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ABSTRACT

Bilevel optimization problems appear in many widely used machine learning
tasks. Bilevel optimization models are sensitive to small changes, and bilevel
training tasks typically involve limited datasets. Therefore, overfitting is a com-
mon challenge in bilevel training tasks. This paper considers the use of dropout
to address this problem. We propose a bilevel optimization model that depends
on the distribution of dropout masks. We investigate how the dropout rate af-
fects the hypergradient of this model. We propose a dropout bilevel method to
solve the dropout bilevel optimization model. Subsequently, we analyze the re-
sulting dropout bilevel method from an optimization perspective. Analyzing the
optimization properties of methods with dropout is essential because it provides
convergence guarantees for methods using dropout. However, there has been lim-
ited investigation in this research direction. We provide the complexity of the
resulting dropout bilevel method in terms of reaching an ϵ stationary point of the
proposed stochastic bilevel model. Empirically, we demonstrate that overfitting
occurs in data cleaning and meta-learning, and the method proposed in this work
mitigates this issue.

1 INTRODUCTION

Bilevel optimization appear in many problems widely used in machine learning tasks such as data
cleaning (Shaban et al., 2019), hyperparameter optimization, meta-learning (Franceschi et al., 2018)
and reinforcement learning (Yang et al., 2019). The bilevel optimization problem involves two
minimization problems that are stacked on top of each other, where the solution to one optimization
problem depends on the solution of the other. Take data cleaning as an example. Suppose we have a
corrupted training data set Dtr with Ntr data points and a clean data set Dval with Nval data points.
Let f(w; ξ) be a network parametrized by w. The aim of data cleaning is to train the model with
corrupted data by solving

min
λ∈RNtr

1

|Nval|

Nval∑
i=1

l(f(w(λ); ηi); ηi) s.t.w(λ) ∈ Argmin
w

1

|Ntr|

Ntr∑
i=1

σ(λi)l(f(w; ξi); ξi) (1)

where ηi ∈ Dval, ξi ∈ Dtr, l is the loss function and σ(λi) is the weight of the loss w.r.t. the data
ξi. If ξi is corrupted, we hope σ(λi) can neutralize the influence of ξi.

Another important machine learning task using bilevel optimization is the meta-learning (Franceschi
et al., 2018; Lorraine et al., 2020b). Suppose we have N different training tasks. The jth task
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(a) MNIST (b) FMNIST (c) CIFAR10

Figure 1: Overfitting in data cleaning tasks

has a pair of training and validation data sets {(Dj,v,Dj,tr)}. The j-th task is to train a network
f(wj , λ; ξ), where ξ is an input, wj denotes the parameters for task j and λ denotes the parameters
shared for all N tasks. The goal of meta-learning is to find good shared parameters λ. To this end,
the following bilevel model is considered:

min
λ

1

N

N∑
j=1

lj(wj , λ;Dj,v) s.t. w(λ) ∈ Argmin
w:=(w1,...,wN )

1

N

N∑
j=1

lj(wj , λ;Dj,tr), (2)

where lj(wj , λ;D) is the loss of the network f for the jth task on a data set D.

As shown in (1) and (2), bilevel training tasks are more complex than single level training tasks.
Thus, bilevel optimization models can be sensitive to changes in the input data and parameters. In
addition, bilevel training tasks usually suffer from limited data sets. As evidenced by Figure 1, in
the data cleaning problem, overfitting happens since the increase in the training accuracy leads to a
decrease in the testing accuracy of the classifier. Regarding meta-learning, overfitting in the model
learned through bilevel optimization can result in a diminished ability to learn new tasks. As shown
in our experiments section, in classification problems, the training accuracy is high while the testing
accuracy is not. Therefore, overfitting is a common challenge in bilevel training tasks and we need
to addressing it.

In single level machine learning optimization problems such as empirical risk minimization, there
are many ways to redeem the overfitting problem, including dropout, early stopping, data augmen-
tation, etc. Among these methods, dropout is highly effective, simple to apply and computation-
ally efficient, (Srivastava et al., 2014; Labach et al., 2019). Proposed by Srivastava et al. (2014),
dropout randomly drops neurons of the neural network during training, leading to only a portion of
parameters being updated in each epoch.Dropout has been successfully applied to fully connected
networks (Ba & Frey, 2013; Srivastava et al., 2014), convolutional neural networks (CNNs) (Wu &
Gu, 2015; Srivastava et al., 2014; Park & Kwak, 2017), and recurrent layers in recurrent neural net-
works (RNNs) (Pham et al., 2014; Zaremba et al., 2014). In this work, we investigate how dropout
behaves when adopted to solving the bilevel optimization problem.

Since the dropout only randomly zero out part of the neurons in a network, we propose a bilevel
optimization model that characterizes this randomness. Since current existing bilevel methods are
not directly applicable to this new model, we use a representative bilevel method from Li et al.
(2022) as an example to see how existing bilevel methods can be adapted to this new model. We
then investigate theoretical convergence guarantees of the resulting dropout bilevel method. Existing
analysis of the dropout method from an optimization perspective is very limited. As far as we
search, only (Li et al., 2016; Mianjy & Arora, 2020; Senen-Cerda & Sanders, 2020; Senen-Cerda &
Sanders, 2022) investigated this direction previously. However, these works only focused on single
level optimization problems. For bilevel problems, there are no theoretical convergence guarantees
for dropout methods. In this work, we fill in this gap and study the convergence properties for a
dropout bilevel method. The challenges in analyzing the dropout bilevel method, which the single-
level model considered in (Senen-Cerda & Sanders, 2020) does not face, include how to analyze the
hypergradient. Analyzing the hypergradient is hard to analyze in two ways: 1. it is related to the
solution of the lower level problem; 2. both upper and lower level objectives are composed with
random dropout masks.

Our contributions are summarized as follows:

• We form a statistical bilevel optimization problem that includes the distribution of the
dropout masks. To solve this problem, we propose a dropour variant of an existing method
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from (Li et al., 2022) as an example of a bilevel method. We investigate the inductive re-
lations between the variables that are used in the dropout bilevel method to approximate
the hypergradients of the outer-level objective. These variables are affected by the dropout
masks, and the variance term in the inductive relations is affected by the dropout rates.

• We show that the complexity of the dropout bilevel method depends on the dropout rate.
Unlike the complexity of the bilevel methods for the bilevel model without dropout, the
complexity of the dropout bilevel method for the dropout bilevel model has additional er-
rors that are only brought by the dropout. The challenge in this analysis is how to handle the
distributions of dropout masks that appear when estimating the error of the hypergradient
of the upper-level objective.

• We apply the proposed method to data cleaning problems. In our experiments, we observe
the overfitting problem. In addition, we observe that the proposed dropout bilevel method
redeems the overfitting problem. We also observe that the dropout bilevel method con-
verges. Furthermore, we observed that accuracy changes across iterations are more stable
when using dropout.

1.1 RELATED WORK

Theoretical properties of dropout methods for single-level optimization problems have been investi-
gated in (Baldi & Sadowski, 2013; Gal & Ghahramani, 2016; Zhai & Wang, 2018; Li et al., 2016).
In particular, Baldi & Sadowski (2013) introduced a general formalism for studying dropout and
use it to analyze the averaging and regularization properties of dropout. Gal & Ghahramani (2016)
and (Gal & Ghahramani, 2016) formed dropout training as approximate Bayesian inference in deep
Gaussian processes and studied the model uncertainty. (Zhai & Wang, 2018; Gao & Zhou, 2016;
Wang et al., 2019) studied Rademacher complexity bound of the dropout method.

Li et al. (2016); Mianjy & Arora (2020); Senen-Cerda & Sanders (2020); Senen-Cerda & Sanders
(2022) investigated the convergence of the dropout method for single level risk minimization tasks.
Li et al. (2016) view dropout as a data-dependent regularizer added to the training loss. In contrast,
our approach involves forming a stochastic minimization model that treats dropout masks as a ran-
dom linear transformation within the training loss. Mianjy & Arora (2020) considered a dropout
method for a 2-layers network. When the loss function is logistic loss (convex) and the activation
function is Relu, they provided the convergence rate of testing error. In this work, we consider
general multi-layer neural networks and investigate training error. In addition, they assume data
distribution is separable by a margin in a particular Reproducing Kernel Hilbert space, while we do
not have assumptions on the data distribution. (Senen-Cerda & Sanders, 2020) is closely related
to our work. They studies the convergence properties of dropout stochastic gradient methods for
minimizing the empirical risks of multiple fully connected networks. Different from (Li et al., 2016;
Mianjy & Arora, 2020; Senen-Cerda & Sanders, 2020; Senen-Cerda & Sanders, 2022), we focus on
bilevel training tasks.

Popular methods to solve bilevel optimization problems in machine learning have been proposed
in (Franceschi et al., 2017; 2018; Finn et al., 2017a; Li et al., 2022; Gould et al., 2016; Lorraine
et al., 2020a; Bae & Grosse, 2020). The major of them are gradient-based methods. They can be
further divided into two types based on the way they approximate the hypergradient. The first type
is iterative differentiation (ITD) (Franceschi et al., 2017; 2018; Finn et al., 2017a; Liu et al., 2020;
Ghadimi & Wang, 2018; Ji et al., 2021; Rajeswaran et al., 2019), and the second type is approximate
implicit differentiation (AID) (Chen et al., 2022; Ji et al., 2021; Li et al., 2022; Gould et al., 2016;
Lorraine et al., 2020a). As far as we know, there is no existing work in bilevel optimization that
considers the overfitting problem, let alone analyzing the dropout bilevel method for this problem.
In this work, we select an ITD method with a relatively simple structure as an example to investigate
how dropout affects bilevel training tasks.

