Hall
=MΦmax

ρ ,Hall
= 0. Therefore, by

Theorem 7, the Hall-consistency bound of Φmax
ρ can be expressed as follows:

R`0−1(h) −R∗
`0−1,Hall

≤ RΦmax
ρ

(h) −R∗
Φmax
ρ ,Hall

.

Corollary 19 (Hlin-consistency bound of Φmax
ρ ). For any hypothesis h ∈Hlin and any distribution,

R`0−1(h) −R∗
`0−1,Hlin

≤
RΦmax

ρ
(h) −R∗

Φmax
ρ ,Hlin

+MΦmax
ρ ,Hlin

min{1, 2B
ρ
}

−M`0−1,Hlin
, (28)

where M`0−1,Hlin
= R∗

`0−1,Hlin
− EX[1 −maxy∈Y p(x, y)] and MΦmax

ρ ,Hlin
= R∗

Φmax
ρ ,Hlin

−

EX[1 −min{1,
2(W ∥x∥p+B)

ρ
}maxy∈Y p(x, y)].

Proof. For H =Hlin, we have for all x ∈ X,

sup
h∈Hlin

ρh(x,h(x)) = sup
h∈Hlin

(max
y∈Y

h(x, y) − max
y≠h(x)

h(x, y))

= max
∥w∥q≤W,∣b∣≤B

(w ⋅ x + b) − min
∥w∥q≤W,∣b∣≤B

(w ⋅ x + b)

= 2(W ∥x∥p +B)

(29)

Thus, infx∈X suph∈Hlin
ρh(x,h(x)) = infx∈X 2(W ∥x∥p +B) = 2B. Since H = Hlin is symmetric,

by lemma 3, we have

M`0−1,Hlin
= R∗

`0−1,Hlin
−EX[1 −max

y∈Y
p(x, y)]. (30)
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By the definition, the conditional Φmax
ρ -risk can be expressed as follows:

CΦmax
ρ

(h,x) = ∑
y∈Y

p(x, y)Φρ(ρh(x, y))

= 1 − p(x,h(x)) +max{0,1 − ρh(x,h(x))
ρ

}p(x,h(x))

= 1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x))

Since Hlin is symmetric, for any x ∈ X and y ∈ Y,

sup
h∈{h∈Hlin∶h(x)=y}

ρh(x,h(x)) = sup
h∈Hlin

ρh(x,h(x)).

Thus, using (29), the minimal conditional Φmax
ρ -risk can be expressed as follows:

C∗Φmax
ρ ,Hlin

(x) = 1 −min{1,
suph∈Hlin

ρh(x,h(x))
ρ

}max
y∈Y

p(x, y)

= 1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

2(W ∥x∥p +B)
ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y) (by (29))

Therefore, the (Φmax
ρ ,Hlin)-minimizability gap is

MΦmax
ρ ,Hlin

= R∗
Φmax
ρ ,Hlin

−EX
⎡⎢⎢⎢⎢⎣
1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

2(W ∥x∥p +B)
ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y)
⎤⎥⎥⎥⎥⎦
. (31)

By Theorem 7, the Hlin-consistency bound of Φmax
ρ can be expressed as follows:

R`0−1(h) −R∗
`0−1,Hlin

≤
RΦmax

ρ
(h) −R∗

Φmax
ρ ,Hlin

+MΦmax
ρ ,Hlin

min{1, 2B
ρ
}

−M`0−1,Hlin
.

where M`0−1,Hlin
and MΦmax

ρ ,Hlin
are given by (30) and (31) respectively.

Corollary 20 (HNN-consistency bound of Φmax
ρ ). For any hypothesis h ∈ HNN and any distribu-

tion,

R`0−1(h) −R∗
`0−1,HNN

≤
RΦmax

ρ
(h) −R∗

Φmax
ρ ,HNN

+MΦmax
ρ ,HNN

min{1, 2ΛB
ρ

}
−M`0−1,HNN

, (32)

where M`0−1,HNN
= R∗

`0−1,HNN
− EX[1 −maxy∈Y p(x, y)] and MΦmax

ρ ,HNN
= R∗

Φmax
ρ ,HNN

−

EX[1 −min{1,
2Λ(W ∥x∥p+B)

ρ
}maxy∈Y p(x, y)].

Proof. For H =HNN, we have for all x ∈ X,

sup
h∈HNN

ρh(x,h(x)) = sup
h∈HNN

(max
y∈Y

h(x, y) − max
y≠h(x)

h(x, y))

= max
∥u∥1≤Λ,∥wj∥q≤W,∣bj ∣≤B

⎛
⎝
n

∑
j=1

uj(wj ⋅ x + bj)+
⎞
⎠
− min

∥u∥1≤Λ,∥wj∥q≤W,∣bj ∣≤B

⎛
⎝
n

∑
j=1

uj(wj ⋅ x + bj)+
⎞
⎠

= 2Λ(W ∥x∥p +B)

(33)

Thus, infx∈X suph∈HNN
ρh(x,h(x)) = infx∈X 2Λ(W ∥x∥p +B) = 2ΛB. Since H =HNN is symmet-

ric, by lemma 3, we have

M`0−1,HNN
= R∗

`0−1,HNN
−EX[1 −max

y∈Y
p(x, y)]. (34)
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By the definition, the conditional Φmax
ρ -risk can be expressed as follows:

CΦmax
ρ

(h,x) = ∑
y∈Y

p(x, y)Φρ(ρh(x, y))

= 1 − p(x,h(x)) +max{0,1 − ρh(x,h(x))
ρ

}p(x,h(x))

= 1 −min{1,
ρh(x,h(x))

ρ
}p(x,h(x))

Since HNN is symmetric, for any x ∈ X and y ∈ Y,

sup
h∈{h∈HNN∶h(x)=y}

ρh(x,h(x)) = sup
h∈HNN

ρh(x,h(x)).

Thus, using (33), the minimal conditional Φmax
ρ -risk can be expressed as follows:

C∗Φmax
ρ ,HNN

(x) = 1 −min{1,
suph∈HNN

ρh(x,h(x))
ρ

}max
y∈Y

p(x, y)

= 1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

2Λ(W ∥x∥p +B)
ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y) (by (33))

Therefore, the (Φmax
ρ ,HNN)-minimizability gap is

MΦmax
ρ ,HNN

= R∗
Φmax
ρ ,HNN

−EX
⎡⎢⎢⎢⎢⎣
1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

2Λ(W ∥x∥p +B)
ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y)
⎤⎥⎥⎥⎥⎦
. (35)

By Theorem 7, the HNN-consistency bound of Φmax
ρ can be expressed as follows:

R`0−1(h) −R∗
`0−1,HNN

≤
RΦmax

ρ
(h) −R∗

Φmax
ρ ,HNN

+MΦmax
ρ ,HNN

min{1, 2ΛB
ρ

}
−M`0−1,HNN

.

where M`0−1,HNN
and MΦmax

ρ ,HNN
are given by (34) and (35) respectively.

I Auxiliary Lemma for sum losses

Lemma 21. Fix a vector τ = (τ1, . . . , τc) in the probability simplex of Rc and any real values
a1 ≤ a2 ≤ ⋯ ≤ ac in increasing order. Then, for any permutation σ of the set {1, . . . , c},

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ(1)
τσ(2)
⋮

τσ(c)

⎤⎥⎥⎥⎥⎥⎥⎦

≤

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τ[1]
τ[2]
⋮
τ[c]

⎤⎥⎥⎥⎥⎥⎥⎦

,

where we define τ[1], τ[2], . . . , τ[c] by sorting the probabilities {τy ∶ y ∈ {1, . . . , c}} in increasing
order.

