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A chromeplated cat sculpture placed on a Persian rug. Android Mascot made from bamboo. Intricate origami of a fox and a unicorn in a snowy
forest.

A transparent sculpture of a duck made out of glass. A raccoon wearing cowboy hat and black leather
jacket is behind the backyard window. Rain droplets
on the window.

A bucket bag made of blue suede. The bag is dec-
orated with intricate golden paisley patterns. The
handle of the bag is made of rubies and pearls.

Three spheres made of glass falling into ocean. Water
is splashing. Sun is setting.

Vines in the shape of text ’Imagen’ with flowers and
butterflies bursting out of an old TV.

A strawberry splashing in the coffee in a mug under
the starry sky.

Figure A.1: Select 1024× 1024 Imagen samples for various text inputs.
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A wall in a royal castle. There are two paintings on
the wall. The one on the left a detailed oil painting of
the royal raccoon king. The one on the right a detailed
oil painting of the royal raccoon queen.

A group of teddy bears in suit in a corporate office
celebrating the birthday of their friend. There is a
pizza cake on the desk.

A chrome-plated duck with a golden beak arguing
with an angry turtle in a forest.

A family of three houses in a meadow. The Dad house
is a large blue house. The Mom house is a large pink
house. The Child house is a small wooden shed.

A cloud in the shape of two bunnies playing with a
ball. The ball is made of clouds too.

A Pomeranian is sitting on the Kings throne wearing
a crown. Two tiger soldiers are standing next to the
throne.

An angry duck doing heavy weightlifting at the gym. A dslr picture of colorful graffiti showing a hamster
with a moustache.

A photo of a person with the head of a cow, wearing
a tuxedo and black bowtie. Beach wallpaper in the
background.

Figure A.2: Select 1024× 1024 Imagen samples for various text inputs.
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A relaxed garlic with a blindfold reading a newspaper
while floating in a pool of tomato soup.

A photo of a corgi dog wearing a wizard hat playing
guitar on the top of a mountain.

A single beam of light enter the room from the ceiling.
The beam of light is illuminating an easel. On the
easel there is a Rembrandt painting of a raccoon.

A squirrel is inside a giant bright shiny crystal ball in
on the surface of blue ocean. There are few clouds in
the sky.

A bald eagle made of chocolate powder, mango, and
whipped cream.

A marble statue of a Koala DJ in front of a marble
statue of a turntable. The Koala has wearing large
marble headphones.

A photo of an alien octopus floats through a portal
reading a newspaper.

A blue jay standing on a large basket of rainbow mac-
arons.

An art gallery displaying Monet paintings. The art
gallery is flooded. Robots are going around the art
gallery using paddle boards.

Figure A.3: Select 1024× 1024 Imagen samples for various text inputs.
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Text

Frozen Text Encoder

Text-to-Image
Diffusion Model

Text Embedding

Super-Resolution
Diffusion Model

64× 64 Image

Super-Resolution
Diffusion Model

256× 256 Image

1024× 1024 Image

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”

Figure A.4: Visualization of Imagen. Imagen uses a frozen text encoder to encode the input text
into text embeddings. A conditional diffusion model maps the text embedding into a 64× 64 image.
Imagen further utilizes text-conditional super-resolution diffusion models to upsample the image,
first 64× 64 → 256× 256, and then 256× 256 → 1024× 1024.
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A Background

Diffusion models are latent variable models with latents z = {zt | t ∈ [0, 1]} that
obey a forward process q(z|x) starting at data x ∼ p(x). This forward process is a

Gaussian process that satisfies the Markovian structure:

q(zt|x) = N (zt;αtx, σ
2
t I), q(zt|zs) = N (zt; (αt/αs)zs, σ

2
t|sI) (3)

where 0 ≤ s < t ≤ 1, σ2
t|s = (1− eλt−λs)σ2

t , and αt, σt specify a differentiable
noise schedule whose log signal-to-noise-ratio, i.e., λt = log[α2

t/σ
2
t ], decreases with

t until q(z1) ≈ N (0, I). For generation, the diffusion model is learned to reverse
this forward process.