2 PRELIMINARIES

In this paper, we denote Rn the n-dimensional Euclidean space with inner product ⟨·, ·⟩ and Eu-
clidean norm ∥ · ∥. We denote the spectrum norm of a matrix A ∈ Rn×m as ∥A∥ and the Frobe-
nius norm of A as ∥A∥F . For any matrices A and B, we denote trace(ATB) := ⟨A,B⟩. For
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a ramdom variable ξ defined on a probability space (Ξ,Σ, P ), we denote its expectation as Eξ.
Given an event A and a function f of ξ, the conditional expectation of ξ is denoted as Eξ|Af(ξ).
For a function F : Rn → Rm, we denote the function F (x, y) with respect to y for a fixed x
as F (x, ·) and denote the function F (x, y) with respect to x for a fixed y as F (·, y). For a dif-
ferentiable function f , we say x is an ϵ stationary point of f if ∥∇f(x)∥ ≤ ϵ. For a twice dif-
ferential function F : Rm × Rn → R, we denote ∇xF (x, y) and ∇yF (x, y) as the partial gra-
dients ∂F (x,y)

∂y and ∂F (x,y)
∂y correspondingly. We denote ∇2F (x, y) as the Hessian matrix of F ,

∇xyF (x, y) := ∂2F (x,y)
∂x∂y and ∇yyF (x, y) := ∂2F (x,y)

∂y∂y . For a multiple valued differentiable func-
tion f : Rn → Rm, we denote its Jacobian at x as J(f(x)). With a little abuse of notation, given a
distribution P , let g(x; ξ) be a function that depends on x ∈ Rn and a data point ξ ∼ P .

In general, a bilevel optimization training task is formed as follows:
min

λ∈Rnλ
F (λ,w(λ)) := F (λ,w(λ);Dval), s.t. w(λ) ∈ argmin

w∈Rnw

G(λ,w) := G(λ,w;Dtr), (3)

where Dval is a validation data set, Dtr is a training data set, F : Rnλ → R and G : Rnλ+nw → R
are differentiable functions1.

As mentioned in Section 2, there are various approaches to solve (3). Due to the nested structure
of bilevel problems, the methods for (3) are inherently complex. To better understand how dropout
is implemented in methods for (3), we use the fully single loop algorithm (FSLA) proposed in (Li
et al., 2022) as an example to investigate dropout. This method has relatively simple formulas at
each iteration and low computational cost per iteration. Step 6 in FSLA is one step of SGD for the
lower level problem and Step 9 generates an approximation of the hypergradient of the objective in
the upper level.

2.1 DROPOUT

Let f(w; ξ) be an l-layer network, where w is the weight and ξ is an input data. In particular, we
assume

f(w; ξ) := f(w; ξ) = al(wl(al−1(wl−1 · · · a1(w1ξ)))), (4)
where wi ∈ Rni × Roi is the parameters in the ith layer2, ai is the activation function in the ith
layer. We let w = ((w1)1, . . . , (w1)n1 , . . . , (wl)1, . . . , (wl)nl

) be the collection of all rows in all
weight matrices, where (wi)s is the transpose of the jth row of wi. Thus w is an no-dimensional
vector, where n =

∑
ni, o =

∑
oi . Let l be a loss function. When training f with loss function l,

the forward pass is
F (w; ξ) = l(f(w; ξ); ξ). (5)

In the ith layer, the forward pass of an input ξi ∈ Rni using dropout can be formed as
ri = mi ◦ ai(wiξi), (6)

where ξ0 = ξ, ◦ represent the Hadamard product of two vectors, and mi ∈ Rni with (mi)j ∼
Bernoulli(pi) with pi ∈ [0, 1]. mj is called a dropout mask at the ith layer. Note that this formation
of dropout masks is more general than the original dropout masks proposed in Srivastava et al.
(2014). In Srivastava et al. (2014), the dropout rate is the same for all rows of weights in the same
layer. Here, we allow the drop rate of each row of the weight matrix to be different.

Note that the function values of many well known activation functions at 0 is 0. For example,
tanh, centered sigmoid and Relu has this property. Through out this work, we make the following
assumption.
Assumption 1. For any ai used in (4), ai(0) = 0.

Under assumption 1, ri in (6) can be alternatively formed as

ri = ai(mi ◦ (wiξi)) = ai


(mi)1 0 0

...
. . .

...
0 . . . (mi)ni

wiξi

 . (7)

1With a little abuse of notation, without misunderstanding, we denote the F (λ,w(λ);Dval) as a function
F (λ) and denote G(λ,w;Dtr) as a function G(λ,w).

2For simplicity, we include the parameters of bias in wi with a corresponding fixed input of 1.
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Denote diag((mi)1, . . . , (mi)ni
) :=

(mi)1 0 0
...

. . .
...

0 . . . (mi)ni

. Recalling that for any layer i,

(mi)j ∼ Bernoulli(pi). The right hand formula in (7) means the dropout method randomly pick
the jth row of the weight matrix wi with probability pi and sets the rest to 0. Thus, given a loss
function l, under Assumption 1, the forward pass with dropout in fact calculates

l(f(mw; ξ); ξ) = F (mw; ξ),

where F is defined in (5) and

m := diag ((m1)1, . . . , (m1)n1 , . . . , (ml)1, . . . , (ml)nl
) . (8)

As we can see, the jth diagonal element mjj ∼ Bernoulli(pi) when j ∈ {
∑i−1

k nk +

1, . . . ,
∑i

k nk}. Note that in above discussion, each row of the weight matrix in each layer is always
viewed as one element. For notation simplicity, without loss of generality, in the rest of this paper,
when we mention the weight of a network, we view the weight matrix in the ith layer as a vector of
Rni , where ni is the number of outputs in the ith layer. Then, we view w, the collection of all rows
of all layers, as a vector in Rn.

3 DROPOUT IN BILEVEL PROBLEMS

As introduced in Section 2.1, the objectives are the composition of them with the dropout masks.
Thus, we propose the following variant of (3) that considers the distribution of the dropout masks:

min
λ∈Rnλ

F̃ (λ) := Emλ,mw
F (mλλ,mww(λ)),

s.t. w(λ) ∈ argmin
w∈Rnw

G̃(λ,w) := Emλ,mw
G(mλλ,mww),

(9)

where F and G are the same as in (3), mλ and mw are random diagonal matrices with (mλ)ii ∼
Bernoulli(pi,λ), (mw)ii ∼ Bernoulli(pi,w) respectively. This idea of modeling with the dropout
masks is also considered in analyzing dropout SGD for the single level training tasks in (Senen-
Cerda & Sanders, 2020). For bilevel learning tasks, this model is new. We add dropout masks on
both upper and lower level objective functions to include the application where λ and w are both
weights of a network, Franceschi et al. (2018); Zügner & Günnemann (2019); Finn et al. (2017a);
Snell et al. (2017).

Now we adopt the dropout bilevel method. based on FSLA. Before presenting a general form of
FSLA with dropout, let’s consider applying it to the example mentioned in (1). The data clean-
ing problem (1) is a case of (3) with F (λ,w(λ);Dval) = 1

|Nval|
∑Nval

i=1 l(f(w(λ); ηi); ηi) and

G(λ,w;Dtr) = 1
|Ntr|

∑Ntr

i=1 σ(λi)l(f(w; ξi); ξ). As we illustrate in Section 2.1, suppose m is a
dropout masks added in the forward pass of the network used in (1) in each iteration. Then the
forward pass of the upper level objective used in FSLA becomes F (λ,mw(λ);Dval), where m is
defined in (8). The forward pass of the lower level objective used in FSLA becomes G(λ,mw;Dtr).
By the chain rule, the backward pass needed in FSLA calculate the follows:

∇F ((·),mw(·);Dval)(λ) = m∇F ((·),mw(·);Dval)(λ);

∇G(·,m(·);Dtr)(λ,w) = m∇G(λ,mw;Dtr);

∇2G(·,m(·);Dtr)(λ,w) = m∇2G(λ,mw;Dtr)m.

(10)

Based on this, we present Algorithm 1. We add a projection in step 8 to avoid v blow up. This is also
important in the theoretical analysis. In the next section, we analyze the convergence of Algorithm
1.

4 ANALYSIS OF ALGORITHM 1

A challenge of analyzing (9), which the single level model considered in (Senen-Cerda & Sanders,
2020) does not have, is how to analyze the hypergradient ∇F̃ (λ). ∇F̃ (λ) is hard to analyze due to
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Algorithm 1 FSLA with dropout

1: Input: β, α, γ > 0, λ0, w0, dropout rates {pi,λ}nλ
i=1, {pi,w}nw

i=1, r > 0, ∇F̄ (λ0, w0, v−1))).
2: for k = 0, . . . , T . do
3: αk = δ√

k
; γk = γαk; βk = βαk; ηk = ηαk.

4: Generate random diagonal matrices mk
λ, mk

w, mk
λ and mk

w with (mk
λ)ii, (m

k
λ)ii ∼

Bernoulli(pi,λ), (mk
w)ii, (m

k
w)ii ∼ Bernoulli(pi,w).

5: Sample ξk ∈ Dtr, ηk ∈ Dval.
6: wk+1 = wk − γkm

k
w∇wG(mk

λλ
k,mk

ww
k; ξk).

7: ṽk+1 = βmk
w∇wF (mk

λλ
k,mk

ww
k+1; ηk) +

(
I − βkm

k
w∇2

wwG(mk
λλ

k,mk
ww

k; ξk)mk
w

)
vk.

8: vk+1 = ProjB(0,r)ṽ
k+1.

9: ∇F̄(λk,wk+1,vk+1)=mk
λ∇λF (mk

λλ
k,mww

k+1;ηk)−mλk∇2
λwG(mk

λλ
k,mk

ww
k+1;ξk)mk

wv
k+1.

10: dk+1 = ∇F̄ (λk, wk+1, vk+1) + (1− ηk)(d
k −∇F̄ (λk−1, wk, vk))).

11: λk+1 = λk − αkd
k+1.

12: end for

its relation with the solution of the lower level problem and the fact that both upper and lower level
objectives are composed with random dropout masks. To analyze this and Algorithm 1 for (9), we
first make the following assumptions that are standard in bilevel optimization literature.
Assumption 2. Let F (λ,w) be defined as in (3). Suppose the following assumptions hold:

(i) Suppose F is Lipschitz continuous with modulus LF .

(ii) For any fixed λ, ∇λF (λ, ·) and ∇wF (w, ·) are Lipschitz continuous with modulus LF
12 and

LF
22.