Proof. For any permutation σ of the set {1, . . . , c}, we prove by induction. At the first step, if
σ(c) = [c], then let σ1 = σ. Otherwise, denote k1 ∈ {1, . . . , c − 1} such that σ(k1) = [c] and choose
σ1 to be the permutation that differs from σ only by permuting c and k1. Thus,

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ(1)
τσ(2)
⋮

τσ(c)

⎤⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ1(1)

τσ1(2)

⋮
τσ1(c)

⎤⎥⎥⎥⎥⎥⎥⎦

= ak1τ[c] + acτσ(c) − (ak1τσ(c) + acτ[c])

= (ak1 − ac)(τ[c] − τσ(c)) ≤ 0.
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At the second step, if σ1(c−1) = [c − 1], then let σ2 = σ1. Otherwise, denote k2 ∈ {1, . . . , c − 2} such
that σ1(k2) = [c − 1] and choose σ2 to be the permutation that differs from σ1 only by permuting
c − 1 and k2. Thus,

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ1(1)

τσ1(2)

⋮
τσ1(c)

⎤⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ2(1)

τσ2(2)

⋮
τσ2(c)

⎤⎥⎥⎥⎥⎥⎥⎦

= (ak2 − ac−1)(τ[c−1] − τσ1(c−1)) ≤ 0.

And so on, at the nth step, if σn−1(c − n + 1) = [c − n + 1], then let σn = σn−1. Otherwise, denote
kn ∈ {1, . . . , c − n} such that σn−1(kn) = [c − n + 1] and choose σn to be the permutation that differs
from σn−1 only by permuting c − n + 1 and kn. We have

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσn−1(1)

τσn−1(2)

⋮
τσn−1(c)

⎤⎥⎥⎥⎥⎥⎥⎦

≤

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσn(1)
τσn(2)
⋮

τσn(c)

⎤⎥⎥⎥⎥⎥⎥⎦

.

Finally, after c steps, we will obtain σc which satisfies σc(y) = [y] for any y ∈ {1, . . . , c}. Therefore,
we obtain

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τσ(1)
τσ(2)
⋮

τσ(c)

⎤⎥⎥⎥⎥⎥⎥⎦

≤

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

τσ1(1)

τσ1(2)

⋮
τσ1(c)

⎤⎥⎥⎥⎥⎥⎥⎦

≤ . . . ≤

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

τσn(1)
τσn(2)
⋮

τσn(c)

⎤⎥⎥⎥⎥⎥⎥⎦

≤ . . . ≤

⎡⎢⎢⎢⎢⎢⎢⎣

a1

a2

⋮
ac

⎤⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎣

τ[1]
τ[2]
⋮
τ[c]

⎤⎥⎥⎥⎥⎥⎥⎦
which proves the lemma.

J Proof of negative and H-consistency bounds for sum losses Φsum

By the definition, the conditional Φsum-risk can be expressed as follows:

CΦsum(h,x) = ∑
y∈Y

p(x, y) ∑
y′≠y

Φ(h(x, y) − h(x, y′))

= ∑
y∈Y

p(x, y) ∑
y′∈Y

Φ(h(x, y) − h(x, y′)) −Φ(0)
(36)

Theorem 10 (Negative results for hinge loss). Assume that c > 2. Suppose that H is symmetric and
complete. If for a non-decreasing function f ∶R+ → R+, the following H-consistency bound holds for
any hypothesis h ∈H and any distribution D:

R`0−1(h) −R∗
`0−1,H ≤ f(RΦsum

hinge
(h) −R∗

Φsum
hinge

,H), (10)

then, f is lower bounded by 1
6

.

Proof. Consider the distribution that supports on a singleton domain {x}. We define p(x) as
p(x,1) = 1

2
− ε, p(x,2) = 1

3
, p(x,3) = 1

6
+ ε and p(x, y) = 0 for other y ∈ Y, where 0 < ε < 1

6
.

Note p(x,1) > p(x,2) > p(x,3) > p(x, y) = 0, y /∈ {1,2,3}. Let h0 ∈ H such that h0(x,1) = 1,
h0(x,2) = 1, h0(x,3) = 0 and h0(x, y) = −1 for other y ∈ Y. By the completeness of H, the
hypothesis h is in H . By Lemma 3 and the fact that H(x) = Y when H is symmetric, the minimal
conditional `0−1-risk is

R∗
`0−1,H = C∗`0−1,H(x) = 1 −max

y∈Y
p(x, y) = 1 − p(x,1) = 1

2
+ ε.

For h = h0, we have

R`0−1(h0) = C`0−1(h0, x) = ∑
y∈Y

p(x, y)1h0(x)≠y = 1 − p(x,h0(x)) = 1 − p(x,2) = 2

3
.

25



For the sum hinge loss, by (36), the conditional Φsum
hinge-risk can be expressed as follows:

CΦsum
hinge

(h,x) = ∑
y∈Y

p(x, y) ∑
y′≠y

max{0,1 + h(x, y′) − h(x, y)}

= ∑
y∈{1,2,3}

p(x, y) ∑
y′≠y

max{0,1 + h(x, y′) − h(x, y)}

≥ ∑
y∈{1,2,3}

p(x, y) ∑
y′≠y,y′∈{1,2,3}

max{0,1 + h(x, y′) − h(x, y)}

= (1

2
− ε)[max{0,1 + h(x,2) − h(x,1)} +max{0,1 + h(x,3) − h(x,1)}]

+ 1

3
[max{0,1 + h(x,1) − h(x,2)} +max{0,1 + h(x,3) − h(x,2)}]

+ (1

6
+ ε)[max{0,1 + h(x,1) − h(x,3)} +max{0,1 + h(x,2) − h(x,3)}]

= g(h).

Note CΦsum
hinge

(h0, x) = 3ε + 3
2

. Since 1
2
− ε > 1

3
> 1

6
+ ε, by Lemma 21, we have

inf
h∈H

g(h) = inf
h∈H∶h(x,1)≥h(x,2)≥h(x,3)

g(h).

When h(x,1) ≥ h(x,2) ≥ h(x,3), g(h) can be written as

g(h) = (1

2
− ε)[max{0,1 + h(x,2) − h(x,1)} +max{0,1 + h(x,3) − h(x,1)}]

+ 1

3
[(1 + h(x,1) − h(x,2)) +max{0,1 + h(x,3) − h(x,2)}]

+ (1

6
+ ε)[(1 + h(x,1) − h(x,3)) + (1 + h(x,2) − h(x,3))]

If h(x,1) − h(x,2) > 1, define the hypothesis h ∈H by

h(x, y) = {h(x,1) −
h(x,1)−h(x,2)−1

2
, if y = 1

h(x, y) otherwise.

By the completeness of H and some computation, the new hypothesis h is in H and satisfies that
g(h) < g(h). Similarly, if h(x,2) − h(x,3) > 1, define the hypothesis h ∈H by

h(x, y) = {h(x,2) −
h(x,2)−h(x,3)−1

2
, if y = 2

h(x, y) otherwise.

By the completeness of H and some computation, the new hypothesis h is in H and satisfies that
g(h) < g(h). Therefore,

inf
h∈H

g(h) = inf
h∈H∶h(x,1)≥h(x,2)≥h(x,3)

g(h) = inf
h∈H∶h(x,1)≥h(x,2)≥h(x,3), h(x,1)−h(x,2)≤1, h(x2)−h(x,3)≤1

g(h)

When h(x,1) ≥ h(x,2) ≥ h(x,3), h(x,1) − h(x,2) ≤ 1 and h(x2) − h(x,3) ≤ 1, g(h) can be
written as

g(h) = (1

2
− ε)[(1 + h(x,2) − h(x,1)) +max{0,1 + h(x,3) − h(x,1)}]

+ 1

3
[(1 + h(x,1) − h(x,2)) + (1 + h(x,3) − h(x,2))]

+ (1

6
+ ε)[(1 + h(x,1) − h(x,3)) + (1 + h(x,2) − h(x,3))]
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If h(x,1) − h(x,3) > 1, define the hypothesis h ∈H by

h(x, y) = {h(x,1) −
h(x,1)−h(x,3)−1

2
, if y = 1

h(x, y) otherwise.