Learning to reverse the forward process can be reduced to learning to denoise
zt ∼ q(zt|x) into an estimate x̂θ(zt, λt, c) ≈ x for all t, where c is an optional

conditioning signal (such as text embeddings or a low resolution image) drawn from
the dataset jointly with x. This is accomplished training x̂θ using a weighted

squared error loss

Eϵ,t

[
w(λt)∥x̂θ(zt, λt, c)− x∥22

]
(4)

where t ∼ U([0, 1]), ϵ ∼ N (0, I), and zt = αtx+ σtϵ. This reduction of generation
to denoising is justified as optimizing a weighted variational lower bound on the

data log likelihood under the diffusion model, or as a form of denoising score
matching [75, 68, 28, 37]. We use the ϵ-prediction parameterization, defined as

x̂θ(zt, λt, c) = (zt − σtϵθ(zt, λt, c))/αt, and we impose a squared error loss on ϵθ
in ϵ space with t sampled according to a cosine schedule [42]. This corresponds to a

particular weighting w(λt) and leads to a scaled score estimate
ϵθ(zt, λt, c) ≈ −σt∇zt log p(zt|c), where p(zt|c) is the true density of zt given c

under the forward process starting at x ∼ p(x) [28, 37, 69]. Related model designs
include the work of [73, 34, 35].

To sample from the diffusion model, we start at z1 ∼ N (0, I) and use the discrete
time ancestral sampler [28] and DDIM [67] for certain models. DDIM follows the

deterministic update rule

zs = αsx̂θ(zt, λt, c) +
σs

σt

(zt − αtx̂θ(zt, λt, c)) (5)

where s < t follow a uniformly spaced sequence from 1 to 0. The ancestral sampler
arises from a reversed description of the forward process; noting that

q(zs|zt,x) = N (zs; µ̃s|t(zt,x), σ̃
2
s|tI), where

µ̃s|t(zt,x) = eλt−λs(αs/αt)zt + (1− eλt−λs)αsx and σ̃2
s|t = (1− eλt−λs)σ2

s , it
follows the stochastic update rule

zs = µ̃s|t(zt, x̂θ(zt, λt, c)) +
√
(σ̃2

s|t)
1−γ(σ2

t|s)
γ ϵ (6)

where ϵ ∼ N (0, I), and γ controls the stochasticity of the sampler [42].
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B Architecture Details

B.1 Efficient U-Net

We introduce a new architectural variant, which we term Efficient U-Net, for our
super-resolution models. We find our Efficient U-Net to be simpler, converges faster,

and is more memory efficient compared to some prior implementations [42],
especially for high resolutions. We make several key modifications to the U-Net
architecture, such as shifting of model parameters from high resolution blocks to

low resolution, scaling the skip connections by 1/
√
2 similar to [69, 62] and reversing

the order of downsampling/upsampling operations in order to improve the speed of
the forward pass. Efficient U-Net makes several key modifications to the typical

U-Net model used in [16, 61]:

• We shift the model parameters from the high resolution blocks to the low
resolution blocks, via adding more residual blocks for the lower resolutions.
Since lower resolution blocks typically have many more channels, this allows
us to increase the model capacity through more model parameters, without
egregious memory and computation costs.

• When using large number of residual blocks at lower-resolution (e.g. we use
8 residual blocks at lower-resolutions compared to typical 2-3 residual blocks
used in standard U-Net architectures [16, 62]) we find that scaling the skip
connections by 1/

√
2 similar to [69, 62] significantly improves convergence

speed.
• In a typical U-Net’s downsampling block, the downsampling operation

happens after the convolutions, and in an upsampling block, the upsampling
operation happens prior the convolution. We reverse this order for both
downsampling and upsampling blocks in order to significantly improve the
speed of the forward pass of the U-Net, and find no performance degradation.

With these key simple modifications, Efficient U-Net is simpler, converges faster,
and is more memory efficient compared to some prior U-Net implementations.
Fig. A.30 shows the full architecture of Efficient U-Net, while Figures A.28

and A.29 show detailed description of the Downsampling and Upsampling blocks of
Efficient U-Net respectively. See Appendix D.3.2 for results.

C DrawBench

In this section, we describe our new benchmark for fine-grained analysis of
text-to-image models, namely, DrawBench. DrawBench consists of 11 categories
with approximately 200 text prompts. This is large enough to test the model well,

while small enough to easily perform trials with human raters. Table A.1
enumerates these categories along with description and few examples. We will

release the full set of prompts in the camera ready version.

