Proof for Proposition 2

Proposition 2. Given a planning instance P and an admis-
sible set T, the following claims hold.

1. There exists an atomic conjunction t € T such that any
optimal plan to t is also an optimal plan for P.

2. There exists an admissible sequence T = (to,t1,...,tm)
withm > 0andt; € T forall 0 < i <m.

Proof. Let T = {to,t1,...,t,}. In order to prove the first
claim, we show that (i) there exists an atomic conjunction
t € T such that one of its optimal plan is an optimal plan
for P and then we prove that (ii) for this ¢, all of its optimal
plans are optimal plans for P. For the second claim, we con-
struct a sequence of atomic conjunctions and show it is an
admissible sequence.

First Claim (i) Assume, towards a contradiction, that for
all 4, any optimal plans to ¢; is not an optimal plan for P.

Since T is admissible, there exists an atomic conjunction
which is true in the initial state. W.O.L.G., let {7 C sg. The
empty plan () is an optimal plan for ¢y and as we assume
that it is not an optimal plan for P, so there must exist an
atomic conjunction in 7' (W.O.L.G., call it £1) such that the
empty plan () can be extended by one action a; to reach
t; optimally. Therefore 71 = (a1) is an optimal plan for
t1, but not an optimal plan for P. As T is admissible, (a;)
can be extended by one action ay to reach to optimally, i.e.,
w9 = (a1, az) is an optimal plan for ¢o. However 7y is not
an optimal plan for P. We continue this process and obtain
a sequence of actions (ay, ag, ...) and a sequence of atomic
conjunctions (tg,t1,to,...). It can be seen that for each i,
the action sequence 7; is an optimal plan for ¢;, but not an
optimal plan for P per assumption.

Now we show that all atomic conjunctions in the sequence
(to,t1,12,...,) are distinct. If not, assume ¢; = t;, with j <
k, then both 7; and 7, can reach t; optimally, but the length
of ; is strictly shorter than the length of 7, contradicts.

Since T contains finitely many atomic conjunctions, this
sequence must end and let ¢,, be the last atomic conjunc-
tion in this sequence and denote it as T = (tg,t1,..., 1)
We show that 7,,, = (a1, as,...,a,) is an optimal plan for
P. If not, 7, can be extended by one action to reach an-
other atomic conjunction in 7" optimally, so ¢,, is not the
last element in this atomic conjunction sequence, contra-
dicts. Therefore, 7, is an optimal plan for P and we know
the length of the optimal plans for P is m.

First Claim (ii) Now we show that any optimal plan to ¢,,
must be an optimal plan for P.

Assume that there exists an optimal plan 7 to ¢,,, which is
not optimal for P. We know the length of 7 is m from above.
Since T is admissible, there must exist an atomic conjunc-
tion ¢} in T such that 7 can be extended by one action a}
to reach it optimally and we can continue the process and
obtain a sequence of actions (a}, ab, ...) and a sequence of
atomic conjunctions (¢,t5,...,). Similarly as above, this
sequence of atomic conjunctions will end and we assume
the last one in this sequence is ¢},. We know that an optimal
plan to ¢} is an optimal plan for P and the length of this

optimal plan is k + |7| = k + m, which is strictly greater
than m. Therefore, it cannot be an optimal plan for P, con-
tradicts. So we have shown that any optimal plan to reach
t,, must be an optimal plan for the planning instance P.

Second Claim Assume ¢y C sg. The empty plan () is an
optimal plan to reach ty. If it is also an optimal plan for P,
let 7 = (to) and it is an admissible sequence. Otherwise,
since 7' is an admissible set, any optimal plan to ¢y, which
is not optimal for P can be extended by one action to reach
another atomic conjunction in 7" optimally (W.O.L.G., let
it be t1). If an optimal plan to ¢; is optimal for P, then let
7 = (to,t1) and it is easy to verify that it is an admissible
sequence. Otherwise, we know that every optimal plan to ¢;
can be extended to ¢5 optimally and so on.