By the completeness of H and some computation using the fact that 0 < ε < 1
6

, the new hypothesis h
is in H and satisfies that g(h) < g(h). Therefore,

inf
h∈H

g(h) = inf
h∈H∶h(x,1)≥h(x,2)≥h(x,3), h(x,1)−h(x,2)≤1, h(x2)−h(x,3)≤1, h(x,1)−h(x,3)≤1

g(h)

= inf
h∈H∶h(x,1)≥h(x,2)≥h(x,3), h(x,1)−h(x,2)≤1, h(x2)−h(x,3)≤1, h(x,1)−h(x,3)≤1

(3ε − 1

2
)(h(x,1) − h(x,3)) + 2

= 3ε + 3

2

Thus, we obtain for any h ∈H,

RΦsum
hinge

(h) = CΦsum
hinge

(h,x) ≥ g(h) ≥ 3ε + 3

2
= CΦsum

hinge
(h0, x)

Therefore,

R∗
Φsum

hinge
,H = C∗Φsum

hinge
,H(x) = RΦsum

hinge
(h0) = 3ε + 3

2
.

If (10) holds for some non-decreasing function f , then, we obtain for any h ∈H,

R`0−1(h) −
1

2
− ε ≤ f(RΦsum

hinge
(h) −RΦsum

hinge
(h0)).

Let h = h0, then f(0) ≥ 1/6−ε. Since f is non-decreasing, for any t ≥ 0 and 0 < ε < 1
6

, f(t) ≥ 1/6−ε.
Let ε→ 0, we obtain that f is lower bounded by 1

6
.

Theorem 22 (H-consistency bound of Φsum
sq−hinge). Suppose that H is symmetric and complete.

Then, for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ (RΦsum

sq−hinge
(h) −R∗

Φsum
sq−hinge

,H +MΦsum
sq−hinge

,H)
1
2 −M`0−1,H. (37)

Proof. For the sum squared hinge loss Φsum
sq−hinge, by (36), the conditional Φsum

sq−hinge-risk can be
expressed as follows:

CΦsum
sq−hinge

(h,x)

= ∑
y∈Y

p(x, y) ∑
y′≠y

max{0,1 + h(x, y′) − h(x, y)}2

= p(x, ymax) ∑
y′≠ymax

max{0,1 + h(x, y′) − h(x, y)}2 + ∑
y≠ymax

p(x, y) ∑
y′≠y

max{0,1 + h(x, y′) − h(x, y)}2

= p(x, ymax) ∑
y′≠ymax

max{0,1 + h(x, y′) − h(x, ymax)}2 + ∑
y≠ymax

p(x, y)max{0,1 + h(x, ymax) − h(x, y)}2

+ ∑
y≠ymax

p(x, y) ∑
y′/∈{ymax,y}

max{0,1 + h(x, y′) − h(x, y)}2

For any h ∈H, define the hypothesis hλ ∈H by

hλ(x, y) = {h(x, y) if y ≠ ymax

λ if y = ymax

for any λ ∈ R. By the completeness of H, the new hypothesis hλ is in H. Therefore, the minimal
conditional Φsum

sq−hinge-risk satisfies that for any λ ∈ R, C∗Φsum
sq−hinge

,H(x) ≤ CΦsum
sq−hinge

(hλ, x). Let
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h ∈ H be a hypothesis such that h(x) ≠ ymax. By the definition and using the fact that H(x) = Y
when H is symmetric, we obtain

∆CΦsum
sq−hinge

,H(h,x) = CΦsum
sq−hinge

(h,x) − C∗Φsum
sq−hinge

,H(x)

≥ CΦsum
sq−hinge

(h,x) − CΦsum
sq−hinge

(hλ, x)

≥ p(x, ymax)max{0,1 + h(x,h(x)) − h(x, ymax)}2 + p(x,h(x))max{0,1 + h(x, ymax) − h(x,h(x))}2

− 4p(x, ymax)p(x,h(x))
p(x, ymax + p(x,h(x))

(taking supremum with respect to λ)

≥ p(x, ymax) + p(x,h(x)) −
4p(x, ymax)p(x,h(x))
p(x, ymax + p(x,h(x))

(h(x,h(x)) − h(x, ymax) ≥ 0)

= (p(x, ymax) − p(x,h(x)))2

p(x, ymax + p(x,h(x))

≥ (max
y∈Y

p(x, y) − p(x,h(x)))
2

(0 ≤ p(x, ymax) + p(x,h(x)) ≤ 1)

= (∆C`0−1,H(h,x))2 (by Lemma 3 and H(x) = Y)

≥ ([∆C`0−1,H(h,x)]ε)
2

([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, ε = 0 and Ψ(t) = t2 in Theorem 4, or, equivalently, Γ(t) =

√
t in Theorem 5, we

obtain for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ (RΦsum

sq−hinge
(h) −R∗

Φsum
sq−hinge

,H +MΦsum
sq−hinge

,H)
1
2 −M`0−1,H.

Theorem 23 (H-consistency bound of Φsum
exp ). Suppose that H is symmetric and complete. Then,

for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤

√
2(RΦsum

exp
(h) −R∗

Φsum
exp ,H

+MΦsum
exp ,H)

1
2 −M`0−1,H. (38)

Proof. For the sum exponential loss Φsum
exp , by (36), the conditional Φsum

exp -risk can be expressed as
follows:

CΦsum
exp

(h,x) = ∑
y∈Y

p(x, y) ∑
y′≠y

exp(h(x, y′) − h(x, y))

= p(x, ymax) ∑
y′≠ymax

exp(h(x, y′) − h(x, ymax)) + ∑
y≠ymax

p(x, y) ∑
y′≠y

exp(h(x, y′) − h(x, y))

= p(x, ymax) ∑
y′≠ymax

exp(h(x, y′) − h(x, ymax)) + ∑
y≠ymax

p(x, y) exp(h(x, ymax) − h(x, y))

+ ∑
y≠ymax

p(x, y) ∑
y′/∈{ymax,y}

exp(h(x, y′) − h(x, y))

For any h ∈H, define the hypothesis hλ ∈H by

hλ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
log(exp[h(x, ymax)] + λ) if y = h(x)
log(exp[h(x,h(x))] − λ) if y = ymax

for any λ ∈ R. By the completeness of H, the new hypothesis hλ is in H. Therefore, the minimal
conditional Φsum

exp -risk satisfies that for any λ ∈ R, C∗Φsum
exp ,H

(x) ≤ CΦsum
exp

(hλ, x). Let h ∈ H be a
hypothesis such that h(x) ≠ ymax. By the definition and using the fact that H(x) = Y when H is
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symmetric, we obtain

∆CΦsum
exp ,H(h,x) = CΦsum

exp
(h,x) − C∗Φsum

exp ,H
(x)

≥ CΦsum
exp

(h,x) − CΦsum
exp

(hλ, x)

≥ ∑
y′∈Y

eh(x,y
′
)

⎡⎢⎢⎢⎢⎢⎣
p(x, ymax)e−h(x,ymax) + p(x,h(x))e−h(x,h(x)) −

(
√
p(x, ymax) +

√
p(x,h(x)))

2

eh(x,h(x)) + eh(x,ymax)

⎤⎥⎥⎥⎥⎥⎦
(taking supremum with respect to λ)

≥ (
√
p(x, ymax) −

√
p(x,h(x)))

2
(h(x,h(x)) ≥ h(x, ymax) and p(x,h(x)) ≤ p(x, ymax))

=
⎛
⎝

p(x, ymax) − p(x,h(x))√
p(x,h(x)) +

√
p(x, ymax)

⎞
⎠

2

≥ 1

2
(max
y∈Y

p(x, y) − p(x,h(x)))
2

(0 ≤ p(x, ymax) + p(x,h(x)) ≤ 1)

= 1

2
(∆C`0−1,H(h,x))2 (by Lemma 3 and H(x) = Y)

≥ 1

2
([∆C`0−1,H(h,x)]ε)

2
([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, ε = 0 and Ψ(t) = t2

2
in Theorem 4, or, equivalently, Γ(t) =

√
2t in Theorem 5, we

obtain for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤

√
2(RΦsum

exp
(h) −R∗

Φsum
exp ,H

+MΦsum
exp ,H)

1
2 −M`0−1,H.