For evaluation on this benchmark, we conduct an independent human evaluation run
for each category. For each prompt, the rater is shown two sets of images - one from

Model A, and second from Model B. Each set contains 8 random (non-cherry
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Category Description Examples

Colors Ability to generate objects “A blue colored dog.”
with specified colors. “A black apple and a green backpack.”

Counting Ability to generate specified “Three cats and one dog sitting on the grass.”
number of objects. “Five cars on the street.”

Conflicting Ability to generate conflicting “A horse riding an astronaut.”
interactions b/w objects. “A panda making latte art.”

DALL-E [55] Subset of challenging prompts “A triangular purple flower pot.”
from [55]. “A cross-section view of a brain.”

Description Ability to understand complex and long “A small vessel propelled on water by oars, sails, or an engine.”
text prompts describing objects. “A mechanical or electrical device for measuring time.”

Marcus et al. [40] Set of challenging prompts “A pear cut into seven pieces arranged in a ring.”
from [40]. “Paying for a quarter-sized pizza with a pizza-sized quarter.”

Misspellings Ability to understand “Rbefraigerator.”
misspelled prompts. “Tcennis rpacket.”

Positional Ability to generate objects with “A car on the left of a bus.”
specified spatial positioning. “A stop sign on the right of a refrigerator.”

Rare Words Ability to understand rare words1.
“Artophagous.”
“Octothorpe.”

Reddit Set of challenging prompts from “A yellow and black bus cruising through the rainforest.”
DALLE-2 Reddit2. “A medieval painting of the wifi not working.”

Text Ability to generate quoted text. “A storefront with ’Deep Learning’ written on it.”
“A sign that says ’Text to Image’.”

Table A.1: Description and examples of the 11 categories in DrawBench.

picked) generations from the corresponding model. The rater is asked two questions
-

1. Which set of images is of higher quality?
2. Which set of images better represents the text caption : {Text Caption}?

where the questions are designed to measure: 1) image fidelity, and 2) image-text
alignment. For each question, the rater is asked to select from three choices:

1. I prefer set A.
2. I am indifferent.
3. I prefer set B.

We aggregate scores from 25 raters for each category (totalling to 25× 11 = 275
raters). We do not perform any post filtering of the data to identify unreliable raters,
both for expedience and because the task was straightforward to explain and execute.

D Imagen Detailed Abalations and Analysis

In this section, we perform ablations and provide a detailed analysis of Imagen.

D.1 Pre-trained Text Encoders

We explore several families of pre-trained text encoders: BERT [15], T5 [54], and
CLIP [51]. There are several key differences between these encoders. BERT is

trained on a smaller text-only corpus (approximately 20 GB, Wikipedia and
BooksCorpus [87]) with a masking objective, and has relatively small model

variants (upto 340M parameters). T5 is trained on a much larger C4 text-only corpus
(approximately 800 GB) with a denoising objective, and has larger model variants
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(up to 11B parameters). The CLIP model3 is trained on an image-text corpus with
an image-text contrastive objective. For T5 we use the encoder part for the

contextual embeddings. For CLIP, we use the penultimate layer of the text encoder
to get contextual embeddings. Note that we freeze the weights of these text encoders
(i.e., we use off the shelf text encoders, without any fine-tuning on the text-to-image

generation task). We explore a variety of model sizes for these text encoders.

We train a 64× 64, 300M parameter diffusion model, conditioned on the text
embeddings generated from BERT (base, and large), T5 (small, base, large, XL, and
XXL), and CLIP (ViT-L/14). We observe that scaling the size of the language model

text encoders generally results in better image-text alignment as captured by the
CLIP score as a function of number of training steps (see Fig. A.6). One can see that

the best CLIP scores are obtained with the T5-XXL text encoder.

Since guidance weights are used to control image quality and text alignment, we
also report ablation results using curves that show the trade-off between CLIP and
FID scores as a function of the guidance weights (see Fig. A.5a). We observe that
larger variants of T5 encoder results in both better image-text alignment, and image

fidelity. This emphasizes the effectiveness of large frozen text encoders for
text-to-image models. Interestingly, we also observe that the T5-XXL encoder is

on-par with the CLIP encoder when measured with CLIP and FID-10K on
MS-COCO.