(iii) There exists CF > 0 such that max{∥∇wF (λ,w)∥, ∥∇λF (λ,w)∥} ≤ CF for any λ and w.

(iv) For any fixed w, ∇wF (·, w) is Lipschitz continuous with modulus LF
wλ > 0.

Assumption 3. Let G(λ,w) be defined as in (3). Suppose the following assumptions hold:

(i) G is twice continuously differentiable. ∇G(λ,w) is Lipschitz continuous with modulus LG.

(ii) For any λ, G(λ, ·) is strongly convex with modulus µ.

(iii) For any λ, ∇2
ijG(λ, ·) is Lipschitz continuous with modulus LGw .

(iv) For any w,∇2
i,jG(·, w) is Lipschitz continuous with modulus LGλ .

(v) There exists CG such that maxi,j{∥∇2
ijG(λ,w)∥, ∥∇2

ijG(λ,w)∥} ≤ CG for any λ and w.

Denote M =

[
mλ 0
0 mw

]
and FM (λ) := F (mλ(·),mww(·))(λ). Then

∇F̃ (λ) = Emλ,mw
∇FM (λ). (11)

Under Assumptions 2 and 3, it is easy to see that using the chain rule,

∇FM (λ) = mλ∇λF (mλλ,mww(λ)) + J(w(λ))Tmw∇wF (mλλ,mww(λ)), (12)

where J(w(λ)) is the Jacobian of w(λ). The next proposition gives a closed form of J(w(λ)) and
its property.

Proposition 1. Consider (9) and suppose Assumption 3 holds. Denote W =

[
λ
w

]
and M =[

mλ 0
0 mw

]
. Let p

w
= mini pi,w. Then G̃ is strongly convex with modulus p

w
µ and the following

equalities hold:

∇G̃(λ,w) = EM∇G (MW ) ; ∇2G̃(λ,w) = EM∇2G (MW )M ;
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J(w(λ)) = −
(
∇2

wwG̃(λ,w(λ))
)−1

∇2
λwG̃(λ,w(λ)). (13)

In addition, for any λ, it holds that w(λ) is Lipschitz continuous with some modulus Lw. Also, for
any w, it holds that ∥J(λ(w))∥F ≤ CG

µ .

Based on Proposition 1, we can estimate the variance of ∇G̃(λ,w).
Lemma 1. Let G be defined as in (3). Let mλ and mw are diagonal matrices with (mλ)ii ∼
Bernoulli(pλ,i) and (mw)jj ∼ Bernoulli(pw,j). Let pi = pi,λ if i ∈ {1, . . . , nλ} and pi = pi,w
if i ∈ {nλ + 1, . . . , nλ + nw}. Then

E∥∇2G (M(·)) (W )− EM∇2G (M(·)) (W ) ∥2 ≤
∑
i,j

pipj (1− pipj)C
2
G. (14)

Next, we show how the update of the lower level parameters behaves. Since Algorithm 1 uses the
stochastic gradient and Hessian. We add the following assumptions.
Assumption 4. Consider (9). Let ξ be randomly picked from Dtr and η be randomly picked from
Dval. Suppose Eη∇λF (λ,w; η) = ∇λF (λ,w) and Eξ∇wG(λ,w; ξ) = ∇wG(λ,w). Suppose
Eη∥∇λF (λ,w; η) − ∇λF (λ,w)∥2 ≤ σ2, Eξ∥∇wG(λ,w; ξ) − ∇wG(λ,w)∥2 ≤ σ2, and for any
i, j, Eξ∥∇2

i,jG(λ,w; ξ)−∇2
i,jG(λ,w)∥ ≤ σ2

h.

Now we show the inductive relations of {wk} generated by Algorithm 1.
Lemma 2. Consider (9). Suppose Assumptions 2, 3 and 4 hold. Let {(λk, wk)} be generated by
Algorithm 1. Let γ in Algorithm 1 be small enough such that γµ < 1. Let pw := maxi pi,w. Then
there exists ι ∈ (0, 1) such that

E∥wk+1 − w(λk)∥2 ≤ ιE∥wk − w(λk−1)∥2 +O(α2
k)E∥dk−1∥2 +O(γ2

k)pwσ
2. (15)

Remark 1. Note that w(λk) is the true solution of the lower level problem given λk. This induction
has additional errors related to the updates of the upper level variable λk and the variance. Note
that the variance term in (26) decreases linearly with the maximum dropout rate.

Next, we present the inductive relations of {vk} generated by Algorithm 1. In fact, combining (13)
with (12), it is easy to see that

∇FM (λ) = mλ∇λF (mλλ,mww(λ))−∇2
λwG̃(λ,w(λ))vmw,λ. (16)

where vmw,λ :=
(
∇2

wwG̃(λ,w(λ))
)−1

mw∇wF (mλλ,mww(λ)). This implies that

vmw,λ = βmw∇wF (mλλ,mww(λ)) +
(
I − β∇2

wwG̃(λ,w(λ))
)
vmw,λ.

Comparing the above equation with the update of vk+1 in Algorithm 1, we see that vk+1 is an
approximation of vm̄k

w,λk . The next theorem shows how the difference vk and vm̄k
w,λk varies with

iteration k and the dropout rate.
Theorem 1. Consider (9). Suppose Assumptions 2, 3 and 4 hold. Let {(λk, wk)} be generated
by Algorithm 1. Denote V k := vk − vmk−1

w ,λk−1 . Denote pλ := maxi pi,λ, p
λ

:= mini pi,λ,

pw := maxi pi,w and p
w
:= mini pi,w. Suppose r ≥ Cv :=

LF
22

µ . Then there exists ϱ ∈ (0, 1) such
that

E∥V k+1∥2 ≤ ϱE∥V k∥2 +O((pw)
2β2

k)σ
2 +O(pwβ

2
k)E∥wk+1 − w(λk)∥2

+O(α2
k)E∥dk−1∥2 +O((pw)

2β2
k)σ

2
h +O(p̄λp̄w(1− p

λ
p
w
)β2

k).

Remark 2. The last term in the above theorem are introduced by the dropout of the network and
disappear when no dropout is applied to the network parametrized by w.

Now, based on Theorem 1 and Lemma 2, we analyze the convergence of Algorithm 1. Thanks to
(11), to find an ϵ stationary point to (9) such that ∥∇F̃ (λ)∥2 ≤ ϵ, it suffices to find λ that satisfies
E∥∇FM (λ)∥2 ≤ ϵ.
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(a) MNIST (b) FMNIST (c) CIFAR10

(d) MNIST (e) FMNIST (f) CIFAR10

Figure 2: Results from data cleaning. The first line reports how training and testing accuracy change
as the number of iterations increases. The second line details the training and testing accuracy in the
final iteration when different dropout rates are applied.

Theorem 2. Consider (9). Suppose Assumptions 2, 3 and 4 hold. Let {(wk, λk)} be generated by
Algorithm 1. Suppose F is bounded below by F̄ . Then there exist small δ in Algorithm 1 such that

1

T − 1

T−1∑
k=1

E∥∇FMk(λk)∥2 ≤ 1√
T

1

p
w
p
λ

I0 +
ln(T + 1)√

T
O

(
p̄2λ

p
λ
p
w

+ p
w
p̄w

)(
σ2 + σ2

h

)
+

ln(T + 1)√
T

O
(
p
w

(
p̄2w(1− p2

w
) + p̄w(1− p

w
)
))

.

Remark 3. The first term shows that the convergence rate is slower when p
λ
p
w

is small, which
can be confirmed in our experiments Figure 2. The last term in the above results is introduced by
dropout, and it disappears when p

λ
= p

w
= 1, i.e., no dropout is applied.

On the other hand, we have to point that the convergence of E∇FMk(λk) does not imply that
of F (λ). Consider a simple 2-dimensional case. Let f(x1, x2) := 1

2x
2
1x2 + 1000x1. Let

xk = (xk
1 , x

k
2) be with xk

1 = − 1000p2+2000(1−p)p
k and xk

2 = k. Let m = diag{m1,m2}
with m1 ≈ Bernoulli(p) and m2 ≈ Bernoulli(p). Then limk→∞ Em∇f(mxk) = 0. How-
ever, limk→∞ ∇f(xk) = (−1000p2 − 2000(1 − p)p + 1000, 0). Therefore, the convergence of
∇Emf(mxk) does not necessarily imply the convergence of ∇f(xk), the error between ∇f(xk)
and ∇Emf(mxk) can not be closed unless p approaches 1. Therefore, there are additional errors
brought only by the dropout. This example implies that the dropout method may not be optimizing
the original bilevel problem. This is expected because when the original training loss is optimized,
the model fits the training data too well and this will increase the chance of overfitting.

5 EXPERIMENTS

In this section, we test Algorithm 1 on data cleaning tasks (1) and meta learning problem (2). The
experiments were conducted on a machine equipped with an Intel Xeon E5-2683 CPU and 4 Nvidia
Tesla P40 GPUs.

Data cleaning We followed the approach outlined in (Srivastava et al., 2014) and utilized a fully
connected network. The experiments were performed using the MNIST dataset (LeCun et al., 2010).
The network architecture employed was 784-1024-1024-2048-10, with ReLU activation functions
used for all hidden units. To introduce unclean data, we randomly mislabel 60% of the training data.
When training on MNIST and FMNIST, we use a fully connected network with the architecture
784− 1024− 1024− 2048− 10 and employ ReLU activation functions for all hidden units. In all
experiments conducted on MNIST and FMNIST, we set the dropout rates of all layers to the same
value, denoted as p. Dropout is only applied when updating the lower level parameters. We set
γ = 0.01 and train 10000/10000 iterations for 5000/10000 MNIST/FMNIST data points. When

8
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(a) Layer 1 with p = 0.8 (b) Layer 2 with p = 0.5 (c) Layer 3 with p = 0.5

(d) Layer 1 (e) Layer 2 (f) Layer 3

Figure 3: Results from few-shot learning on the Omniglot dataset. The first line reports how train-
ing and testing accuracy change as the number of iterations increases. The second line details the
training and testing accuracy in the final iteration when different dropout rates are applied to only
one layer of the network.

training on CIFAR10, we use 4-layer convolutional neural networks + 1 fully connected layer. In all
CIFAR10 experiments, we apply dropout after each convolutional layer, using a consistent dropout
rate of p. We set γ = 0.1. We train 40000 iterations for 40000 data points.