From above construction, we can obtain a sequence of
atomic conjunctions (o, t1, ...,) and every optimal plan to
t; can be extended to reach ¢;,; optimally. From proof for
the first claim, we know this sequence will end and we as-
sume the last one is ¢,,. Let 7 = (¢1,...,¢) and it can be
verified that it is an admissible sequence since 1) ¢ is true
in the initial state sq, 2) every optimal plan to ¢; can be ex-
tended to ¢;4; optimally for all 7 = 0,...,m — 1, and 3)
every optimal plan to t,,, is an optimal plan for P. O

Proof for Lemma 5

Lemma 5. The problem FCP is in the complexity class of
OptP[O(log L)].

Proof. Given an input (P € Py, t,t') where ¢,t are two
atomic conjunctions of P. Let L be the size of P, ¢, ¢’ as
input, n and m be the numbers of atoms and actions respec-
tively, and p(n) be the polynomial which bounds the length
of optimal plans for P. Trivially, n +m < L. We consider
the set R C Ny x Ny x Ny equipped with the lexicographical
order, i.e., (a1, az, as) < (b1, b, b3) if and only if (a1 < by)
or (a; = by and as < be) or (a; = by and ay = by and
as < bz). We execute the following algorithm.

1: guess an action sequence ai,...,ar,b1,ba,...,bh;

with K, J < p(n);
2: letly = p(n)+1,1a = p(n) + 3;
3:for0<i<K—-1do

4: ift C s; then

5: l1 = i, break;

6: end if

7. if a;4; applicable in s; then
8: let s;41 = f(SZ‘, ai+1);

9: else

10: break;

11: endif

12: end for

13: Let s{, = so;
14: for0 <i< K —1do
15: ift’ C s} then

16: lo = 1, break;

17: endif

18: if b; 41 applicable in s} then
19: let s} 1 = f(s},bis1);
20: else

21: break;
22: endif
23: end for

24: ifl; = p(n) + 1 orly = p(n) + 3 then
25: wirite (I1, l2,0) and end computation;
26: end if

27: if [= 0 and l; = O then

28: write (0,0, 0) and end computation;
29: end if

30: if ll = 0and l2 = 1 then

31: write (0, 1,1) and end computation;
32: end if

33: for action a € A do

34: lets’ = f(sy,,a)if ais applicable in s;, ;
35: ift’' C s’ then

36: write (1,12, 1) and end computation;
37: endif
38: end for

39: write (l1, 2, 0) and end computation;

Call the OTM M to find the minimum among all above
values based on lexicographical order and we denote it as
(LU,dy. It = 1+ 1, it returns ([, d), otherwise it returns
{1,0).

We now explain the above computation.

First of all, [; and [represent the lengths of plans to reach
t and ¢’ respectively as in Lines 3-23 and since the action
sequences ai,...,ax and by,...,b; are independent, the
minimum values [, I correspond to pos(t), pos(t') respec-
tively.

Then we consider the indicator d. If [+1 # I, that means
none optimal plans can be extended by one action to reach
t’ optimally, therefore d = 0. If [+ 1 = I/, we know that the
length of the optimal plans to ¢ is one less than the length
of the optimal plans to ¢, but still we need to check if every
optimal plan to ¢ can be extended to reach ¢’ optimally and
this check is done via Lines 33-38.

Under the condition [+ 1 = I’, we consider the following
cases in each guess.

* If]y is greater than the minimum value [, the result of the
third element computed in Lines 36-42 will not have any
impact on the final result d since the tuple (I3, —, —) will
not be selected by the OTM M.

e If the minimum value [= [;, the guessed action sequence
reaches ¢ optimally (in [steps). Since I’ = [+ 1, we
know that if an action sequence can reach ¢’ by one more
step from ¢, it must be optimal for ¢'. Now we need to
check if this action sequence be extended by one action
toreach t’ or not. If there is one action to extend, a value 1
is written as the third element of the tuple. Since the OTM
M computes the minimum value of the third element, if
it is 0, that means there exists an optimal plan to ¢ but
cannot be extended to ¢'.

Finally, the above computation runs no more than polyno-
mial time of p(size) with size > m + n as K is upper
bounded by p(n), each state has no more than n atoms and
the check in Lines 36-42 runs at most m steps.

