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1.	Introduction	
Aberrant	gene	expression	patterns	are	a	hallmark	

of	cancer,	driving	key	features	such	as	proliferation,	
invasion,	and	metastasis	[1].	While	cancer	
transcriptomes	are	shaped	by	epigenomic	and	
genomic	alterations	[2],	growing	evidence	highlights	
the	role	of	altered	3D	genome	organization	in	cancer	
[3,	4].	Chromatin	interactions,	including	enhancer-
promoter,	promoter-promoter	(gene-gene	
interactions,	GGIs),	and	silencer-promoter	loops,	
bring	distal	regulatory	elements	into	proximity,	
influencing	transcription	[5-8].	Despite	efforts	to	map	
chromatin	interaction	landscapes	across	tissues	and	
cell	lines,	a	comprehensive	understanding	remains	
limited	due	to	high	costs	and	logistical	challenges	[9].	
Artificial	intelligence	(AI),	particularly	deep	learning,	
offers	a	powerful	approach	to	model	3D	genomic	
features	[10,	11]	However,	no	prior	work	has	
leveraged	only	RNA-Seq	data	to	investigate	
chromatin	interactions	or	explored	AI	as	a	tool	for	
identifying	drugs	targeting	3D	genome	organization	
[12-15].	We	reasoned	that	an	AI-based	method	for	
predicting	GGIs	could	address	key	questions	in	3D	
genome	organization:	What	are	the	global	chromatin	
interaction	patterns	across	the	wide	range	of	normal	
and	cancer	cells?	How	can	drugs	that	change	and	
reverse	cancer-specific	GGIs	be	effectively	screened?	
Here,	we	introduce	AI4Loop,	a	bidirectional	long	

short-term	memory	(Bi-LSTM)	model	that	integrates	
multi-scale	RNA-Seq	data	to	predict	cell	type-specific	
GGIs.	AI4Loop	demonstrated	robust	generalization	
across	different	cell	types	and	accurately	
distinguished	Acute	Myeloid	Leukemia	(AML)	
samples	from	normal	controls.	Using	AI4Loop’s	
efficient	computation,	we	created	a	compendium	of	
GGIs	across	nearly	12,000	samples,	spanning	diverse	
cell	types	and	cancer	subtypes.	We	showed	that	
cancer	cells	tend	to	strengthen	their	GGIs	and	that	
GGIs	are	more	predictive	of	cancer	subtypes	than	
RNA	expression,	indicating	that	GGIs	are	highly	cell	
type	specific.	Furthermore,	AI4Loop	identified	drugs	
that	modulate	GGIs	by	constructing	a	drug-
perturbation	GGI	atlas	from	50,000	drug-treated	
samples.	Experimental	confirmation	by	Hi-C	further	
showed	that	the	antibiotics	eperezolid	and	radezolid	
induced	the	loss	of	oncogenic	GGIs	and	cell	viability	
assays	showed	they	led	to	cancer	cell	death.	These	
drugs	would	have	been	very	difficult	to	discover	by	
traditional	assays.	These	findings	establish	AI4Loop	
as	a	rapid	and	effective	platform	for	elucidating	GGI	
dynamics,	with	potential	applications	in	cancer	
identification,	drug	discovery	and	personalized	
treatment	strategies.	

2.	Rationale	
				We	reasoned	that	an	artificial	intelligence	(AI)-
powered	framework	for	predicting	GGIs	from	RNA-
Seq	data	would	enable	rapid	scanning	of	GGIs	across	

large	cohorts	of	cancer	and	normal	samples	as	well	as	
drug	screening	surveys.	This	would	first	enable	us	to	
understand	whether	GGIs	are	gained,	lost	or	
unchanged	in	cancers,	and	second,	elucidate	which	
drugs	or	small	chemicals	may	be	able	to	reverse	GGI	
changes	seen	in	cancer.	This	AI	framework	would	
facilitate	the	discovery	of	drugs	for	altering	GGIs	in	
cancer	that	would	have	been	impossible	to	discover	
previously.	

3.	Results	
				First,	we	developed	AI4loop,	a	novel	deep	

learning	method	for	predicting	GGIs	from	RNA-Seq	
data	only.		
Second,	using	AI4Loop,	we	systematically	mapped	

GGIs	across	12,000	patient	samples	spanning	32	
cancer	types	from	The	Cancer	Genome	Atlas	(TCGA).	
GGI-based	cancer	classification	was	more	predictive	
than	traditional	RNA	expression,	indicating	GGIs	have	
a	high	degree	of	cell	type	specificity.		
Third,	we	found	unprecedented,	widespread	

oncogenic	gains	of	GGIs	across	nearly	all	cancers,	
revealing	that	almost	all	tumors	strengthen	GGIs	to	
sustain	aberrant	transcriptional	programs.	
Fourth,	we	further	extended	this	approach	to	

identify	drugs	that	modulate	GGIs	by	constructing	a	
drug-perturbation	GGI	atlas	from	50,000	drug-
treated	samples	from	the	Connectivity	Map	(CMap)	
and	LINCS	Unified	Environment	(CLUE)	database.	We	
identified	eperezolid	and	radezolid,	two	antibiotics	
that	significantly	disrupted	cancer-acquired	GGIs,	
which	was	confirmed	by	Hi-C	experiments.		
Taken	together,	our	findings	establish	AI4Loop	as	a	

scalable	platform	for	uncovering	chromatin	
interaction-based	vulnerabilities	in	cancer.	

4.	Conclusion	
				Our	study	represents	the	first	large-scale,	
systematic	mapping	of	GGIs	in	cancer	and	
demonstrates	the	power	of	AI-driven	approaches.	
AI4Loop	provides	an	innovative	strategy	for	studying	
chromatin	interactions	and	identifying	therapeutic	
targets	at	unprecedented	scale	and	resolution.	Our	
discovery	of	GGI-disrupting	drugs	opens	new	avenues	
for	targeted	cancer	therapies	that	would	not	have	
been	possible	without	the	use	of	AI	in	Science,	and	
provides	a	framework	for	further	AI	in	Science	drug	
discovery	approaches.	
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Fig.	1:	Graphical	Abstract	–	AI4Loop	predicts	gene-gene	
interactions	(GGIs)	from	RNA-Seq	data	using	a	sliding-
window-based	Bi-LSTM	model,	enabling	large-scale	
chromatin	loop	analysis,	pan-cancer	mapping,	and	drug	
screening	to	identify	compounds	that	disrupt	oncogenic	
GGIs.	

Data	and	materials	availability	
The	GGI	profiles	of	cancer	and	healthy	samples	and	

codes	for	AI4Loop	training	and	prediction	are	
available	at	https://github.com/DaoFuying/AI4Loop.	
All	other	data	are	available	in	the	main	text	or	the	
supplementary	materials	and	deposited	to	the	
Nanyang	Technological	University's	repository	
(https://doi.org/10.21979/N9/ORBU74).	The	drug-
perturbed	Hi-C	datasets	are	generated	during	the	
current	study	are	available	in	GEO	under	accession	
number	GSE287383.	
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