Meta-learning We conduct experiments with the few-shot learning task, following the experimental
protocols of (Vinyals et al., 2016), we performed learning tasks over the Omniglot dataset. We set
train/validation/test with 102/172/423, respectively. We perform 5-way-1-shot classification. More
specifically, we perform 5 training tasks (N = 5). For each task, we randomly sample 5 characters
from the alphabet over that client and for each character, and select 1 data points for training and
15 samples for validation. We use a 4-layer convolutional neural network + 1 fully connected layer.
Each convolutional layer has 64 filters of 3×3 and is followed by batch-normalization layers (Finn
et al., 2017b). The parameters of convolutional layers are shared between different tasks (λ) and the
last linear layer is the task-specific parameter wj . In each experiment, we only add dropout to one
CNN layer. In all experiments, we let β, α and γ in FSLA and Algorithm 1 be 0.05, 0.1 and 0.8
respectively.

Results We report the results in Figures 2 and 3. In the first line of both figures, we plot the accuracy
against the iteration in each training progress. In the second line of both figures, we plot how
different dropout rates affect the training and testing accuracy. Figure 2 shows when the training
accuracy increases, the testing accuracy decreases. This observation indicates the occurrence of
overfitting in data cleaning tasks. The proper addition of dropout during training can enhance testing
accuracy in response. On the other hand, Figure 2 demonstrates that training the network with
dropout leads to convergence at a higher testing accuracy and greater stability. Figure 3 shows the
accuracy of the method when adding dropout with different rates on the different layers. As we can
see, adding a proper dropout to any layer improves the testing accuracy.

6 CONCLUSION

In this paper, we explore the application of dropout in bilevel training tasks. We propose a stochastic
bilevel model that is dependent on the distribution of dropout masks. We adapt an existing bilevel
method with dropout. We analyze the convergence properties of the resulting method for the pro-
posed model. We investigate the inductive relations of the variables attributes to an approximation
of the hypergradients. In addition, we show how the dropout rates affect the complexity. We be-
lieve that other state-of-art bilevel methods can also be adapted to address the stochastic bilevel
model with random dropout masks, and our convergence analysis serve as the first example for such
adaptations.
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(a) 5000 training data (b) 40000 training data (c) 5000 training data (d) 40000 training data

Figure 5: FMNIST

(a) 5000 training data (b) 10000 training data (c) 5000 training data (d) 10000 training data

Figure 6: CIFAR10

(a) Layer 4 (b) Layer 4 with p = 0.2

Figure 7: Mata-learning

A ADDITIONAL EXPERIMENTS

A.1 DATA CLEANING

We use the same network and hyperparameters of the FLSA with dropout as in the full paper.
We train 10000/20000 iterations for 10000/40000 MNIST. We train 10000/20000 iterations for
5000/40000 for FMNIST. The results are in Figure 4 and 5.

Figure 2d 4c 4d indicates that as the dataset size increases, the lines representing testing accuracy
and training accuracy become more parallel. This implies that in larger datasets, overfitting is less
likely to happen.

In data learning rasks on CIFAR10, we let each convolutional layer be defined by its input channel,
output channel, kernel size, stride, and padding, set as [64, 3, 3, 3, 2, 0], [64, 64, 3, 3, 2, 0], [64, 64,
3, 3, 2, 0], and [4, 64, 2, 2, 1, 0], respectively. The linear layer connects an input of size 64*4 to an
output size of 10. Throughout the network, ReLU activation functions are employed for all hidden
units. Additionally, we train 10000/10000 iterations for 5000/10000 data points. The results are in
6.

A.2 META-LEARNING

We additionally test how dropout affects the last convolution layer, see Figure 7.
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B PROOFS OF PROPOSITION 1

We restate a detailed version of the property here.

Proposition 2. Consider (9) and suppose Assumption 3 holds. Denote W =

[
λ
w

]
and M =[

mλ 0
0 mw

]
. Let p

w
= mini pi,w. Then G̃ is strongly convex with modulus p

w
µ and

∇G̃(λ,w) =
∑

mw∈Mw,mλ∈Mλ

pmw,mλ
M∇G (MW ) = EM∇G (MW ) ;

∇2G̃(λ,w) = EM∇2G (MW )M.

(17)

Also w(λ) is Lipschitz continuous with constant Lw :=
Cg

p
w
µ . In addition, for any λ, it holds that

J(w(λ)) = −
(
∇2

wwG̃(λ,w(λ))
)−1

∇2
λwG̃(λ,w(λ)) is Lipschitz continuous with modulus LJ :=

L
Gλ

λ
+LGw

λ
Lw

p
w
µ +

(L
Gλ

w
+LGw

w
Lw)CG

p2
w
µ2 . Also, for any w, it holds that ∥J(λ(w))∥F ≤ CG

p
w
µ .

Proof. Note that
G̃(λ,w) =

∑
mw∈Mw,mλ∈Mλ

pmw,mλ
G(mλλ,mww)

where Pmw,mλ
is the probability of the case (mw,mλ) happends and (Mw,Mλ) is the set of all

cases of mw,mλ. Thus G̃(λ,w) is also twice continuously differentiable.

Note that G(mλ(·),mw(·))(λ,mw) can be equally written as G
([

mλ 0
0 mw

]
(·)
)([

λ
w

])
. Then,

∇G̃(λ,w) =
∑

mw∈Mw,mλ∈Mλ

pmw,mλ
M∇G (MW ) = EM∇G (MW ) . (18)

and

∇2G̃(λ,w) =
∑

mw∈Mw,mλ∈Mλ

pmw,mλ
M∇2G (MW )M = EM∇2G (MW )M. (19)

These together with Assumption 3, the fact that pmw,mλ
∈ [0, 1] and the fact that all entries of the

diagonal matrix M belongs to {0, 1} shows that

• G̃ is twice continuously differentiable. In addition, suppose ∇wG̃(λ, ·) is Lipschitz contin-
uous with modulus LG > 0 for any λ.

• For any λ, ∇2
λwG̃(λ, ·) and ∇2

wwG̃(λ, ·) are Lipschitz continuous with modulus LGw
λ

and
LGw

w
.

Now we show that for any λ, G̃(λ, ·) is strongly convex with modulus µ. Let v ∈ Rnw . Using (19),
we have that

v∇2
wwG̃(λ,w)v = v

(
Emw∇2G (mλλ,mww)mw

)
v

= Emwv∇2G (mλλ,mww)mwv

≥ Eµ∥mwv∥2 =

nw∑
i=1

E(mw)iiµ∥(mw)iivi∥2

=

nw∑
i=1

µpi,w∥vi∥2 ≥ µp
w
∥v∥2,

(20)

where the first inequality uses Assumption 3 and p
w

= mini pi,w. Thus, using Lemma 2.1 and
Lemma 2.2 in (Ghadimi & Wang, 2018), for any λ, it holds that
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• w(λ) is Lipschitz continuous with constant Cg

p
w
µ .

•

J(w(λ)) = −
(
∇2

wwG̃(λ,w(λ))
)−1

∇2
λwG̃(λ,w(λ)) (21)

is Lipschitz continuous with modulus LJ :=
L

Gλ
λ
+LGw

λ
Lw

p
w
µ +

(L
Gλ

w
+LGw

w
Lw)CG

p2
w
µ2 . Also, for

any w, it holds that ∥J(w(λ)∥F ≤ CG

p
w
µ .

C PROOFS OF LEMMA 1

We restate the lemma here.

Lemma 3. Let G be defined as in (3). Let mλ and mw are diagonal matrices with (mλ)ii ∼
Bernoulli(pλ,i) and (mw)jj ∼ Bernoulli(pw,j). Let pi = pi,λ if i ∈ {1, . . . , nλ} and pi = pi,w
if i ∈ {nλ + 1, . . . , nλ + nw}. Then

E∥∇2G (M(·)) (W )− EM∇2G (M(·)) (W ) ∥2 ≤
∑
i,j

pipj (1− pipj)C
2
G. (22)

Similarly, we have

E∥∇wF (M(·)) (W )− EM∇wF (M(·)) (W ) ∥2 ≤
∑
i,j

pi (1− pi) (C
F )2. (23)

Proof. Note that G(mλ(·),mw(·))(λ,mw) can be equally written as G
([

mλ 0
0 mw

]
(·)
)([

λ
w

])
.

Denote W =

[
λ
w

]
and M =

[
mλ 0
0 mw

]
. Then,

∇G (M(·)) (W ) = M∇G (MW )

and

∇2G (M(·)) (W ) = M∇2G (MW )M

=
∑
i,j

diag(0, . . . , 0,Mii, 0, . . . , 0)HG (MW ) diag(0, . . . , 0,Mjj , 0, . . . , 0)

=
∑
i,j



0 0 . . . . . . 0
...

...
...

...
...

0 0 Mii
∂2G

∂Wj∂Wi
(MW )Mjj . . . 0

...
...

...
...

...
0 0 . . . . . . 0


(24)

Thus,

EM∇2G (M(·)) (W ) = EM

∑
i,j



0 0 . . . . . . 0
...

...
...

...
...

0 0 pipj
∂2G

∂Wj∂Wi
(MW ) . . . 0

...
...

...
...