T5-XXL vs CLIP on DrawBench: We further compare T5-XXL and CLIP on
DrawBench to perform a more comprehensive comparison of the abilities of these
two text encoders. In our initial evaluations we observed that the 300M parameter
models significantly underperformed on DrawBench. We believe this is primarily

because DrawBench prompts are considerably more difficult than MS-COCO
prompts.

In order to perform a meaningful comparison, we train 64×64 1B parameter
diffusion models with T5-XXL and CLIP text encoders for this evaluation.

Fig. A.5b shows the results. We find that raters are considerably more likely to
prefer the generations from the model trained with the T5-XXL encoder over the

CLIP text encoder, especially for image-text alignment. This indicates that language
models are better than text encoders trained on image-text contrastive objectives in

encoding complex and compositional text prompts. Fig. A.7 shows the category
specific comparison between the two models. We observe that human raters prefer
T5-XXL samples over CLIP samples in all 11 categories for image-text alignment
demonstrating the effectiveness of large language models as text encoders for text to

image generation.

D.2 Classifier-free Guidance and the Alignment-Fidelity Trade-off

We observe that classifier-free guidance [27] is a key contributor to generating
samples with strong image-text alignment, this is also consistent with the

observations of [55, 56]. There is typically a trade-off between image fidelity and
image-text alignment, as we iterate over the guidance weight. While previous work

3https://github.com/openai/CLIP/blob/main/model-card.md
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(b) Comparing T5-XXL and CLIP on DrawBench.

Figure A.5: Comparison between text encoders for text-to-image generation. For Fig. A.5a, we sweep
over guidance values of [1, 1.25, 1.5, 1.75, 2, 3, 4, 5, 6, 7, 8, 9, 10]
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Figure A.6: Training convergence comparison between text encoders for text-to-image generation.

has typically used relatively small guidance weights, Imagen uses relatively large
guidance weights for all three diffusion models. We found this to yield a good
balance of sample quality and alignment. However, naive use of large guidance

weights often produces relatively poor results. To enable the effective use of larger
guidance we introduce several innovations, as described below.

Thresholding Techniques: First, we compare various thresholding methods used
with classifier-free guidance. Fig. A.8 compares the CLIP vs. FID-10K score pareto
frontiers for various thresholding methods of the base text-to-image 64× 64 model.
We observe that our dynamic thresholding technique results in significantly better

CLIP scores, and comparable or better FID scores than the static thresholding
technique for a wide range of guidance weights. Fig. A.9 shows qualitative samples

for thresholding techniques.

Guidance for Super-Resolution: We further analyze the impact of classifier-free
guidance for our 64× 64 → 256× 256 model. Fig. A.11a shows the pareto

frontiers for CLIP vs. FID-10K score for the 64× 64 → 256× 256 super-resolution
model. aug_level specifies the level of noise augmentation applied to the input

low-resolution image during inference (aug_level = 0 means no noise). We observe
that aug_level = 0 gives the best FID score for all values of guidance weight.

Furthermore, for all values of aug_level, we observe that FID improves
considerably with increasing guidance weight upto around 7− 10. While generation
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Figure A.7: T5-XXL vs. CLIP text encoder on DrawBench a) image-text alignment, and b) image
fidelity.
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Figure A.8: CLIP Score vs FID trade-off across various x̂0 thresholding methods for the 64×64
model. We sweep over guidance values of [1, 1.25, 1.5, 1.75, 2, 3, 4, 5, 6, 7, 8, 9, 10].

(a) No thresholding. (b) Static thresholding. (c) Dynamic thresholding.

Figure A.9: Thresholding techniques on 256 × 256 samples for “A photo of an astronaut riding a
horse.” Guidance weights increase from 1 to 5 as we go from top to bottom. No thresholding results
in poor images with high guidance weights. Static thresholding is an improvement but still leads to
oversaturated samples. Our dynamic thresholding leads to the highest quality images. See Fig. A.10
for more qualitative comparison.

using larger values of aug_level gives slightly worse FID, it allows more varied
range of CLIP scores, suggesting more diverse generations by the super-resolution
model. In practice, for our best samples, we generally use aug_level in [0.1, 0.3].