Theorem 24 (H-consistency bound of Φsum
ρ ). Suppose that H is symmetric and satisfies that for

any x ∈ X, there exists a hypothesis h ∈ H such that ∣h(x, i) − h(x, j)∣ ≥ ρ for any i ≠ j ∈ Y. Then,
for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦsum

ρ
(h) −R∗

Φsum
ρ ,H +MΦsum

ρ ,H −M`0−1,H. (39)

Proof. For any x ∈ X, we define p[1](x), p[2](x), . . . , p[c](x) by sorting the probabilities
{p(x, y) ∶ y ∈ Y} in increasing order. Similarly, for any x ∈ X and h ∈ H, we define
h(x,{1}x), h(x,{2}x), . . . , h(x,{c}x) by sorting the scores {h(x, y) ∶ y ∈ Y} in increasing order.
In particular, we have

h(x,{1}x) = min
y∈Y

h(x, y), h(x,{c}x) = max
y∈Y

h(x, y), h(x,{i}x) ≤ h(x,{j}j), ∀i ≤ j.

If there is a tie for the maximum, we pick the label with the highest index under the natural ordering
of labels, i.e. {c}x = h(x). By the definition, the conditional Φsum

ρ -risk can be expressed as follows:

CΦsum
ρ

(h,x) = ∑
y∈Y

p(x, y) ∑
y′≠y

Φρ(h(x, y) − h(x, y′))

=
c

∑
i=1

p(x,{i}x)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x,{i}x) − h(x,{j}x)) +
c

∑
j=i+1

Φρ(h(x,{i}x) − h(x,{j}x))
⎤⎥⎥⎥⎦

=
c

∑
i=1

p(x,{i}x)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x,{i}x) − h(x,{j}x)) + c − i
⎤⎥⎥⎥⎦

(Φρ(t) = 1 for t ≤ 0)

By the assumption, there exists a hypotheses h ∈H such that ∣h(x, i) − h(x, j)∣ ≥ ρ for any i ≠ j ∈ Y.
Since H is symmetric, we can always choose h∗ among these hypotheses such that h∗ and p(x)
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induce the same ordering of the labels, i.e. p(x,{k}x) = p[k](x) for any k ∈ Y. Then, we have

C∗Φsum
ρ ,H(x) ≤ CΦsum

ρ
(h∗, x)

=
c

∑
i=1

p(x,{i}x)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h∗(x,{i}x) − h
∗(x,{j}x)) + c − i

⎤⎥⎥⎥⎦

=
c

∑
i=1

p(x,{i}x)(c − i) (∣h∗(x, i) − h∗(x, j)∣ ≥ ρ for any i ≠ j and Φρ(t) = 0, ∀t ≥ ρ)

=
c

∑
i=1

p[i](x)(c − i) (h∗ and p(x) induce the same ordering of the labels)

= c −
c

∑
i=1

i p[i](x) (∑ci=1 p[i](x) = 1)

By the definition and using the fact that H(x) = Y when H is symmetric, we obtain

∆CΦsum
ρ ,H(h,x)

= CΦsum
ρ

(h,x) − C∗Φsum
ρ ,H(x)

=
c

∑
i=1

p(x,{i}x)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x,{i}x) − h(x,{j}x)) + c − i
⎤⎥⎥⎥⎦
− (c −

c

∑
i=1

i p[i](x))

≥
c

∑
i=1

p(x,{i}x)(c − i) − (c −
c

∑
i=1

i p[i](x)) (Φρ ≥ 0)

=
c

∑
i=1

i p[i](x) −
c

∑
i=1

i p(x,{i}x) (∑ci=1 p(x,{i}) = 1)

= max
y∈Y

p(x, y) − p(x,h(x)) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 1
c − 1
c − 2
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p[c](x)
p[c−1](x)
p[c−2](x)

⋮
p[1](x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 1
c − 1
c − 2
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(x,{c}x)
p(x,{c − 1}x)
p(x,{c − 2}x)

⋮
p(x,{1}x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(p[c](x) = maxy∈Y p(x, y) and {c}x = h(x))

≥ max
y∈Y

p(x, y) − p(x,h(x)) (by Lemma 21)

= ∆C`0−1,H(h,x) (by Lemma 3)
≥ [∆C`0−1,H(h,x)]ε ([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis
set, ε = 0 and Ψ(t) = t in Theorem 12, or, equivalently, Γ(t) = t in Theorem 5, we obtain for any
hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦsum

ρ
(h) −R∗

Φsum
ρ ,H +MΦsum

ρ ,H −M`0−1,H.

K Proof of H-consistency bounds for constrained losses Φcstnd

Recall that h(x) and ymax are defined by h(x) = argmaxy∈Y h(x, y) and ymax = argmaxy∈Y p(x, y).
If there is a tie, we pick the label with the highest index under the natural ordering of labels. The
main idea of the proofs in this section is to leverage the constraint condition of Lee et al. (2004) that
the scores sum to zero, and appropriately choose a hypothesis h that differs from h only for its scores
for h(x) and ymax. Then, we can upper bound the minimal conditional risk by the conditional risk of
h without requiring complicated computation of the minimal conditional risk. By the definition, the
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conditional Φcstnd-risk can be expressed as follows:

CΦcstnd(h,x) = ∑
y∈Y

p(x, y) ∑
y′≠y

Φ(−h(x, y′))

= ∑
y∈Y

Φ(−h(x, y)) ∑
y′≠y

p(x, y′)

= ∑
y∈Y

(1 − p(x, y))Φ(−h(x, y))

(40)

Theorem 25 (H-consistency bound of Φcstnd
hinge). Suppose that H is symmetric and complete. Then,

for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦcstnd

hinge
(h) −R∗

Φcstnd
hinge

,H +MΦcstnd
hinge

,H −M`0−1,H. (41)

Proof. For the constrained hinge loss Φcstnd
hinge, by (40), the conditional Φcstnd

hinge-risk can be expressed
as follows:
CΦcstnd

hinge
(h,x) = ∑

y∈Y

(1 − p(x, y))max{0,1 + h(x, y)}

= ∑
y∈{ymax,h(x)}

(1 − p(x, y))max{0,1 + h(x, y)} + ∑
y/∈{ymax,h(x)}

(1 − p(x, y))max{0,1 + h(x, y)}

Let h ∈ H be a hypothesis such that h(x) ≠ ymax. For any x ∈ X, if h(x, ymax) ≤ −1, define the
hypothesis h ∈H by

h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
h(x, ymax) if y = h(x)
h(x,h(x)) if y = ymax.

Otherwise, define the hypothesis h ∈H by

h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
−1 if y = h(x)
h(x, ymax) + h(x,h(x)) + 1 if y = ymax.

By the completeness of H, the new hypothesis h is in H and satisfies that ∑y∈Y h(x, y) = 0. Since
∑y∈Y h(x, y) = 0, there must be non-negative scores. By definition of h(x) as a maximizer, we must
thus have h(x,h(x)) ≥ 0. Therefore, the minimal conditional Φcstnd

hinge-risk satisfies:

C∗Φcstnd
hinge

,H(x) ≤ CΦcstnd
hinge

(h,x)

= {(1 − p(x, ymax))(1 + h(x,h(x))) +∑y/∈{ymax,h(x)}(1 − p(x, y))(1 + h(x, y)) if h(x, ymax) ≤ −1

(1 − p(x, ymax))(h(x, ymax) + h(x,h(x)) + 2) +∑y/∈{ymax,h(x)}(1 − p(x, y))(1 + h(x, y)) otherwise.