...
0 0 . . . . . . 0
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Fix any i0, j0 ∈ {1, . . . , nλ + nw}. It holds that

EM

∥∥∥∥Mi0i0HG (MW )Mj0j0 − EM
∂2G (MW )

∂Wj∂Wi
(W )

∥∥∥∥2
= EM

∥∥∥∥Mi0i0

∂2G(MW )

∂Wj∂Wi
Mj0j0 − pi0pj0

∂2G (MW )

∂Wj∂Wi

∥∥∥∥2
= pi0pj0

∥∥∥∥∂2G (MW )

∂Wj∂Wi
− pi0pj0

∂2G (MW )

∂Wj∂Wi

∥∥∥∥2 + (1− pi0pj0)

∥∥∥∥pi0pj0 ∂2G

∂Wj∂Wi
(MW )

∥∥∥∥2
≤ pi0pj0 (1− pi0pj0)

2

∥∥∥∥∂2G (MW )

∂Wj∂Wi

∥∥∥∥2 + (1− pi0pj0) (pi0pj0)
2

∥∥∥∥ ∂2G

∂Wj∂Wi
(MW )

∥∥∥∥2
≤
(
pi0pj0 (1− pi0pj0)

2
+ (1− pi0pj0) (pi0pj0)

2
)
C2

G = (pi0pj0 (1− pi0pj0))C
2
G.

Since i0 and j0 are arbitrarily chosen, we have that

E∥∇2G (M(·)) (W )− EM∇2G (M(·)) (W ) ∥2

≤ E∥∇2G (M(·)) (W )− EM∇2G (M(·)) (W ) ∥2F ≤
∑
i0,j0

pi0pj0 (1− pi0pj0)C
2
G.

D PROOFS OF LEMMA 2

We first present a lemma that will be used repeatedly.

Lemma 4. Let m1 ∈ Rn1 × Rn1 and m2 ∈ Rn2 × Rn2 be diagonal matrices. If ∥v(m1)∥2 ≤ c1
for a constant c1, then

Em1∥m1v(m1)∥2 ≤ max
j

pjc1.

If ∥Aij∥ ≤ c,
Em1,m2

∥m1Am2∥2 ≤ max pj max pin1n2c
2
2.

Proof. Noting ∥m1v(m1)∥2 =
∑

j(m1)jj∥vj(m)∥2, it holds that

Em1
∥m1v∥2 ≤ Em1

∑
j

(m1)jj∥v(m1)j∥2 =
∑
j

pjEm1|(m1)jj=1∥v(m1)j∥2

≤
∑
j

(max
j′

pj′)∥v(m1)j∥2 ≤ max
j

pjc1.

On the other hand,

Em1,m2
∥m1Am2∥2 ≤ Em1,m2

∑
i,j

(m1)jjA
2
ji(m2)ii ≤ max pj max pin1n2c

2
2.

We present a detailed version of Lemma 2 here.

Lemma 5. Consider (9). Suppose Assumptions 2, 3 and 4 hold. Let {(λk, wk)} be generated by
Algorithm 1. Let γ in Algorithm 1 be small enough such that γµ < 1. Then

E∥wk+1 − w(λk)∥2 ≤ (1− 1

2
γkpwµ)E∥w

k − w(λk−1)∥2

+ (
2

γkpwµ
− 1)(1− γkpwµ)L

2
wα

2
kE∥dk−1∥2 + γ2

kpwσ
2

(25)

16
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and

E∥wT+2 − w(λT+1)∥2 − E∥w1 − w(λ0)∥2 ≤ −1

2

T+1∑
k=1

γkpwµE∥w
k − w(λk−1)∥2

+

T+1∑
k=1

(
2

γkpwµ
− 1)(1− γkpwµ)L

2
wα

2
kE∥dk−1∥2 +

T+1∑
k=1

γ2
kpwσ

2.

(26)

Proof. Using the Lipschitz continuity of G̃, it holds that Using the definition of wk+1 in Algorithm
1,

Emk
λ,m

k
w,ξk|Mk−1∥wk+1 − w(λk)∥2 = ∥wk − γkm

k
w∇wG(mk

λλ
k,mk

ww
k; ξk)− w(λk)∥2

= ∥wk − w(λk)∥2 + γk

〈
∇G̃(λk, wk), wk − w(λk)

〉
+ Emk

λ,m
k
w,ξk|Mk−1∥γkmk

w∇wG(mk
λλ

k,mk
ww

k; ξk))∥2

≤ ∥wk − w(λk)∥2 + γk

〈
∇G̃(λk, wk), wk − w(λk)

〉
+ γ2

kpwσ
2,

(27)

where the first equality uses Assumption 4 and (17), the second inequality follows from Assumption
4 and Lemma 4. Note from Proposition 2 that G̃ is strongly convex and w(λk) is the minimizer of
minw G̃(λk, w). Thus,〈

∇G̃(λk, wk), wk − w(λk)
〉
≥ p

w
µ∥wk − w(λk)∥2.

This together with (27) gives

Emk
λ,m

k
w,ξk|Mk−1∥wk+1 − w(λk)∥2 ≤ (1− γkpwµ)∥w

k − w(λk)∥2 + γ2
kpwσ

2

≤ (1 + κk
3)(1− γkpwµ)∥w

k − w(λk−1)∥2 + (1 +
1

κk
3

)(1− γkpwµ)∥w(λ
k)− w(λk−1)∥2 + γ2

kpwσ
2

(a)

≤ (1 + κk
3)(1− γkpwµ)∥w

k − w(λk−1)∥2 + (1 +
1

κk
3

)(1− γkpwµ)L
2
wα

2
k∥dk−1∥2 + γ2

kpwσ
2

= (1− 1

2
γkpwµ)∥w

k − w(λk−1)∥2 + (
2

γkpwµ
− 1)(1− γkpwµ)L

2
wα

2
k∥dk−1∥2 + γ2

kpwσ
2

where κk
3 := 1

2

γkp
w
µ

1−γkpw
µ such that (1 + κk

3)(1− γkpwµ) < 1, (a) makes use the definition of λk and

the fact that w(λ) is Lw-Lipschitz continuous by Proposition 2, and the last inequality makes use of
the definition of κk

3 . Taking expectation w.r.t. Mk−1 we obtain

E∥wk+1 − w(λk)∥2

≤ (1− 1

2
γkpwµ)E∥w

k − w(λk−1)∥2 + (
2

γkpwµ
− 1)(1− γkpwµ)L

2
wα

2
kE∥dk−1∥2 + γ2

kpwσ
2,

Rearranging the above inequality, we have

E∥wk+1 − w(λk)∥2 − E∥wk − w(λk−1)∥2 ≤ −1

2
γkpwµE∥w

k − w(λk−1)∥2

+ (
2

γkpwµ
− 1)(1− γkpwµ)L

2
wα

2
kE∥dk−1∥2 + γ2

kpwσ
2.

Summing the above inequality from k = 1 to k = T and divide both sides with T , we have

E∥wT+1 − w(λT )∥2 − E∥w1 − w(λ0)∥2 ≤ −1

2

T∑
k=1

γkpwµE∥w
k − w(λk−1)∥2

+

T∑
k=1

(
2

γkpwµ
− 1)(1− γkpwµ)L

2
wα

2
kE∥dk−1∥2 +

T∑
k=1

γ2
kpwσ

2.
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E PROOFS OF THEOREM 1

We first show the property of vm,λ w.r.t. λ.

Lemma 6. Consider (9). Suppose Assumptions 2, 3 and 4 hold. Let {(λk, wk)} be generated by
Algorithm 1. Let vmk

w,λk be defined in (16). Denote pλ := maxi pi,λ, p
λ
:= mini pi,λ, pw :=

maxi pi,w and p
w
:= mini pi,w. Then the following conclusions hold:

(i) There exists Cv such that ∥vmk
w,λk∥ ≤ Cv .

(ii) There exists Cw such that

∥EMkvmk
w,λk − EMk−1vmk−1

w ,λk−1∥2 ≤ Cwα
2
k∥dk∥2.

Proof. (i) follows from Assumptions 2 and 3. Now we prove (ii). Denote Mk :=
{M1, . . . ,Mk, ξ1, . . . , ξk, . . . , η1, . . . , ηk}. Denote FM (λ) := F (mλ(·),mww(·))(λ). It holds
that

EMkvmk
w,λk − EMk−1vmk−1

w ,λk−1

=
(
∇2

wwG̃(λk, w(λk))
)−1

∇wFMk(λk, w(λk))

−
(
∇2

wwG̃(λk−1, w(λk−1))
)−1

∇wFMk−1(λk−1, w(λk−1))

=

((
∇2

wwG̃(λk, w(λk))
)−1

−
(
∇2

wwG̃(λk−1, w(λk−1))
)−1

)
∇wFMk(λk, w(λk))

+
(
∇2

wwG̃(λk−1, w(λk−1))
)−1 (

∇wFMk(λ,w(λk))−∇wFMk−1(λk−1, w(λk−1))
)
.

(28)

Thanks to Assumption 3, there exists LG−1 such that∥∥∥∥(∇2
wwG̃(λk, w(λk))

)−1

−
(
∇2

wwG̃(λk−1, w(λk−1))
)−1

∥∥∥∥2 ≤ L2
G−1∥w(λk)− w(λk−1)∥2.

(29)

Combining this with (28), (29) with Assumptions 2 and 3, we have that

∥EMkvmk
w,λk − EMk−1vmk−1

w ,λk−1∥2

≤ L2
G−1CF ∥w(λk)− w(λk−1)∥2 + 1

p2
w
µ2

p̄2w(L
F
ww)

2
(
α2
k∥dk∥2 + ∥w(λk)− w(λk−1)∥2

)
≤

L2
G−1CF

(
Cg

p
w
µ

)2

+
1

p2
w
µ2

p̄2w(L
F
ww)

2(1 +

(
Cg

p
w
µ

)2

)

α2
k∥dk∥2.

where the second inequality uses (4) and the third inquelity uses Proposition 2.

Now we present the detailed version of Theorem 1.

Theorem 3. Consider (9). Suppose Assumptions 2, 3 and 4 hold. Let {(λk, wk)} be generated by
Algorithm 1. Denote V k := E∥vk − EMk−1vmk−1

w ,λk−1)∥2, where vmk−1
w ,λk−1 is defined in (16).

Denote pλ := maxi pi,λ, p
λ
:= mini pi,λ, pw := maxi pi,w and p

w
:= mini pi,w. Suppose r ≥ Cv ,

where Cv is defined as in Lemma 6 (i). Then

V k+1 ≤ 2

p
w
µ
βkL

F
wwpwE∥wk+1 − w(λk)∥2 + (1− 1

2
βkpwµ)

2V k +
2

βp
w
µ
CwαkE∥dk∥2

+ β2
k

(
4p̄wσ

2 + 4p̄2wσ
2
h + 4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
.