Using large values of aug_level and high guidance weights for the super-resolution
models, Imagen can create different variations of a given 64× 64 image by altering

the prompts to the super-resolution models (See Fig. A.12 for examples).

Impact of Conditioning Augmentation: Fig. A.11b shows the impact of training
super-resolution models with noise conditioning augmentation. Training with no
noise augmentation generally results in worse CLIP and FID scores, suggesting

noise conditioning augmentation is critical to attaining best sample quality similar
to prior work [29]. Interestingly, the model trained without noise augmentation has

much less variations in CLIP and FID scores across different guidance weights
compared to the model trained with conditioning augmentation. We hypothesize

that this is primarily because strong noise augmented training reduces the

28



(a) Samples using static thresholding. (b) Samples using dynamic thresholding (p = 99.5)

Figure A.10: Static vs. dynamic thresholding on non-cherry picked 256 × 256 samples using a
guidance weight of 5 for both the base model and the super-resolution model, using the same random
seed. The text prompt used for these samples is “A photo of an astronaut riding a horse.” When using
high guidance weights, static thresholding often leads to oversaturated samples, while our dynamic
thresholding yields more natural looking images.
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Figure A.11: CLIP vs FID-10K pareto curves showing the impact of noise augmentation on our 64×
64 → 256×256 model. For each study, we sweep over guidance values of [1, 3, 5, 7, 8, 10, 12, 15, 18]

low-resolution image conditioning signal considerably, encouraging higher degree
of dependence on conditioned text for the model.

D.3 Impact of Model Size

Fig. A.13b plots the CLIP-FID score trade-off curves for various model sizes of the
64× 64 text-to-image U-Net model. We train each of the models with a batch size

of 2048, and 400K training steps. As we scale from 300M parameters to 2B
parameters for the U-Net model, we obtain better trade-off curves with increasing
model capacity. Interestingly, scaling the frozen text encoder model size yields more
improvement in model quality over scaling the U-Net model size. Scaling with a
frozen text encoder is also easier since the text embeddings can be computed and

stored offline during training.
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Input Unmodified Oil Painting Illustration

Figure A.12: Super-resolution variations for some 64 × 64 generated images. We first generate
the 64×64 image using “A photo of ... .”. Given generated 64× 64 images, we condition both the
super-resolution models on different prompts in order to generate different upsampled variations. e.g.
for oil painting we condition the super-resolution models on the prompt “An oil painting of ... .”.
Through a combination of large guidance weights and aug_level = 0.3 for both super-res models we
can generate different styles based on the style query through text.

D.3.1 Impact of Text Conditioning Schemas

We ablate various schemas for conditioning the frozen text embeddings in the base
64× 64 text-to-image diffusion model. Fig. A.13a compares the CLIP-FID pareto
curves for mean pooling, attention pooling, and cross attention. We find using any
pooled embedding configuration (mean or attention pooling) performs noticeably
worse compared to attending over the sequence of contextual embeddings in the

attention layers. We implement the cross attention by concatenating the text
embedding sequence to the key-value pairs of each self-attention layer in the base
64× 64 and 64× 64 → 256× 256 models. For our 256× 256 → 1024× 1024

model, since we have no self-attention layers, we simply added explicit
cross-attention layers to attend over the text embeddings. We found this to improve

both fidelity and image-text alignment with minimal computational costs.

D.3.2 Comparison of U-Net vs Efficient U-Net

We compare the performance of U-Net with our new Efficient U-Net on the task of
64× 64 → 256× 256 super-resolution task. Fig. A.14 compares the training
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Figure A.13: CLIP vs FID-10K pareto curves for different ablation studies for the base 64 × 64
model. For each study, we sweep over guidance values of [1, 1.25, 1.5, 1.75, 2, 3, 4, 5, 6, 7, 8, 9, 10]
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Figure A.14: Comparison of convergence speed of U-Net vs Efficient U-Net on the 64 × 64 →
256× 256 super-resolution task.

convergence of the two architectures. We observe that Efficient U-Net converges
significantly faster than U-Net, and obtains better performance overall. Our Efficient

U-Net is also ×2− 3 faster at sampling.