By the definition and using the fact that H(x) = Y when H is symmetric, we obtain

∆CΦcstnd
hinge

,H(h,x) = CΦcstnd
hinge

(h,x) − C∗Φcstnd
hinge

,H(x)

≥ CΦcstnd
hinge

(h,x) − CΦcstnd
hinge

(h,x)
= (1 + h(x,h(x)))(p(x, ymax) − p(x,h(x)))
≥ max

y∈Y
p(x, y) − p(x,h(x)) (h(x,h(x)) ≥ 0)

= ∆C`0−1,H(h,x) (by Lemma 3 and H(x) = Y)
≥ [∆C`0−1,H(h,x)]ε ([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, ε = 0 and Ψ(t) = t in Theorem 4, or, equivalently, Γ(t) = t in Theorem 5, we obtain
for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦcstnd

hinge
(h) −R∗

Φcstnd
hinge

,H +MΦcstnd
hinge

,H −M`0−1,H.
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Theorem 26 (H-consistency bound of Φcstnd
sq−hinge). Suppose that H is symmetric and complete.

Then, for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ (RΦcstnd

sq−hinge
(h) −R∗

Φcstnd
sq−hinge

,H +MΦcstnd
sq−hinge

,H)
1
2

−M`0−1,H. (42)

Proof. For the constrained squared hinge loss Φcstnd
sq−hinge, by (40), the conditional Φcstnd

sq−hinge-risk can
be expressed as follows:

CΦcstnd
sq−hinge

(h,x) = ∑
y∈Y

(1 − p(x, y))max{0,1 + h(x, y)}2

= ∑
y∈{ymax,h(x)}

(1 − p(x, y))max{0,1 + h(x, y)}2 + ∑
y/∈{ymax,h(x)}

(1 − p(x, y))max{0,1 + h(x, y)}2

Let h ∈ H be a hypothesis such that h(x) ≠ ymax. For any x ∈ X, if h(x, ymax) ≤ −1, define the
hypothesis h ∈H by

h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
h(x, ymax) if y = h(x)
h(x,h(x)) if y = ymax.

Otherwise, define the hypothesis h ∈H by

h(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
1−p(x,ymax)

2−p(x,ymax)−p(x,h(x))
(2 + h(x, ymax) + h(x,h(x))) − 1 if y = h(x)

1−p(x,h(x))
2−p(x,ymax)−p(x,h(x))

(2 + h(x, ymax) + h(x,h(x))) − 1 if y = ymax.

By the completeness of H, the new hypothesis h is in H and satisfies that ∑y∈Y h(x, y) = 0. Since
∑y∈Y h(x, y) = 0, there must be non-negative scores. By definition of h(x) as a maximizer, we must
thus have h(x,h(x)) ≥ 0. Therefore, the minimal conditional Φcstnd

sq−hinge-risk satisfies:

C∗Φcstnd
sq−hinge

,H(x) ≤ CΦcstnd
sq−hinge

(h,x)

=
⎧⎪⎪⎨⎪⎪⎩

(1 − p(x, ymax))(1 + h(x,h(x)))2 +∑y/∈{ymax,h(x)}(1 − p(x, y))(1 + h(x, y)) if h(x, ymax) ≤ −1
(1−p(x,ymax))(1−p(x,h(x)))(2+h(x,ymax)+h(x,h(x)))

2

2−p(x,ymax)−p(x,y)
+∑y/∈{ymax,h(x)}(1 − p(x, y))(1 + h(x, y)) otherwise.

By the definition and using the fact that H(x) = Y when H is symmetric, we obtain
∆CΦcstnd

sq−hinge
,H(h,x) = CΦcstnd

sq−hinge
(h,x) − C∗Φcstnd

sq−hinge
,H(x)

≥ CΦcstnd
sq−hinge

(h,x) − CΦcstnd
sq−hinge

(h,x)

= {(1 + h(x,h(x)))
2(p(x, ymax) − p(x,h(x))) if h(x, ymax) ≤ −1

g(1 − p(x, ymax),1 − p(x,h(x)),1 + h(x, ymax),1 + h(x,h(x))) otherwise

≥ (1 + h(x,h(x)))2(max
y∈Y

p(x, y) − p(x,h(x)))
2

(property of g and p(x, ymax) ≤ 1)

≥ (max
y∈Y

p(x, y) − p(x,h(x)))
2

(h(x,h(x)) ≥ 0)

= (∆C`0−1,H(h,x))2 (by Lemma 3 and H(x) = Y)

≥ ([∆C`0−1,H(h,x)]ε)
2

([t]ε ≤ t)

for any ε ≥ 0, where g(x, y,α, β) = x2α2
+y2β2

−2xyαβ
x+y

≥ β2(x − y)2 when 0 ≤ x ≤ y ≤ 1, x + y ≥ 1

and 1 ≤ α ≤ β. Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, ε = 0 and Ψ(t) = t2 in Theorem 4, or, equivalently, Γ(t) =

√
t in Theorem 5, we

obtain for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ (RΦcstnd

sq−hinge
(h) −R∗

Φcstnd
sq−hinge

,H +MΦcstnd
sq−hinge

,H)
1
2

−M`0−1,H.
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Theorem 27 (H-consistency bound of Φcstnd
exp ). Suppose that H is symmetric and complete. Then,

for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤

√
2(RΦcstnd

exp
(h) −R∗

Φcstnd
exp ,H +MΦcstnd

exp ,H)
1
2 −M`0−1,H. (43)

Proof. For the constrained exponential loss Φcstnd
exp , by (40), the conditional Φcstnd

exp -risk can be
expressed as follows:

CΦcstnd
exp

(h,x) = ∑
y∈Y

(1 − p(x, y)) exp(h(x, y))

= ∑
y∈{ymax,h(x)}

(1 − p(x, y)) exp(h(x, y)) + ∑
y/∈{ymax,h(x)}

exp(h(x, y))

Let h ∈H be a hypothesis such that h(x) ≠ ymax. For any x ∈ X, define the hypothesis hµ ∈H by

hµ(x, y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

h(x, y) if y /∈ {ymax,h(x)}
h(x, ymax) + µ if y = h(x)
h(x,h(x)) − µ if y = ymax

for any µ ∈ R. By the completeness of H, the new hypothesis hµ is in H and satisfies that
∑y∈Y hµ(x, y) = 0. Since∑y∈Y h(x, y) = 0, there must be non-negative scores. By definition of h(x)
as a maximizer, we must thus have h(x,h(x)) ≥ 0. Therefore, the minimal conditional Φcstnd

exp -risk
satisfies that for any µ ∈ R,

C∗Φcstnd
exp ,H(x) ≤ CΦcstnd

exp
(hµ, x)

= (1 − p(x, ymax))eh(x,h(x))−µ + (1 − p(x,h(x)))eh(x,ymax)+µ + ∑
y/∈{ymax,h(x)}

(1 − p(x, y)) exp(h(x, y)).

By the definition and using the fact that H(x) = Y when H is symmetric, we obtain

∆CΦcstnd
exp ,H(h,x) = CΦcstnd

exp
(h,x) − C∗Φcstnd

exp ,H(x)

≥ CΦcstnd
exp

(h,x) − CΦcstnd
exp

(hµ, x)

≥ (
√

(1 − p(x,h(x)))eh(x,h(x)) −
√

(1 − p(x, ymax))eh(x,ymax))
2

(taking supremum with respect to µ)

≥ eh(x,h(x))(
√

(1 − p(x,h(x))) −
√

(1 − p(x, ymax)))
2

(eh(x,h(x)) ≥ eh(x,ymax) and p(x,h(x)) ≤ p(x, ymax))

≥ (
√

(1 − p(x,h(x))) −
√

(1 − p(x, ymax)))
2

(h(x,h(x)) ≥ 0)

=
⎛
⎝

p(x, ymax) − p(x,h(x))√
(1 − p(x,h(x))) +

√
(1 − p(x, ymax))

⎞
⎠

2

≥ 1

2
(max
y∈Y

p(x, y) − p(x,h(x)))
2

(0 ≤ p(x, ymax) + p(x,h(x)) ≤ 1)

= 1

2
(∆C`0−1,H(h,x))2 (by Lemma 3 and H(x) = Y)