18
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and

V T+2 − V 1 ≤
T+1∑
k=1

(
−1

2
p
w
µ+

1

4
βkp

2
w
µ2

)
βkV

k

+
2

p
w
µ

T+1∑
k=1

βkL
F
wwpwE∥wk+1 − w(λk)∥2 + 2

βp
w
µ
Cw

T+1∑
k=1

αkE∥dk∥2

+

T+1∑
k=1

β2
k

(
4p̄wσ

2 + 4p̄2wσ
2
h + 4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
.

(30)

Proof. Denote Mk := {M1, . . . ,Mk, ξ1, . . . , ξk, . . . , η1, . . . , ηk}. Denote Bk := {ξk, ηk}. De-
note FM (λ) := F (mλ(·),mww(·))(λ).

Let ṽk+1
d := βk∇wEMkFMk(λk, wk+1) −

(
I − βk∇2

wwG̃(λk, wk)
)
vk. Therefore,

EMk,ξk,ηkvk+1
d = ṽk+1

d . Using Assumption 2, Assumption 3, Lemma 3 and Lemma 4, we have

vk+1
d EMk,ξk,ηk∥ṽk+1

d − EMkvmk
w,λk∥2

≤ β2
k

(
4p̄wσ

2 + 4p̄2wσ
2
h + 4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
.

(31)

On the other hand, the definition of vmk
w,λk shows that

EMkvmk
w,λk = βk∇wEMkFMk(λk, w(λk)) +

(
I − βk∇2

wwG̃(λk, w(λk)
)
Ek
Mvmk

w,λk .

Combining this with (31) and the definition of vk+1, we have that

E∥vk+1 − EMkvmk
w,λk∥2 ≤ ∥ṽk+1 − vmk

w,λk∥2

= E∥ṽk+1 − vmk
w,λk − ṽk+1

d − vmk
w,λk + ṽk+1

d − vmk
w,λk∥2

= E∥ṽk+1 − ṽk+1
d ∥2 + ∥ṽk+1

d − vmk
w,λk∥2

≤ (1 +
1

κk
1

)β2
kE∥EMkFMk(λk, wk)− EMkFMk(λk, w(λk))∥2

+ (1 + κk
1)E∥

(
I − βk∇2

wwG̃(λk, w(λk))
)
(vk − EMkvmk

w,λk)∥2

+ β2
k

(
4p̄wσ

2 + 4p̄2wσ
2
h + 4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
,

(32)

where the first inequality is because r ≥ Cv and the projection on B(0, r) is a contraction.

For the first term in the above inequality, using Lemma 4 and Assumption 2, it holds that

E∥EMkFMk(λk, wk)− EMkFMk(λk, w(λk))∥2 ≤ LF
wwpw∥wk+1 − w(λk)∥2. (33)

For the second term in (32), using Proposition 2, it holds that

∥
(
I − βk∇2

wwG̃(λk, w(λk))
)
EMk(vk − vmk

w,λk)∥2

≤ (1− βkpwµ)
2∥(vk − EMkvmk

w,λk)∥2

≤ (1 + κk
2)(1− βkpwµ)

2∥(vk − EMk−1vmk−1
w ,λk−1)∥2

+ (1 +
1

kk2
)(1− βkpwµ)

2∥EMk−1vmk−1
w ,λk−1 − EMkvmk

w,λk∥2.

(34)

where κk
2 > 0. This together with Lemma 6 implies that

∥
(
I − βk∇2

wwG̃(λk, w(λk))
)
EMk(vk − vmk

w,λk)∥2

≤ (1− βkpwµ)
2∥(vk − EMkvmk

w,λk)∥2

≤ (1 + κk
2)(1− βkpwµ)

2∥(vk − EMk−1vmk−1
w ,λk−1)∥2 + (1 +

1

kk2
)(1− βkpwµ)

2Cwα
2
k∥dk∥2

(35)
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Combining (35), (33) and (32), we have that
E∥vk+1 − EMkvmk

w,λk∥2 ≤ ∥ṽk+1 − vmk
w,λk∥2

= E∥ṽk+1 − vmk
w,λk − ṽk+1

d − vmk
w,λk + ṽk+1

d − vmk
w,λk∥2

= E∥ṽk+1 − ṽk+1
d ∥2 + ∥ṽk+1

d − vmk
w,λk∥2

≤ (1 +
1

κk
1

)β2
kL

F
wwpw∥wk+1 − w(λk)∥2

+ (1 + κk
1)(1 + κk

2)(1− βkpwµ)
2∥(vk − EMk−1vmk−1

w ,λk−1)∥2

+ (1 + κk
1)(1 +

1

kk2
)(1− βkpwµ)

2Cwα
2
k∥dk∥2

+ β2
k

(
4p̄wσ

2 + 4p̄2wσ
2
h + 4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
.

(36)

Let κ1 = κ2 =
βkpw

µ

2(1−βkp
w
µ) . Then 1 + κ1 = 1

2 + 1
2−βkp

w
µ , 1 + 1

κ1
= 1+ 1

κ2
=

2−βkpw
µ

βkp
w
µ ≤ 2

βkp
w
µ .

Thus, (36)
E∥vk+1 − EMkvmk

w,λk∥2 ≤ ∥ṽk+1 − vmk
w,λk∥2

≤ 2

βkpwµ
β2
kL

F
wwpw∥wk+1 − w(λk)∥2

+ (
1

2
+

1

2− βkpwµ
)(
1

2
+

1

2− βkpwµ
)(1− βkpwµ)

2∥(vk − EMk−1vmk−1
w ,λk−1)∥2

+ (
1

2
+

1

2− βkpwµ
)

2

βkpwµ
(1− βkpwµ)

2Cwα
2
k∥dk∥2

+ β2
k

(
4p̄wσ

2 + 4p̄2wσ
2
h + 4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
≤ 2

p
w
µ
βkL

F
wwpwE∥wk+1 − w(λk)∥2

+ (1− 1

2
βkpwµ)

2E∥vk − EMk−1vmk−1
w ,λk−1∥2 +

2

βp
w
µ
CwαkE∥dk∥2

+ β2
k

(
4p̄wσ

2 + 4p̄2wσ
2
h + 4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
.

Rearranging the above inequality, we have
E∥vk+1 − EMkvmk

w,λk∥2 − E∥vk − EMk−1vmk−1
w ,λk−1∥2

≤
(
−1

2
p
w
µ+

1

4
βkp

2
w
µ2

)
βkE∥vk − EMk−1vmk−1

w ,λk−1∥2

+
2

p
w
µ
βkL

F
wwpwE∥wk+1 − w(λk)∥2 + 2

βp
w
µ
CwαkE∥dk∥2

+ β2
k

(
4p̄wσ

2 + 4p̄2wσ
2
h + 4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
.

Summing the above inequality from k = 1 to k = T + 1, we have
E∥vT+2 − EMT+1vmT+1

w ,λT+1∥2 − E∥v1 − EM0vm0
w,λ0∥2

≤
T+1∑
k=1

(
−1

2
p
w
µ+

1

4
βkp

2
w
µ2

)
βkE∥vk − EMk−1vmk−1

w ,λk−1∥2

+
2

p
w
µ

T+1∑
k=1

βkL
F
wwpwE∥wk+1 − w(λk)∥2 + 2

βp
w
µ
Cw

T+1∑
k=1

αkE∥dk∥2

+

T+1∑
k=1

β2
k

(
4p̄wσ

2 + 4p̄2wσ
2
h + 4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
.
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F PROOF OF THEOREM 2

We first present the following lemma that is needed in the proofs of Theorem 2.
Lemma 7. Consider (9). Let assumptions in Theorem 2 hold. Then, it holds that

EFMk+1(λk+1)− EFMk(λk) + Γ3

(
E∥dk+1 − ∇̄F̄ (λk, wk+1, vk+1)∥2 − E∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2

)
≤ −αk

2
E∥∇FMk(λk)∥2

− Γ3αkηkE∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2 + Γ3αkη
2
k

(
(p̄λ)

2σ2 + p
λ
p
w
σ2
h

)
+ Γ3αkpλ

(
2(LF

12)
2 + 2r2(1 + 3L2

w) + 2C2
G3Cw

)
α2
k−1E∥dk−1∥2

+ Γ3αkpλ

(
2(LF

12)
2 + 2r2

) (
3E∥wk − w(λk−1)∥2 + 3E∥wk+1 − w(λk)∥2

)
+ 2Γ3αkpλpwC

2
G

(
3V k + 3V k+1

)
+ αkpw

(
(LF

12)
2 + nL2

Gwr2
)
E∥wk+1 − w(λk)∥2 + αkpλpwnC

2
GV

k+1

+

(
α2
kLF̄

2
− αk

2

)
E∥dk+1∥2,

(37)

Proof. Denote Mk := {M1, . . . ,Mk, ξ1, . . . , ξk, . . . , η1, . . . , ηk}. Denote Bk := {ξk, ηk}. De-
note FM (λ) := F (mλ(·),mww(·))(λ).
Thanks to Proposition 2, there exists LF̄ such that ∇FM (λ) is LF̄ -Lipschitz continuous. Thus,

EFMk+1(λk+1) ≤ EFMk+1(λk) + E
〈
∇FMk+1(λk), λk+1 − λk

〉
+ E

LF̄

2
∥λk+1 − λk∥2

= EFMk(λk)− αkE
〈
∇FMk(λk), dk+1

〉
+ α2

kE
LF̄

2
∥dk+1∥2

= EFMk(λk)− αk

2
E∥∇FMk(λk)∥2 + αk

2
E∥∇FMk(λk)− dk+1∥2

+

(
α2
kLF̄

2
− αk

2

)
E∥dk+1∥2,

(38)

where the first equality is because Mk+1 and Mk have the same distributions and therefore

EFMk+1(λk) = EMk−1EMk+1,Mk|Mk−1FMk+1(λk)

= EMk−1EMk|Mk−1FMk(λk) = EFMk(λk).

and

E∇FMk+1(λk) = EMk−1EMk+1,Mk|Mk−1∇FMk+1(λk)

= EMk−1EMk|Mk−1∇FMk(λk) = E∇FMk(λk).