E Comparison to GLIDE and DALL-E 2

Fig. A.15 shows category wise comparison between Imagen and DALL-E 2 [56] on
DrawBench. We observe that human raters clearly prefer Imagen over DALL-E 2 in
7 out of 11 categories for text alignment. For sample fidelity, they prefer Imagen
over DALL-E 2 in all 11 categories. Figures A.17 to A.21 show few qualitative

comparisons between Imagen and DALL-E 2 samples used for this human
evaluation study. Some of the categories where Imagen has a considerably larger

preference over DALL-E 2 include Colors, Positional, Text, DALL-E and
Descriptions. The authors in [56] identify some of these limitations of DALL-E 2,
specifically they observe that DALLE-E 2 is worse than GLIDE [43] in binding
attributes to objects such as colors, and producing coherent text from the input
prompt (cf. the discussion of limitations in [56]). To this end, we also perform
quantitative and qualitative comparison with GLIDE [43] on DrawBench. See

Fig. A.16 for category wise human evaluation comparison between Imagen and
GLIDE. See Figures A.22 to A.26 for qualitative comparisons. Imagen outperforms

GLIDE on 8 out of 11 categories on image-text alignment, and 10 out of 11
categories on image fidelity. We observe that GLIDE is considerably better than
DALL-E 2 in binding attributes to objects corroborating the observation by [56].
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Figure A.15: Imagen vs DALL-E 2 on DrawBench a) image-text alignment, and b) image fidelity.
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Figure A.16: Imagen vs GLIDE on DrawBench a) image-text alignment, and b) image fidelity.
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Imagen (Ours) DALL-E 2 [56]

Hovering cow abducting aliens.

Greek statue of a man tripping over a cat.

Figure A.17: Example qualitative comparisons between Imagen and DALL-E 2 [56] on DrawBench
prompts from Reddit category.
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Imagen (Ours) DALL-E 2 [56]

A yellow book and a red vase.

A black apple and a green backpack.

Figure A.18: Example qualitative comparisons between Imagen and DALL-E 2 [56] on DrawBench
prompts from Colors category. We observe that DALL-E 2 generally struggles with correctly
assigning the colors to the objects especially for prompts with more than one object.
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Imagen (Ours) DALL-E 2 [56]

A horse riding an astronaut.

A panda making latte art.

Figure A.19: Example qualitative comparisons between Imagen and DALL-E 2 [56] on DrawBench
prompts from Conflicting category. We observe that both DALL-E 2 and Imagen struggle generating
well aligned images for this category. However, Imagen often generates some well aligned samples,
e.g. “A panda making latte art.”.
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Imagen (Ours) DALL-E 2 [56]

A couple of glasses are sitting on a table.

A cube made of brick. A cube with the texture of brick.

Figure A.20: Example qualitative comparisons between Imagen and DALL-E 2 [56] on DrawBench
prompts from DALL-E category.
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Imagen (Ours) DALL-E 2 [56]

New York Skyline with Hello World written with fireworks on the sky.

A storefront with Text to Image written on it.

Figure A.21: Example qualitative comparisons between Imagen and DALL-E 2 [56] on DrawBench
prompts from Text category. Imagen is significantly better than DALL-E 2 in prompts with quoted
text.
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Imagen (Ours) GLIDE [43]

Hovering cow abducting aliens.

Greek statue of a man tripping over a cat.

Figure A.22: Example qualitative comparisons between Imagen and GLIDE [43] on DrawBench
prompts from Reddit category.
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Imagen (Ours) GLIDE [43]

A yellow book and a red vase.

A black apple and a green backpack.

Figure A.23: Example qualitative comparisons between Imagen and GLIDE [43] on DrawBench
prompts from Colors category. We observe that GLIDE is better than DALL-E 2 in assigning the
colors to the objects.
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Imagen (Ours) GLIDE [43]

A horse riding an astronaut.

A panda making latte art.

Figure A.24: Example qualitative comparisons between Imagen and GLIDE [43] on DrawBench
prompts from Conflicting category.
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Imagen (Ours) GLIDE [43]

A couple of glasses are sitting on a table.

A cube made of brick. A cube with the texture of brick.

Figure A.25: Example qualitative comparisons between Imagen and GLIDE [43] on DrawBench
prompts from DALL-E category.
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Imagen (Ours) GLIDE [43]

New York Skyline with Hello World written with fireworks on the sky.

A storefront with Text to Image written on it.