≥ 1

2
([∆C`0−1,H(h,x)]ε)

2
([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric and complete
hypothesis set, ε = 0 and Ψ(t) = t2

2
in Theorem 4, or, equivalently, Γ(t) =

√
2t in Theorem 5, we

obtain for any hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤

√
2(RΦcstnd

exp
(h) −R∗

Φcstnd
exp ,H +MΦcstnd

exp ,H)
1
2 −M`0−1,H.
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Theorem 28 (H-consistency bound of Φcstnd
ρ ). Suppose that H is symmetric and satisfies that for

any x ∈ X, there exists a hypothesis h ∈ H such that h(x, y) ≤ −ρ for any y ≠ ymax. Then, for any
hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦcstnd

ρ
(h) −R∗

Φcstnd
ρ ,H +MΦcstnd

ρ ,H −M`0−1,H. (44)

Proof. Since∑y∈Y h(x, y) = 0, by definition of h(x) as a maximizer, we must thus have h(x,h(x)) ≥
0. For the constrained ρ-margin loss Φcstnd

ρ , by (40), the conditional Φcstnd
ρ -risk can be expressed as

follows:

CΦcstnd
ρ

(h,x) = ∑
y∈Y

(1 − p(x, y))min{max{0,1 + h(x, y)
ρ

},1}

= ∑
y∈Y∶h(x,y)≥0

(1 − p(x, y)) + ∑
y∈Y∶h(x,y)<0

(1 − p(x, y))max{0,1 + h(x, y)
ρ

}

≥ 1 − p(x,h(x))
≥ 1 −max

y∈Y
p(x, y).

By the assumption, the equality can be achieved by some h∗ρ ∈H with the constraint∑y∈Y h(x, y) = 0
such that h∗ρ(x, y) ≤ −ρ for any y ≠ ymax and h∗ρ(x, ymax) = −∑y′≠ymax

h∗ρ(x, y′) ≥ 0. Therefore,
the minimal conditional Φcstnd

ρ -risk can be expressed as follows:

C∗Φcstnd
ρ ,H(x) = 1 −max

y∈Y
p(x, y).

By the definition and using the fact that H(x) = Y when H is symmetric, we obtain

∆CΦcstnd
ρ ,H(h,x) = CΦcstnd

ρ
(h,x) − C∗Φcstnd

ρ ,H(x)

= ∑
y∈Y∶h(x,y)≥0

(1 − p(x, y)) + ∑
y∈Y∶h(x,y)<0

(1 − p(x, y))max{0,1 + h(x, y)
ρ

} − (1 −max
y∈Y

p(x, y))

≥ 1 − p(x,h(x)) − (1 −max
y∈Y

p(x, y))

= max
y∈Y

p(x, y) − p(x,h(x))

= ∆C`0−1,H(h,x) (by Lemma 3 and H(x) = Y)
≥ [∆C`0−1,H(h,x)]ε ([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis
set, ε = 0 and Ψ(t) = t in Theorem 4, or, equivalently, Γ(t) = t in Theorem 5, we obtain for any
hypothesis h ∈H and any distribution,

R`0−1(h) −R∗
`0−1,H ≤ RΦcstnd

ρ
(h) −R∗

Φcstnd
ρ ,H +MΦcstnd

ρ ,H −M`0−1,H.

L Proof of negative results for adversarial robustness

Theorem 14 (Negative results for convex functions). Fix c = 2. Suppose that Φ is convex and non-
increasing, and H contains 0 and satisfies the condition that there exists x ∈ X such that Hγ(x) ≠ ∅.
If for a non-decreasing function f ∶R+ → R+, the following H-consistency bound holds for any
hypothesis h ∈H and any distribution D:

R`γ (h) −R∗
`γ ,H ≤ f(R̃̀(h) −R∗

̃̀,H
), (16)

then, f is lower bounded by 1
2

, for ̃̀= Φ̃max, Φ̃sum and Φ̃cstnd.
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Proof. Consider the distribution that supports on a singleton domain {x} with x satisfying that
Hγ(x) ≠ ∅. When Hγ(x) ≠ ∅, Hγ(x) is also non-empty. Take y1 ∈ Hγ(x) and let y2 ≠ y1. We
define p(x) as p(x, y1) = p(x, y2) = 1

2
. Let h0 = 0 ∈H. By Lemma 11 and the fact that Hγ(x) ≠ ∅

and y1 ∈ Hγ(x), the minimal conditional `γ-risk is

R∗
`γ ,H = C∗`γ ,H(x) = 1 − max

y∈Hγ(x)
p(x, y) = 1 − p(x, y1) =

1

2
.

For h = h0, we have

R`γ (h0) = C`γ (h0, x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

1ρh(x′,y)≤0 = 1.

For the adversarial max loss with non-increasing Φ, the conditional Φ̃max-risk can be expressed as
follows:

CΦ̃max(h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

Φ(ρh(x′, y))

= ∑
y∈Y

p(x, y)Φ( inf
x′∶∥x−x′∥p≤γ

ρh(x′, y))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y2) − h(x′, y1)))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ
⎛
⎝
− sup
x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

If Φ is convex and non-increasing, we obtain for any h ∈H,

RΦ̃max(h) = CΦ̃max(h,x)

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ
⎛
⎝

sup
x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

≥ Φ
⎛
⎝

1

2
inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2)) −

1

2
sup

x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

(Φ is convex)
≥ Φ(0), (Φ is non-increasing)

where the equality can be achieved by h0. Therefore,

R∗

Φ̃max,H
= C∗

Φ̃max,H
(x) = RΦ̃max(h0) = Φ(0).

If (16) holds for some non-decreasing function f and ̃̀= Φ̃max, then, we obtain for any h ∈H,

R`γ (h) −
1

2
≤ f(RΦ̃max(h) −Φ(0)).

Let h = h0, then f(0) ≥ 1/2. Since f is non-decreasing, for any t ≥ 0, f(t) ≥ 1/2.

For the adversarial sum loss with non-increasing Φ, the conditional Φ̃sum-risk can be expressed as
follows:

CΦ̃sum(h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

∑
y′≠y

Φ(h(x′, y) − h(x′, y′))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y2) − h(x′, y1)))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ
⎛
⎝
− sup
x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠
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If Φ is convex and non-increasing, we obtain for any h ∈H,
RΦ̃sum(h) = CΦ̃sum(h,x)

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2))) +

1

2
Φ
⎛
⎝

sup
x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

≥ Φ
⎛
⎝

1

2
inf

x′∶∥x−x′∥p≤γ
(h(x′, y1) − h(x′, y2)) −

1

2
sup

x′∶∥x−x′∥p≤γ

(h(x′, y1) − h(x′, y2))
⎞
⎠

(Φ is convex)
≥ Φ(0), (Φ is non-increasing)

where the equality can be achieved by h0. Therefore,
R∗

Φ̃sum,H
= C∗

Φ̃sum,H
(x) = RΦ̃sum(h0) = Φ(0).

If (16) holds for some non-decreasing function f and ̃̀= Φ̃sum, then, we obtain for any h ∈H,

R`γ (h) −
1

2
≤ f(RΦ̃sum(h) −Φ(0)).

Let h = h0, then f(0) ≥ 1/2. Since f is non-decreasing, for any t ≥ 0, f(t) ≥ 1/2.