Next, we bound the third term on the right hand side of (38). Using the chain rule, it holds that

∇FM (λ) = mλ∇λF (mλλ,mww(λ)) + J(w(λ))Tmw∇wF (mλλ,mww(λ)),

where J(w(λ)) is the Jacobian of w(λ). Using Proposition 2, the above equality ca be further passed
to
∇FM (λ)

= mλ∇λF (mλλ,mww(λ))−∇2
λwG̃(λ,w(λ))

(
∇2

wwG̃(λ,w(λ))
)−1

mw∇wF (mλλ,mww(λ))︸ ︷︷ ︸
vmw,λ

.

Denote

∇̄F̄ (λk, wk+1, vk+1) := mk
λ∇λF (mk

λλ
k,mww

k+1)−mλk∇2
λwG(mk

λλ
k,mk

ww
k+1)mk

wv
k+1.

(39)
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This together with the definition of dk+1 in Algorithm 1 gives

∥dk+1 −∇FMk(λk)∥2

≤ 2∥dk+1 − ∇̄F̄ (λk, wk+1, vk+1)∥2 + 2∥∇̄F̄ (λk, wk+1, vk+1)−∇FMk(λk)∥2.
(40)

Now we bound the first term on the right hand side of the above inequality.

E∥dk+1 − ∇̄F̄ (λk, wk+1, vk+1)∥2

= E∥∇F̄ (λk, wk+1) + (1− ηk)(d
k −∇F̄ (λk−1, wk)))− ∇̄F̄ (λk, wk+1, vk+1)∥2

= (1− ηk)
2E∥dk − ∇̄F̄ (λk−1, wk, vk)∥2

+ E∥(1− ηk)(∇̄F̄ (λk−1, wk, vk)−∇F̄ (λk−1, wk, vk)))

+∇F̄ (λk, wk+1, vk+1)− ∇̄F̄ (λk, wk+1, vk+1)∥2

≤ (1− ηk)
2E∥dk − ∇̄F̄ (λk−1, wk, vk)∥2

+ 2η2E∥∇F̄ (λk, wk+1, vk+1)− ∇̄F̄ (λk, wk+1, vk+1)∥
+ 2(1− ηk)

2E∥∇̄F̄ (λk−1, wk, vk)−∇F̄ (λk−1, wk, vk)

+∇F̄ (λk, wk+1, vk+1)− ∇̄F̄ (λk, wk+1, vk+1)∥2

≤ (1− ηk)
2E∥dk − ∇̄F̄ (λk−1, wk)∥2 + η2kE∥∇F̄ (λk, wk+1)− ∇̄F̄ (λk, wk+1, vk+1, vk+1)∥2

+ (1− ηk)
2Eξk,ηk|Mk/{ξk,ηk}∥∇̄F̄ (λk−1, wk, vk)− ∇̄F̄ (λk, wk+1)∥2

≤ (1− ηk)
2∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2 + η2k

(
(p̄λ)

2σ2 + p
λ
p
w
σ2
h

)
+ (1− ηk)

2E∥∇̄F̄ (λk−1, wk, vk)− ∇̄F̄ (λk, wk+1, vk+1)∥2
(41)

where the second inequality uses Lemma 4 and Assumption 4, the last inequality uses the fact
that E∥X∥2 ≥ E∥X − EX∥2. For the last term in the above inequality, using the definition
∇̄F̄ (λk−1, wk), it holds that

E∥∇̄F̄ (λk−1, wk, vk)− ∇̄F̄ (λk, wk+1, vk+1)∥2

= 2E∥mk
λ∇λF (mk−1

λ λk−1,mww
k)−mk

λ∇λF (mk
λλ

k,mww
k+1)∥2

+ 2E∥mλk∇2
λwG(mk−1

λ λk−1,mk
ww

k)mk
wv

k −mλk∇2
λwG(mk

λλ
k,mk

ww
k+1)mk

wv
k+1∥2

≤
(
2pλ(L

F
12)

2 + 2p
λ
p
w
r2
) (

E∥λk−1 − λk∥+ E∥wk+1 − wk∥2
)
+ 2p

λ
p
w
C2

GE∥vk − vk+1∥2,
(42)

Note that

E∥wk+1 − wk∥2

≤ 3E∥wk − w(λk−1)∥2 + 3E∥wk+1 − w(λk)∥2 + 3L2
wE∥λk − λk−1∥2

= 3E∥wk − w(λk−1)∥2 + 3E∥wk+1 − w(λk)∥2 + 3L2
wα

2
k−1E∥dk−1∥2.

(43)

On the other hand, using the definition of ṽk and vk, Lemma 6 and Proposition 2 we have that

E∥vk − vk+1∥2 ≤ 3V k + 3V k+1 + 3Cwα
2
kE∥dk−1∥2. (44)
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Combining (41), (42), (43) and (44), we have

E∥dk+1 − ∇̄F̄ (λk, wk+1, vk+1)∥2

≤ (1− ηk)
2∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2 + η2k

(
(p̄λ)

2σ2 + p
λ
p
w
σ2
h

)
+ (1− ηk)

2pλ
(
2(LF

12)
2+2r2(1 + 3L2

w) + 2C2
G3Cw

)
α2
k−1E∥dk−1∥2

+ (1− ηk)
2p

λ

(
2(LF

12)
2 + 2r2

) (
3E∥wk − w(λk−1)∥2 + 3E∥wk+1 − w(λk)∥2

)
+ 2(1− ηk)

2p
λ
p
w
C2

G

(
3V k + 3V k+1

)
≤ (1− ηk)∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2 + η2k

(
(p̄λ)

2σ2 + p
λ
p
w
σ2
h

)
+ pλ

(
2(LF

12)
2 + 2r2(1 + 3L2

w) + 2C2
G3Cw

)
α2
k−1E∥dk−1∥2

+ p
λ

(
2(LF

12)
2 + 2r2

) (
3E∥wk − w(λk−1)∥2 + 3E∥wk+1 − w(λk)∥2

)
+ 2p

λ
p
w
C2

G

(
3V k + 3V k+1

)
.

(45)

Rearranging terms in the above inequality, we have

E∥dk+1 − ∇̄F̄ (λk, wk+1, vk+1)∥2 − E∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2

≤ −ηkE∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2 + η2k

(
(p̄λ)

2σ2 + p
λ
p
w
σ2
h

)
+ pλ

(
2(LF

12)
2 + 2r2(1 + 3L2

w) + 2C2
G3Cw

)
α2
k−1E∥dk−1∥2

+ p
λ

(
2(LF

12)
2 + 2r2

) (
3E∥wk − w(λk−1)∥2 + 3E∥wk+1 − w(λk)∥2

)
+ 2p

λ
p
w
C2

G

(
3V k + 3V k+1

)
.

(46)

Now we bound the second term in (40). Using the definition of ∇̄F̄ (λk, wk+1) and ∇FMk(λk), we
have

E∥∇̄F̄ (λk, wk+1)−∇FMk(λk)∥2

≤ E∥mk
λ∇λF (mk

λλ
k,mww

k+1)−mk
λ∇λF (mk

λλ
k,mk

ww(λ
k))∥2

+ E∥mλk∇2
λwG(mk

λλ
k,mk

ww
k+1)mk

wv
k+1 −∇2

λwG̃(λk, w(λk))vmk
w,λk∥2

≤ E∥mk
λ∇λF (mk

λλ
k,mww

k+1)−mk
λ∇λF (mk

λλ
k,mk

ww(λ
k))∥2

+ E∥mλk∇2
λwG(mk

λλ
k,mk

ww
k+1)mk

w

(
vk+1 − vmk

w,λk

)
∥2

+ E∥
(
mλk∇2

λwG(mk
λλ

k,mk
ww

k+1)mk
w −∇2

λwG̃(λk, w(λk))
)
vmk

w,λk∥2

≤ E∥mk
λ∇λF (mk

λλ
k,mww

k+1)−mk
λ∇λF (mk

λλ
k,mk

ww(λ
k))∥2

+ E∥mλk∇2
λwG(mk

λλ
k,mk

ww
k+1)mk

w

(
vk+1 − vmk

w,λk

)
∥2

+ E∥
(
mλk∇2

λwG(mk
λλ

k,mk
ww

k+1)mk
w −mλk∇2

λwG(mk
λλ

k,mk
ww(λ

k))mk
w

)
vmk

w,λk∥2

+ E∥
(
mλk∇2

λwG(mk
λλ

k,mk
ww(λ

k))mk
w −∇2

λwG̃(λk, w(λk))
)
vmk

w,λk∥2.

Using Lemma 4, (23) together with Assumption 2, 3 and 4, the above inequality can be further
passed to

E∥∇̄F̄ (λk)−∇Fmk
λ
(λk)∥2

≤ E∥mk
λ∇λF (mk

λλ
k,mww

k+1)−mk
λ∇λF (mk

λλ
k,mk

ww(λ
k))∥2

+ pλpwnC
2
GEmk

w|Mk−1E∥mk
w

(
vk+1 − Emkvmk

w,λk

)
∥2

+ pλpwnLGwE∥wk − w(λk)∥∥Emkvmk
w,λk∥2.
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Using Lemma 6, Lemma 4 and the fact that mk
w is a diagonal matrix with all entries belongs to

{0, 1}, the above inequality can be further passed to

E∥∇̄F̄ (λk)−∇Fmk
λ
(λk)∥2

≤
(
(LF

12)
2pw + p̄λpwnL

2
Gwr2

)
E∥wk+1 − w(λk)∥2 + pλpwnC

2
GE∥vk+1 − vmk

w,λk∥2

≤ pw
(
(LF

12)
2 + nL2

Gwr2
)
E∥wk+1 − w(λk)∥2 + pλpwnC

2
GV

k+1

(47)

Summing (38), αk

2 times of (40), αk times of (47) and Γ3 times of (46), we have that

EFMk+1(λk+1)− EFMk(λk) + Γ3

(
E∥dk+1 − ∇̄F̄ (λk, wk+1, vk+1)∥2 − E∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2

)
≤ −αk

2
E∥∇FMk(λk)∥2

− Γ3αkηkE∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2 + Γ3αkη
2
k

(
(p̄λ)

2σ2 + p
λ
p
w
σ2
h

)
+ Γ3αkpλ

(
2(LF

12)
2 + 2r2(1 + 3L2

w) + 2C2
G3Cw

)
α2
k−1E∥dk−1∥2

+ Γ3αkpλ

(
2(LF

12)
2 + 2r2

) (
3E∥wk − w(λk−1)∥2 + 3E∥wk+1 − w(λk)∥2

)
+ 2Γ3αkpλpwC

2
G

(
3V k + 3V k+1

)
+ αkpw

(
(LF

12)
2 + nL2

Gwr2
)
E∥wk+1 − w(λk)∥2 + αkpλpwnC

2
GV

k+1

+

(
α2
kLF̄

2
− αk

2

)
E∥dk+1∥2.