Moreover, (pos(t), d) in binary can be represented by no
more than log p(n) + 1 bits, therefore, according to Defini-
tion 7, it is in the complexity class of OptP[O(log L)]. O

Proof for Lemma 6

Lemma 6. The problem of FCP is OptP[O(log L)]-hard.

Proof. Similar to the proof of Theorem 4, we metrically re-
duce any Optimal Turing machine and an input to an in-
stance of Find-ConjunctionPos. The main difference
between this proof and the proof in Theorem 4 is we con-
struct an “enumeration” of decimal numbers instead of bi-
nary numbers.

Let the OTM M = (Q,T,%,4, g0, Qr,), where Q is
a set of states, I' is a tape alphabet which contains all sym-
bols that can be written on the tape, ¥ C T' is the input
alphabet, [J ¢ ¥ is the blank symbol and O € T, g is the
initial state, Qr C @ is the set of final accepting states,
§:Q x I — 2@xIx{LeftRight} j¢ the transition function. Fi-
nally, if 7 is the size of the input, let g; (n) be the polynomial
bounding the execution time of M, and g3(n) € O(logn)
be the strict bound (non-equal) of the number of binary dig-
its of the optimal value computed by M. W.L.O.G., we as-
sume no transition is enabled in final accepting states.

Now given an input x on the tape of M, we shall
build below a planning instance P4, and an atomic
conjunction #(aq 5y and t’< M) such that the output from
Find-ConjunctionPos on (P), t(m,a)s t/<M,1>>
is closely related to the minimum value computed
from M when run x. More specifically, output from
Find-ConjunctionPos is (pos(t(a,q)),d), and from
pos(t(am,z)), we can derive the minimum value computed
from M “easily”. A trace of Py, will first encode an
execution branch of M on z, and then perform a kind of
“counting” of decimal numbers that reach (. in a desir-
able number of actions.

Let G £ g;(|z|) be the maximum time M may run on in-
put z, and of course, the maximum number of tape positions
used. We let K = (293(#1) — 1) denote the decimal value of
the binary number 111...11 . If a computation branch

—_—
g3(|z|) copies of 1’s
writes a number greater than K, then our planning instance
will just write K instead. Therefore, the numbers in decimal
that can be written on each computational branch must be in
the set {0, 1,..., K'} where K is upper bounded by |x|°(")
since g3(|z|) € O(logn).

We define the planning instance Paq,q) =
(F,A,Z,G) € Ppoly and the atomic conjunction Z(x , as
follows.

K

Atoms. The set F = F; U Fo U U{countk} U
k=1

{goaly, goaly} where:

* t(m,z) = {goali} is the atomic conjunction whose pos
we wish to compute.

An OTM l

T1 | Tz | T3 | T4

= <Q7 r, 2161Q‘.)1 D)

with input
T =2T1X2x3...2],

write a binary number 11, which is 3 in denary

metric reduction -« - e

M wi rites 2
A planning instance
P € Ppay
Two atomic conjunctions,
Initial

t= {goall} state ©
t' = {goals}

writes 3

write a binary number 10, which is 2 in denary

Plan length is between
;r e, di > {ea, da} —({ea, ds} |—{{ea, di} }-s {90“11} 4G+1 and G+4G+1
R ' @)
Plan length is between

6G and G+ 6G

S|mulate the run of the TM
with at most G actions

Ifiis pr|nted

generate a sequence of 2Gi actions

Figure 2: Metric reduction for hardness proof in Lemma 6.

. t’<M’x> = {goals}.

o F1 = {in(j,x),at(j,q) } e zer,jejc)> as in (Bylander
1994) to capture all M’s workings: in(i, x) means that
the symbol z is in position i. at(i,q) means that at the
current position ¢ and state ¢, M is ready to perform the
transition according to 6.

* Fo = {di}icp2ck)» atoms used to represent and imple-
ment listing of a sequence of atomic conjunctions that
reach the goal in a desired number of steps.

* Atom county, signals that the Turing machine branch left
k (as decimal) in the tape and hence the counting process
will start.

* Atom goals will be used as the dummy goal.

There are at most (|Q|G + |T'|G + 2GK + K + 2) atoms.
Since K is polynomially upper bounded, the number of
atoms is upper bounded polynomially in terms of the size
of the description of M and its input x.