Figure A.26: Example qualitative comparisons between Imagen and GLIDE [43] on DrawBench
prompts from Text category. Imagen is significantly better than GLIDE too in prompts with quoted
text.

43



GroupNorm

swish

Conv
kernel_size=3×3
channels=channels

GroupNorm

swish

Conv
kernel_size=3×3
channels=channels

Conv
kernel_size=1×1
channels=channels

Figure A.27: Efficient U-Net ResNetBlock. The ResNetBlock is used both by the DBlock and
UBlock. Hyperparameter of the ResNetBlock is the number of channels channels: int.

Previous DBlock

Conv
kernel_size=3×3
strides=stride

channels=channels

CombineEmbs
Conditional Embeddings

(e.g., Time, Pooled Text Embeddings)

ResNetBlock
channels=channels

× numResNetBlocksPerBlock

SelfAttention
attention_heads=8

hidden_size=2×channels
output_size=channels

Full Contextual Text Embeddings

Figure A.28: Efficient UNet DBlock. Hyperparameters of DBlock are: the stride of the block if there
is downsampling stride: Optional[Tuple[int, int]], number of ResNetBlock per DBlock
numResNetBlocksPerBlock: int, and number of channels channels: int. The dashed lined
blocks are optional, e.g., not every DBlock needs to downsample or needs self-attention.
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Previous UBlock

++Skip Connection from DBlock

CombineEmbsConditional Embeddings

ResNetBlock
channels=channels

× numResNetBlocksPerBlock

SelfAttention

Conv
kernel_size=3×3
strides=stride

channels=channels

Figure A.29: Efficient U-Net UBlock. Hyperparameters of UBlock are: the stride of the block if there
is upsampling stride: Optional[Tuple[int, int]], number of ResNetBlock per DBlock
numResNetBlocksPerBlock: int, and number of channels channels: int. The dashed lined
blocks are optional, e.g., not every UBlock needs to upsample or needs self-attention.
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Conv
kernel_size=3×3
channels=128

DBlock 256x

DBlock 128x

DBlock 64x

DBlock 32x

DBlock 16x

UBlock 16x

UBlock 32x

UBlock 64x

UBlock 128x

UBlock 256x

Dense
channels=3

2562 Image

Figure A.30: Efficient U-Net architecture for 642 → 2562.
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def sample():
for t in reversed(range(T)):

# Forward pass to get x0_t from z_t.
x0_t = nn(z_t, t)

# Static thresholding.
x0_t = jnp.clip(x0_t, -1.0, 1.0)

# Sampler step.
z_tm1 = sampler_step(x0_t, z_t, t)
z_t = z_tm1

return x0_t

(a) Implementation for static thresholding.

def sample(p: float):
for t in reversed(range(T)):

# Forward pass to get x0_t from z_t.
x0_t = nn(z_t, t)

# Dynamic thresholding (ours).
s = jnp.percentile(

jnp.abs(x0_t), p,
axis=tuple(range(1, x0_t.ndim)))

s = jnp.max(s, 1.0)
x0_t = jnp.clip(x0_t, -s, s) / s

# Sampler step.
z_tm1 = sampler_step(x0_t, z_t, t)
z_t = z_tm1

return x0_t

(b) Implementation for dynamic thresholding.

Figure A.31: Pseudo code implementation comparing static thresholding and dynamic thresholding.

def train_step(
x_lr: jnp.ndarray, x_hr: jnp.ndarray):

# Add augmentation to the low-resolution image.
aug_level = jnp.random.uniform(0.0, 1.0)
x_lr = apply_aug(x_lr, aug_level)

# Diffusion forward process.
t = jnp.random.uniform(0.0, 1.0)
z_t = forward_process(x_hr, t)

Optimize loss(x_hr, nn(z_t, x_lr, t, aug_level))

(a) Training using conditioning augmentation.

def sample(aug_level: float, x_lr: jnp.ndarray):
# Add augmentation to the low-resolution image.
x_lr = apply_aug(x_lr, aug_level)

for t in reversed(range(T)):
x_hr_t = nn(z_t, x_lr, t, aug_level)

# Sampler step.
z_tm1 = sampler_step(x_hr_t, z_t, t)
z_t = z_tm1

return x_hr_t

(b) Sampling using conditioning augmentation.