This completes the proof.

Now we present the detailed version of Theorem 2.

Theorem 4. Consider (9). Suppose Assumptions 2, 3 and 4 hold. Let {(wk, λk)} be generated by
Algorithm 1. Suppose F is bounded below by F̄ . Then there exist small δ in Algorithm 1 such that

1

T − 1

T−1∑
k=1

E∥∇FMk(λk)∥2 ≤ 1√
T

1

p
w
p
λ

I0

+
ln(T + 1)√

T
O

(
p̄2λ

p
λ
p
w

+ p
w
p̄w

)(
σ2 + σ2

h

)
+

ln(T + 1)√
T

O
(
p
w

(
p̄2w(1− p2

w
) + p̄w(1− p

w
)
))

(48)

Proof. Rearrange (37) and summing it from 1 to T , we have

T∑
1

αk

2
E∥∇FMk(λk)∥2 ≤ −EFMT+1(λT+1) + EFM0(λ0)

+ Γ3

(
E∥(d1 − ∇̄F̄ (λ0, w1, v1)∥2 − E∥dT+1 − ∇̄F̄ (λk, wT+1, vT+1)∥2

)
− Γ3

T∑
1

αkηkE∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2 + Γ3αkη
2
k

(
(p̄λ)

2σ2 + p
λ
p
w
σ2
h

)
+

T+1∑
1

(
Γ3Γdαkα

2
k−1 +

α2
kLF̄

2
− αk

2

)
E∥dk−1∥2

+ Γw

T+1∑
1

αkE∥wk − w(λk−1)∥2 + 4Γ3

T+1∑
1

αkpλpwC
2
G3V

k,

where Γv := 4Γ3pλpwC
2
G3 + pλpwnC

2
G, Γw := 2Γ3pλ

(
2(LF

12)
2 + 2r2

)
3 +

pw
(
(LF

12)
2 + nL2

Gwr2
)
, and Γd := Γ3pλ

(
2(LF

12)
2 + 2r2(1 + 3L2

w) + 2C2
G3Cw

)
. Summing
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the above inequality with Γ2 times of (30), we have

T∑
1

αk

2
E∥∇FMk(λk)∥2 + Γ2

(
V T+2 − V 1

)
≤ −EFMT+1(λT+1) + EFM0(λ0)

+ Γ3

(
E∥(d1 − ∇̄F̄ (λ0, w1, v1)∥2 − E∥dT+1 − ∇̄F̄ (λk, wT+1, vT+1)∥2

)
− Γ3

T∑
1

αkηkE∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2 + Γ3αkη
2
k

(
(p̄λ)

2σ2 + p
λ
p
w
σ2
h

)
+

T+1∑
1

(
Γ3Γdαkα

2
k−1 +

α2
kLF̄

2
− αk

2
+ Γ2

2

βp
w
µ
Cwαk

)
E∥dk−1∥2

+

T+1∑
1

(
Γwαk + Γ2

2

p
w
µ
βkL

F
wwpw

)
E∥wk − w(λk−1)∥2

+
T+1∑
1

(
Γ2

(
−1

2
+

1

4
βkpwµ

)
p
w
µβk + 4Γ3pλpwC

2
G3αk

)
V k

+ Γ2

T+1∑
k=1

β2
k

(
4p̄wσ

2 + 4p̄2wσ
2
h + 4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
Summing this inequality with Γ1 times of (26), we have

T∑
1

αk

2
E∥∇FMk(λk)∥2 + Γ2

(
V T+2 − V 1

)
+ Γ1

(
E∥wT+2 − w(λT+1)∥2 − E∥w1 − w(λ0)∥2

)
≤ −EFMT+1(λT+1) + EFM0(λ0)

+ Γ3

(
E∥(d1 − ∇̄F̄ (λ0, w1, v1)∥2 − E∥dT+1 − ∇̄F̄ (λk, wT+1, vT+1)∥2

)
− Γ3

T∑
1

αkηkE∥(dk − ∇̄F̄ (λk−1, wk, vk)∥2

+

T+1∑
1

(
Γ3Γdαkα

2
k−1 +

α2
kLF̄

2
− αk

2
+ Γ2

2

βp
w
µ
Cwαk + Γ1

2(1− γkpwµ)

γp
w
µ

L2
wαk

)
E∥dk−1∥2

+

T+1∑
1

(
Γwαk + Γ2

2

p
w
µ
βkL

F
wwpw − Γ1

1

2
γkpwµ

)
E∥wk − w(λk−1)∥2

+

T+1∑
k=1

(
Γ3αkη

2
kp̄

2
λ + Γ1γ

2
kpw + Γ2β

2
k4p̄w

)
σ2

+

T+1∑
1

(
Γ2

(
−1

2
p
w
µ+

1

4
βkp

2
w
µ2

)
βk + 4Γ3pλpwC

2
G3αk

)
V k

+

T+1∑
k=1

(
Γ2β

2
k4p̄

2
w + Γ3αkη

2
kpλpw

)
σ2
h

+

T+1∑
k=1

Γ2β
2
k

(
4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
(49)

Let Γ2 :=
βp

w
µ

16Cw
,Γ1 :=

γp
w
µ

16L2
w

be such that −αk

2 + Γ2
2

βp
w
µCwαk + Γ1

2(1−γkp
w
µ)

γp
w
µ L2

wαk <

0. Then there exists small δ with αk = δ√
T

such that Γ3Γdαkα
2
k−1 +

α2
kLF̄

2 − αk

2 +
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Γ2
2

βp
w
µCwαk + Γ1

2(1−γkp
w
µ)

γp
w
µ L2

wαk ≤ 0. Let Γ3 := 1
24p

λ
p
w
C2

G
and β be small enough such

that Γ2

(
− 1

2pwµ+ 1
4βkp

2
w
µ2
)
βk + 4Γ3pλpwC

2
G3αk ≤ 0. Let γ be big enough such that

Γwαk + Γ2
2

p
w
µβkL

F
wwpw − Γ1

1
2γkpwµ ≤ 0. Then (49) can be further passed to

T∑
1

αk

2
E∥∇FMk(λk)∥2 + Γ2

(
V T+2 − V 1

)
+ Γ1

(
E∥wT+2 − w(λT+1)∥2 − E∥w1 − w(λ0)∥2

)
≤ −EFMT+1(λT+1) + EFM0(λ0) + Γ3E∥(d1 − ∇̄F̄ (λ0, w1, v1)∥2

+

T+1∑
k=1

(
Γ3αkη

2
kp̄

2
λ + Γ1γ

2
kpw + Γ2β

2
k4p̄w

)
σ2 +

T+1∑
k=1

(
Γ2β

2
k4p̄

2
w + Γ3αkη

2
kpλpw

)
σ2
h

+

T+1∑
k=1

Γ2β
2
k

(
4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
≤ −F̄ + EFM0(λ0) + Γ3E∥(d1 − ∇̄F̄ (λ0, w1, v1)∥2

+

T+1∑
k=1

(
Γ3αkη

2
kp̄

2
λ + Γ1γ

2
kpw + Γ2β

2
k4p̄w

)
σ2 +

T+1∑
k=1

(
Γ2β

2
k4p̄

2
w + Γ3αkη

2
kpλpw

)
σ2
h

+

T+1∑
k=1

Γ2β
2
k

(
4p̄2w(1− p2

w
)nC2

G + 4p̄w(1− p
w
)n(CF )2

)
(50)

where the second inequality uses the assumption that F is lower bounded by F̄ . Rearranging the
above inequality we have

T∑
1

αT

2
E∥∇FMk(λk)∥2 ≤

T∑
1

αk

2
E∥∇FMk(λk)∥2

≤ Γ2V
1 + Γ1E∥w1 − w(λ0)∥2 − F̄ + EFM0(λ0) + Γ3E∥(d1 − ∇̄F̄ (λ0, w1, v1)∥2

+

T+1∑
k=1

(
Γ3αkη

2
kp̄

2
λ + Γ1γ

2
kpw + Γ2β

2
k4p̄w

)
σ2 +

T+1∑
k=1

(
Γ2β

2
k4p̄

2
w + Γ3αkη

2
kpλpw

)
σ2
h

+
T+1∑
k=1

Γ2β
2
k

(
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(51)

Using the definition of w1 in Algorithm 1, we have that
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Thus,
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(52)
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For the term V 1, we first bound ∥v1∥. By definition,
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On the other hand,
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Thus,
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(53)

Using (52), the above inequality can be further passed to

E∥V1∥2 ≤ 12(LF
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.

As for EFM0(λ0), using the definition of FM and Assumption 2, it holds that

∥FM0(λ0)∥ ≤ ∥f(λ0)∥+ CF ∥λ0∥ = ∥F (λ0, w(λ0))| (54)

Using the definition in (39)
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(55)

and
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(56)
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Combining (53), (54), (55), (56) , we know that there exists I0 such that (58) ca be further passed to
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(57)

Deviding both sides by
√
T , we have
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(58)

This completes the proofs.
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