For the adversarial constrained loss with non-increasing Φ, using the fact that h(x, y1)+h(x, y2) = 0,
the conditional Φ̃cstnd-risk can be expressed as follows:

CΦ̃cstnd(h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

∑
y′≠y

Φ(−h(x′, y′))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(−h(x′, y2))) +

1

2
Φ( inf

x′∶∥x−x′∥p≤γ
(−h(x′, y1)))

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
h(x′, y1)) +

1

2
Φ
⎛
⎝
− sup
x′∶∥x−x′∥p≤γ

h(x′, y1)
⎞
⎠

If Φ is convex and non-increasing, we obtain for any h ∈H,
RΦ̃cstnd(h) = CΦ̃cstnd(h,x)

= 1

2
Φ( inf

x′∶∥x−x′∥p≤γ
h(x′, y1)) +

1

2
Φ
⎛
⎝
− sup
x′∶∥x−x′∥p≤γ

h(x′, y1)
⎞
⎠

≥ Φ
⎛
⎝

1

2
inf

x′∶∥x−x′∥p≤γ
h(x′, y1) −

1

2
sup

x′∶∥x−x′∥p≤γ

h(x′, y1)
⎞
⎠

(Φ is convex)

≥ Φ(0), (Φ is non-increasing)
where the equality can be achieved by h0. Therefore,

R∗

Φ̃cstnd,H
= C∗

Φ̃cstnd,H
(x) = RΦ̃cstnd(h0) = Φ(0).

If (16) holds for some non-decreasing function f and ̃̀= Φ̃cstnd, then, we obtain for any h ∈H,

R`γ (h) −
1

2
≤ f(RΦ̃cstnd(h) −Φ(0)).

Let h = h0, then f(0) ≥ 1/2. Since f is non-decreasing, for any t ≥ 0, f(t) ≥ 1/2.

M Proof of H-consistency bounds for adversarial max losses Φ̃max

Theorem 15 (H-consistency bound of Φ̃max
ρ ). Suppose that H is symmetric. Then, for any hypoth-

esis h ∈H and any distribution D, we have

R`γ (h) −R∗
`γ ,H ≤

RΦ̃max
ρ

(h) −R∗

Φ̃max
ρ ,H

+MΦ̃max
ρ ,H

min{1,
infx∈{x∈X∶Hγ (x)≠∅}

suph∈Hγ (x) infx′ ∶∥x−x′∥p≤γ
ρh(x′,h(x))

ρ
}
−M`γ ,H. (18)
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Proof. By the definition, the conditional Φ̃max
ρ -risk can be expressed as follows:

CΦ̃max
ρ

(h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

Φρ(ρh(x′, y))

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − p(x,h(x)) +max{0,1 −
infx′ ∶∥x−x′∥p≤γ

ρh(x
′,h(x))

ρ
}p(x,h(x)) h ∈Hγ(x)

1 otherwise.

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 −min{1,
infx′ ∶∥x−x′∥p≤γ

ρh(x
′,h(x))

ρ
}p(x,h(x)) h ∈Hγ(x)

1 otherwise.

(45)

Since H is symmetric, for any x ∈ X, either for any y ∈ Y,
sup

h∈{h∈Hγ(x)∶h(x)=y}

inf
x′∶∥x−x′∥p≤γ

ρh(x′,h(x)) = sup
h∈Hγ(x)

inf
x′∶∥x−x′∥p≤γ

ρh(x′,h(x))

or Hγ(x) = ∅. When Hγ(x) = ∅, (45) implies that C∗
Φ̃max
ρ ,H

(x) = 1. When Hγ(x) ≠ ∅,

C∗
Φ̃max
ρ ,H

(x) = 1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y).

Therefore, the minimal conditional Φ̃max
ρ -risk can be expressed as follows:

C∗
Φ̃max
ρ ,H

(x) = 1 −min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y)1Hγ(x)≠∅

When Hγ(x) = ∅, CΦ̃max
ρ

(h,x) ≡ 1, which implies that ∆CΦ̃max
ρ ,H(h,x) ≡ 0. When Hγ(x) ≠ ∅,

using the fact that Hγ(x) = Y ⇐⇒ Hγ(x) ≠ ∅ when H is symmetric,

∆CΦ̃max
ρ ,H(h,x) = min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
max
y∈Y

p(x, y)

−min

⎧⎪⎪⎨⎪⎪⎩
1,

infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
p(x,h(x))1h∈Hγ(x)

≥ min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
(max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x))

= min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
∆C`γ ,H(h,x)

≥ min

⎧⎪⎪⎨⎪⎪⎩
1,

suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
[∆C`γ ,H(h,x)]

ε

≥ min

⎧⎪⎪⎨⎪⎪⎩
1,

infx∈{x∈X∶Hγ(x)≠∅} suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
[∆C`γ ,H(h,x)]

ε

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis set,
ε = 0 and

Ψ(t) = min

⎧⎪⎪⎨⎪⎪⎩
1,

infx∈{x∈X∶Hγ(x)≠∅} suph∈Hγ(x) infx′∶∥x−x′∥p≤γ ρh(x
′,h(x))

ρ

⎫⎪⎪⎬⎪⎪⎭
t

in Theorem 12, or, equivalently, Γ(t) = Ψ−1(t) in Theorem 13, we obtain for any hypothesis h ∈H
and any distribution,

R`γ (h) −R∗
`γ ,H ≤

RΦ̃max
ρ

(h) −R∗

Φ̃max
ρ ,H

+MΦ̃max
ρ ,H

min{1,
infx∈{x∈X∶Hγ (x)≠∅}

suph∈Hγ (x) infx′ ∶∥x−x′∥p≤γ
ρh(x′,h(x))

ρ
}
−M`γ ,H.
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N Proof of H-consistency bounds for adversarial sum losses Φ̃sum

Theorem 16 (H-consistency bound of Φ̃sum
ρ ). Assume that H is symmetric and that for any

x ∈ X, there exists a hypothesis h ∈ H inducing the same ordering of the labels for any
x′ ∈ {x′∶ ∥x − x′∥p ≤ γ} and such that infx′∶∥x−x′∥p≤γ ∣h(x

′, i) − h(x′, j)∣ ≥ ρ for any i ≠ j ∈ Y.
Then, for any hypothesis h ∈H and any distribution D, the following inequality holds:

R`γ (h) −R∗
`γ ,H ≤ RΦ̃sum

ρ
(h) −R∗

Φ̃sum
ρ ,H

+MΦ̃sum
ρ ,H −M`γ ,H. (20)

Proof. For any x ∈ X, we define p[1](x), p[2](x), . . . , p[c](x) by sorting the probabilities
{p(x, y) ∶ y ∈ Y} in increasing order. Similarly, for any x ∈ X and h ∈ H, we define
h(x,{1}x), h(x,{2}x), . . . , h(x,{c}x) by sorting the scores {h(x, y) ∶ y ∈ Y} in increasing order.
In particular, we have

h(x,{1}x) = min
y∈Y

h(x, y), h(x,{c}x) = max
y∈Y

h(x, y), h(x,{i}x) ≤ h(x,{j}j), ∀i ≤ j.

If there is a tie for the maximum, we pick the label with the highest index under the natural ordering
of labels, i.e. {c}x = h(x). By the definition, the conditional Φ̃sum

ρ -risk can be expressed as follows:

CΦ̃sum
ρ

(h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

∑
y′≠y

Φρ(h(x′, y) − h(x′, y′))

= ∑
y∈Y

sup
x′∶∥x−x′∥p≤γ

p(x, y) ∑
y′≠y

Φρ(h(x′, y) − h(x′, y′))

=
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x′,{i}x′) − h(x
′,{j}x′)) +

c

∑
j=i+1

Φρ(h(x′,{i}x′) − h(x
′,{j}x′))

⎤⎥⎥⎥⎦

=
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x′,{i}x′) − h(x
′,{j}x′)) + c − i

⎤⎥⎥⎥⎦
(46)

By the assumption, there exists a hypothesis h ∈H inducing the same ordering of the labels for any
x′ ∈ {x′∶ ∥x − x′∥p ≤ γ} and such that infx′∶∥x−x′∥p≤γ ∣h(x

′, i) − h(x′, j)∣ ≥ ρ for any i ≠ j ∈ Y, i.e.
{k}x′ = {k}x for any k ∈ Y and x′ ∈ {x′ ∶ ∥x − x′∥p ≤ γ}. Since H is symmetric, we can always
choose h∗ among these hypotheses such that h∗ and p(x) induce the same ordering of the labels, i.e.
p(x,{k}x) = p[k](x) for any k ∈ Y. Then, by (46), we have