Initial and goal states. The initial state describes the input
T = T1,...,T |, in the tape with the rest of the cells on the
tape blank, and the OTM M ’s initial configuration.

7= {in<13x1)7in(2,$2)7 sy ZTL(‘.’E|,£L"$‘)} U
(in(i,00) | i € {0,|2] +1,...,G}} U {at(1, go)}

The goal of the planning task is to reach a state where
distinguished atom goals holds true, that is, G = {goals}.

Actions. The set of actions is built from three different
“components”.

First, we have actions dedicated to model the dynamics of
the OTM M. This is basically as in (Bylander 1994) except
that we use one single action to model the Turing machine
transition rather than three. Concretely, for every i € [G]
(representing the position in the tape), and every transition
(¢,z,4',y,d) € 4, the planning instance includes the action

a(i,q,x,q,y,d) with precondition {at(i,q),in(i,x)} and
post-conditions:

o {at(i?1,q'), nat(i,q),in(i,y), —in(i,z)}, if © # y; or
o {at(i?1,q'), nat(i,q)}, if x = y.

where 7 = + if d = Rightand ? = — if d = Left

Once the Turing Machine reaches an accepting state, spe-
cial actions will convert the binary number left in the tape
to an atom representing its decimal value. Concretely, for
every final accepting state ¢ € Q) r, possible tape position
i € [G], and every possible decimal number left on the tape
k < K (via atoms in(-,-)), the planning instance has an
action decimall, with precondition at(i,q) plus the corre-
sponding set of atoms in(-, -) encoding the binary represen-
tation of number k; its post-condition is {county, d; }.

When the atom d; becomes true, it signals the start of
the next phase, which implements a sequential “counting” of
decimal numbers from 1 up to 2Gk. For each i € [2GK —1],
action add; has precondition {d;} and its post-condition is
{diy1,~d;}.

Next, we define a set of semi-final actions that complete
the enumeration process when the last number is reached.
Concretely, for every k € [K], there is an action finishy,
whose precondition is {dagy, county } and post-condition is
{goal;}.

Finally, we define an action goal — transfer with pre-
condition {goal,} and post-condition {goals} to mark the
end of the entire computation.

There are at most 2G|Q|?|T'|? actions a(i, ¢, z, ¢, y, d),
KG|Q| actions deczmalk, 2GK — 1 actions add;, K ac-
tions finishg and 1 action goal — transfer, so the total
number of actions is polynomial in terms of the size of the
description of M and its input .

Since the longest plan length of P will be upper bounded
by 2GK + G + 1 and given K is polynomially bounded,
which means that P € Pyqy.

Given both the number of atoms and the number of ac-
tions are polynomially bounded with respect to the size of
the description M and its input x, we know that it takes
polynomial time to reduce any OTM M and its input x to
an input for Find-ConjunctionPos,i.e., a planning in-
stance P € Ppory and an atomic conjunction ¢.

Consider two decimal numbers ¢ < j written by M, we
know that the plan which encodes the computation branch
which writes ¢ has length at most 2G¢ + G + 1 and the plan
which encodes the one with j as length at least 2Gj + 1.
Since 2Gi+ G+ 1 < 2Gi+2G+1=2G(i+1)+1<
2Gj + 1, we know the plan encoding i is shorter than
plan encoding j. Thus the length of optimal plan to reach
tim,z) = {goaly} should be between 2Gr and 2Gr + G,
where 7 is the minimum number computed by M. And
we know the output of this Find-ConjunctionPos in-
stance will be (pos(t(a4,q)), 1) since the only optimal plan
to t(a4,2) can be extended by the action goal — trans fer to
reach t’< M,y Optimally.

Therefore, from pos(t< M,z)), the minimum value r from
the OTM M’s computation should be obtained easily, i.e.

pos(t(m,zy)

Fin2ﬁly Pos(tiam,zy) < G+2GK, therefore its binary rep-
resentation is in O(log L) as both G and K are polynomially
upper bounded.

From Definition 9, we have proved that
Find-ConjunctionPos is OptP[O(log L)]-hard. O

