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A MORE QUALITATIVE RESULTS
We present an extended visual analysis comparing DreamBooth++
with the established baselinemethods using theDreamBooth dataset.
Our results, displayed in Figure 1, illustrate that DreamBooth++ is
capable of generating images that not only preserve the identity of
the subjects but are also photorealistic and maintain high fidelity
across various contexts. This superior performance underscores the
enhancements integrated into DreamBooth++, making it a robust
solution for subject-driven image generation.

Further demonstrating the versatility and robustness of our
model, we provide additional results from the CustomConcept101
dataset [1] in Figure 2 and Figure 3. This dataset is notably diverse,
featuring 101 different objects, each associated with a unique set
of prompts. The results of CustomConcept101 dataset highlight
DreamBooth++’s ability to generalize well across varied subjects
and prompts, showcasing its effectiveness in adapting to different
artistic styles and contextual demands.

B DETAILED ABLATION STUDY
We incorporate various layout of packed reference images into our
training process by randomizing the position and number of random
anchors mentioned in the main text. Some of the packed examples
can be shown in the Figure 4. In our experiments, we explored
the effects of varying the proportions of reference images packed
into different layouts during the training process. This involved
adjusting the distribution of original images, 2x2, and 3x3 packed
configurations. Specifically, we tested ratios of 1:1:1, 1:2:2, 1:3:3,
1:5:5, and 1:7:7, to examine how these configurations influence the
model’s performance in terms of subject fidelity, prompt fidelity,
and image diversity. The results, illustrated in Table 1 , demonstrate
how different packing strategies can optimize the training efficiency
and effectiveness of our DreamBooth++ model.

different proportions of packed examples. Our study explores how
different ratios of packed examples influence model performance,
particularly focusing on subject fidelity, prompt fidelity, and image
diversity. The experiments vary the proportions of original, 2x2,
and 3x3 packed images, assessing the effects on key metrics. As
depicted in Table 1, increasing the proportion of packed images
generally improves subject fidelity. The highest CLIP-I score is
observed at a 1:3:3 ratio, indicating better subject representation,
whereas the CLIP-T scores suggest that prompt fidelity does not
uniformly benefit from higher proportions of packed configurations.
These findings demonstrate the trade-offs between enhancing sub-
ject detail and maintaining prompt coherence as packing density
increases.

different strength of Regularization. We investigated the effect of
different strengths of text-guided prior regularization by adjusting
the parameter 𝜆. This study aims to understand how changes in 𝜆

Table 1: Quantitative comparison of subject fidelity (DINO),
prompt fidelity (CLIP-I, CLIP-T), and diversity (LPIPS) across
different proportions of packed examples. Proportions are de-
scribed as the ratio of original images to 2x2 and 3x3 packed
configurations (e.g., 1:1:1 represents an equal number of orig-
inal, 2x2 packed, and 3x3 packed images).

Proportion DINO↑ CLIP-I↑ CLIP-T↑ LPIPS↑
1:1:1 0.674 0.806 0.246 0.756
1:2:2 0.695 0.817 0.242 0.745
1:3:3 0.673 0.826 0.242 0.750
1:5:5 0.681 0.812 0.243 0.756
1:7:7 0.675 0.809 0.242 0.755

Table 2: Impact of varying the strength of text-guided prior
regularization on subject fidelity (DINO), prompt fidelity
(CLIP-I, CLIP-T), and image diversity (LPIPS). The parameter
𝜆 controls the regularization strength.

𝜆 DINO↑ CLIP-I↑ CLIP-T↑ LPIPS↑
0 0.686 0.833 0.229 0.735
10 0.673 0.826 0.242 0.750
50 0.626 0.790 0.253 0.779
100 0.597 0.763 0.255 0.787

affect the semantic consistency and subject fidelity of generated im-
ages. As shown in Table 2, increasing 𝜆 generally enhances prompt
fidelity (CLIP-T) at the cost of reduced subject fidelity (DINO and
CLIP-I). This balancing of visual and textual accuracy highlights
the nuanced role of 𝜆 in model’s performance.

C LIMITATION
Despite DreamBooth++ achieving promising results, it exhibits
certain limitations, which we detail through failure cases shown
in Figure 5. The first issue involves objects being truncated at the
edges of the image. This occurs when some reference images used in
the references packing process have extreme aspect ratios, making
it challenging to avoid cutting off parts of the subject. The second
limitation concerns the failure in complex semantic parsing, which
includes semantic coupling and ignoring specified semantics in
prompts. These issues may arise due to insufficiently robust priors
for these contexts or the inherent difficulty of generating images
that align both the subject and a rarely co-occurring specified con-
cept. To mitigate these issues, we tested DreamBooth++ with the
more powerful base model, Stable Diffusion XL [2], as shown in
Figure 7, which demonstrated improved performance in managing
complex semantic tasks.
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Figure 1: More qualitative results on DreamBooth dataset.
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Figure 2: DreamBooth++ Results on CustomConcept101 Dataset [1].
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Figure 3: Continued Results on CustomConcept101 Dataset [1].
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Figure 4: Examples of our Data Re-formulation with diverse
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(a) truncated subject
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Figure 5: Failure modes in DreamBooth++. (a) shows the trun-
cation of subjects due to extreme aspect ratios in reference
images, and (b) depicts challenges in parsing complex se-
mantics, such as merging unrelated elements or overlooking
specific prompt details.

Figure 6: User Study Results. Pie charts illustrating partici-
pant preferences in (a) Subject Fidelity and (b) Text Fidelity
for images generated by DreamBooth++ (db++), DreamBooth
(db), LoRA, and OFT. DreamBooth++ leads in both categories,
reflecting its enhanced ability to produce images that are
both visually accurate and textually coherent.

D INTEGRATIONWITH STABLE DIFFUSION
XL

In this section, we extended our experiments to include Dream-
Booth++ implementation on a more capable base model—Stable
Diffusion XL [2], which has shown improvements in managing com-
plex semantic tasks. The integration of DreamBooth++ with the
Stable Diffusion XL model demonstrates significant enhancements
in high-resolution image generation. This combination not only
addresses the limitations identified in our standard model configu-
ration but also excels in producing images with greater detail and
clarity. Figure 7 exhibits DreamBooth++’s enhanced capabilities
when applied to better performing base model, underscoring its
adaptability and effectiveness for advanced image generation tasks.

E USER STUDY
We conducted a user study to evaluate DreamBooth++ compared to
DreamBooth (DB), LoRA, and OFT, focusing on subject fidelity and
text fidelity as described in the original DreamBooth study [3]. Each
pair, randomly selected from the comparison models. Participants
were asked to choose which image better preserved the subject’s
identity and which image better adhered to the text prompt, or if
they were indistinguishable. The results were tallied to determine
how often images from each model were preferred. These outcomes
are displayed in Figure 6. It is noteworthy that OFT excelled in ob-
jective metrics but was less favored in our subjective evaluations.
This may suggest that while OFT effectively prevents overfitting,
it could be at the cost of capturing finer details that users value in
visual comparisons. This result clearly showing that DreamBooth++
was frequently chosen as producing superior results, highlightin-
gits effectiveness in producing high-fidelity, contextually accurate
images in real-world applications.
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