C∗
Φ̃sum
ρ ,H

(x) ≤ CΦ̃sum
ρ

(h∗, x)

=
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h∗(x′,{i}x′) − h
∗(x′,{j}x′)) + c − i

⎤⎥⎥⎥⎦
(by (46))

=
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)(c − i)

(infx′∶∥x−x′∥p≤γ ∣h
∗(x′, i) − h∗(x′, j)∣ ≥ ρ for any i ≠ j and Φρ(t) = 0, ∀t ≥ ρ)

=
c

∑
i=1

p(x,{i}x)(c − i)

(h∗ induces the same ordering of the labels for any x′ ∈ {x′ ∶ ∥x − x′∥p ≤ γ})

=
c

∑
i=1

p[i](x)(c − i) (h∗ and p(x) induce the same ordering of the labels)

= c −
c

∑
i=1

i p[i](x) (∑ci=1 p[i](x) = 1)
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By the assumption, Hγ(x) ≠ ∅ and Hγ(x) = Y since H is symmetric. Thus, for any h ∈H,

∆CΦ̃sum
ρ ,H(h,x)

= CΦ̃sum
ρ

(h,x) − C∗
Φ̃sum
ρ ,H

(x)

=
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)
⎡⎢⎢⎢⎣

i−1

∑
j=1

Φρ(h(x′,{i}x′) − h(x
′,{j}x′)) + c − i

⎤⎥⎥⎥⎦
− (c −

c

∑
i=1

i p[i](x))

(Φρ(t) = 1 for t ≤ 0)

≥ p(x,h(x))1h/∈Hγ(x) +
c

∑
i=1

sup
x′∶∥x−x′∥p≤γ

p(x,{i}x′)(c − i) − (c −
c

∑
i=1

i p[i](x)) (Φρ ≥ 0)

≥ p(x,h(x))1h/∈Hγ(x) +
c

∑
i=1

p(x,{i}x)(c − i) − (c −
c

∑
i=1

i p[i](x)) (lower bound the supremum)

= p(x,h(x))1h/∈Hγ(x) +
c

∑
i=1

i p[i](x) −
c

∑
i=1

i p(x,{i}x) (∑ci=1 p(x,{i}) = 1)

= p(x,h(x))1h/∈Hγ(x) +max
y∈Y

p(x, y) − p(x,h(x)) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 1
c − 1
c − 2
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p[c](x)
p[c−1](x)
p[c−2](x)

⋮
p[1](x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c − 1
c − 1
c − 2
⋮
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⋅

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(x,{c}x)
p(x,{c − 1}x)
p(x,{c − 2}x)

⋮
p(x,{1}x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(p[c](x) = maxy∈Y p(x, y) and {c}x = h(x))

≥ p(x,h(x))1h/∈Hγ(x) +max
y∈Y

p(x, y) − p(x,h(x)) (by Lemma 21)

= max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x)

= ∆C`γ ,H(h,x) (by Lemma 11 and Hγ(x) = Y)

≥ [∆C`γ ,H(h,x)]
ε

([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis
set, ε = 0 and Ψ(t) = t in Theorem 12, or, equivalently, Γ(t) = t in Theorem 13, we obtain for any
hypothesis h ∈H and any distribution,

R`γ (h) −R∗
`γ ,H ≤ RΦ̃sum

ρ
(h) −R∗

Φ̃sum
ρ ,H

+MΦ̃sum
ρ ,H −M`γ ,H.

O Proof of H-consistency bounds for adversarial constrained losses Φ̃cstnd

Theorem 17 (H-consistency bound of Φ̃cstnd
ρ ). Suppose that H is symmetric and satisfies that

for any x ∈ X, there exists a hypothesis h ∈ H with the constraint ∑y∈Y h(x, y) = 0 such that
supx′∶∥x−x′∥p≤γ h(x

′, y) ≤ −ρ for any y ≠ ymax. Then, for any hypothesis h ∈H and any distribution,

R`γ (h) −R∗
`γ ,H ≤ RΦ̃cstnd

ρ
(h) −R∗

Φ̃cstnd
ρ ,H

+MΦ̃cstnd
ρ ,H −M`γ ,H. (22)

Proof. Define ymax by ymax = argmaxy∈Y p(x, y). If there is a tie, we pick the label with the
highest index under the natural ordering of labels. Since ∑y∈Y h(x, y) = 0, by definition of h(x) as a
maximizer, we must thus have h(x,h(x)) ≥ 0. By the definition, the conditional Φ̃cstnd

ρ -risk can be
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expressed as follows:

CΦ̃cstnd
ρ

(h,x) = ∑
y∈Y

p(x, y) sup
x′∶∥x−x′∥p≤γ

∑
y′≠y

Φρ(−h(x′, y′))

= ∑
y∈Y

sup
x′∶∥x−x′∥p≤γ

p(x, y) ∑
y′≠y

Φρ(−h(x′, y′))

= ∑
y∈Y

sup
x′∶∥x−x′∥p≤γ

p(x, y)
⎡⎢⎢⎢⎢⎣

∑
y′≠y∶h(x′,y′)>0

Φρ(−h(x′, y′)) + ∑
y′≠y∶h(x′,y′)≤0

Φρ(−h(x′, y′))
⎤⎥⎥⎥⎥⎦

≥ ∑
y≠h(x′)

sup
x′∶∥x−x′∥p≤γ

p(x, y)

≥ 1 −max
y∈Y

p(x, y). (Φρ ≥ 0 and Φρ(t) = 1 for t ≤ 0)

By the assumption, the equality can be achieved by some h∗ρ ∈H with the constraint∑y∈Y h(x, y) = 0
such that supx′∶∥x−x′∥p≤γ h

∗
ρ(x′, y) ≤ −ρ for any y ≠ ymax and h∗ρ(x′, ymax) = −∑y′≠ymax

h∗ρ(x′, y′)
for any x′ ∈ {x′ ∶ ∥x − x′∥p ≤ γ}. Therefore, the minimal conditional Φ̃cstnd

ρ -risk can be expressed as
follows:

C∗
Φ̃cstnd
ρ ,H

(x) = 1 −max
y∈Y

p(x, y).

By the assumption, Hγ(x) ≠ ∅ and Hγ(x) = Y since H is symmetric. Thus, for any h ∈H with the
constraint that ∑y∈Y h(x, y) = 0,

∆CΦ̃cstnd
ρ ,H(h,x) = CΦ̃cstnd

ρ
(h,x) − C∗

Φ̃cstnd
ρ ,H

(x)

= ∑
y∈Y

sup
x′∶∥x−x′∥p≤γ

p(x, y) ∑
y′≠y

Φρ(−h(x′, y′)) − (1 −max
y∈Y

p(x, y))

≥ ∑
y∈Y

p(x, y) ∑
y′≠y

Φρ(−h(x, y′)) − (1 −max
y∈Y

p(x, y)) (lower bound the supremum)

= ∑
y∈Y

(1 − p(x, y))Φρ(−h(x, y)) − (1 −max
y∈Y

p(x, y)) (swap y and y′)

≥ p(x,h(x))1h/∈Hγ(x) + 1 − p(x,h(x)) − (1 −max
y∈Y

p(x, y))

= max
y∈Y

p(x, y) − p(x,h(x))1h∈Hγ(x)

= ∆C`γ ,H(h,x) (by Lemma 11 and Hγ(x) = Y)

≥ [∆C`γ ,H(h,x)]
ε

([t]ε ≤ t)

for any ε ≥ 0. Therefore, taking P be the set of all distributions, H be the symmetric hypothesis
set, ε = 0 and Ψ(t) = t in Theorem 12, or, equivalently, Γ(t) = t in Theorem 13, we obtain for any
hypothesis h ∈H and any distribution,

R`γ (h) −R∗
`γ ,H ≤ RΦ̃cstnd

ρ
(h) −R∗

Φ̃cstnd
ρ ,H

+MΦ̃cstnd
ρ ,H −M`γ ,H.
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