Figure A.32: Pseudo-code implementation for training and sampling using conditioning augmentation.
Text conditioning has not been shown for brevity.

F Implementation Details

F.1 64× 64

Architecture: We adapt the architecture used in [16]. We use larger embed_dim for
scaling up the architecture size. For conditioning on text, we use text cross attention

at resolutions [32, 16, 8] as well as attention pooled text embedding.

Optimizer: We use the Adafactor optimizer for training the base model. We use the
default optax.adafactor parameters. We use a learning rate of 1e-4 with 10000 linear

warmup steps.

Diffusion: We use the cosine noise schedule similar to [42]. We train using
continuous time steps t ∼ U(0, 1).

# 64 X 64 model.
architecture = {

"attn_resolutions": [32, 16, 8],
"channel_mult": [1, 2, 3, 4],
"dropout": 0,
"embed_dim": 512,
"num_res_blocks": 3,
"per_head_channels": 64,
"res_block_type": "biggan",
"text_cross_attn_res": [32, 16, 8],
"feature_pooling_type": "attention",
"use_scale_shift_norm": True,

}

learning_rate = optax.warmup_cosine_decay_schedule(
init_value=0.0,
peak_value=1e-4,
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warmup_steps=10000,
decay_steps=2500000,
end_value=2500000)

optimizer = optax.adafactor(lrs=learning_rate, weight_decay=0)
diffusion_params = {

"continuous_time": True,
"schedule": {

"name": "cosine",
}

}

F.2 64× 64 → 256× 256

Architecture: Below is the architecture specification for our 64× 64 → 256× 256
super-resolution model. We use an Efficient U-Net architecture for this model.

Optimizer: We use the standard Adam optimizer with 1e-4 learning rate, and 10000
warmup steps.

Diffusion: We use the same cosine noise schedule as the base 64× 64 model. We
train using continuous time steps t ∼ U(0, 1).

architecture = {
"dropout": 0.0,
"feature_pooling_type": "attention",
"use_scale_shift_norm": True,
"blocks": [

{
"channels": 128,
"strides": (2, 2),
"kernel_size": (3, 3),
"num_res_blocks": 2,

},
{

"channels": 256,
"strides": (2, 2),
"kernel_size": (3, 3),
"num_res_blocks": 4,

},
{

"channels": 512,
"strides": (2, 2),
"kernel_size": (3, 3),
"num_res_blocks": 8,

},
{

"channels": 1024,
"strides": (2, 2),
"kernel_size": (3, 3),
"num_res_blocks": 8,
"self_attention": True,
"text_cross_attention": True,
"num_attention_heads": 8

}
]

}

learning_rate = optax.warmup_cosine_decay_schedule(
init_value=0.0,
peak_value=1e-4,
warmup_steps=10000,
decay_steps=2500000,
end_value=2500000)

optimizer = optax.adam(
lrs=learning_rate, b1=0.9, b2=0.999, eps=1e-8, weight_decay=0)

diffusion_params = {
"continuous_time": True,
"schedule": {

"name": "cosine",
}

}
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F.3 256× 256 → 1024× 1024

Architecture: Below is the architecture specification for our
256× 256 → 1024× 1024 super-resolution model. We use the same configuration

as the 64× 64 → 256× 256 super-resolution model, except we do not use
self-attention layers but rather have cross-attention layers (to the text embeddings).

Optimizer: We use the standard Adam optimizer with 1e-4 learning rate, and 10000
linear warmup steps.

Diffusion: We use the 1000 step linear noise schedule with start and end set to 1e-4
and 0.02 respectively. We train using continuous time steps t ∼ U(0, 1).

"dropout": 0.0,
"feature_pooling_type": "attention",
"use_scale_shift_norm": true,
"blocks"=[

{
"channels": 128,
"strides": (2, 2),
"kernel_size": (3, 3),
"num_res_blocks": 2,

},
{

"channels": 256,
"strides": (2, 2),
"kernel_size": (3, 3),
"num_res_blocks": 4,

},
{

"channels": 512,
"strides": (2, 2),
"kernel_size": (3, 3),
"num_res_blocks": 8,

},
{

"channels": 1024,
"strides": (2, 2),
"kernel_size": (3, 3),
"num_res_blocks": 8,
"text_cross_attention": True,
"num_attention_heads": 8

}
]
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